
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



EXISTENCE, UNIQUENESS AND STABILITY

OF SOLUTIONS OF THE EQUATION

utt -

by

R. C. MacCamy

Report 68-18

June, 1968

Libraries
c-rTOw
Pittsburgh PA



-i-

ACKNOWLEDGEMENTS.

This research was supported by the Air Force Office of

Scientific Research under Grant AF-AFOSR-647-66.

HUNT LIBHABY
£AAN£6J£-M£LL0N



1. Introduction and Statement of Results.

This paper contains an investigation of the partial differ-

ential equation

The study was begun in [1] where it was assumed that A was a

positive constant. Here we allow A to depend on u . This
X

seemingly simple change leads to considerable difficulty since

the equation then becomes quasi-linear rather than semi-linear.

Equations of the form (E) arise in the theory of elasticity,

more precisely in what is called linearly-viscous elasticity

([2] and [3]). They result from applying what is called the slow-

flow approximation to more general theories in which stress is a

functional of the past history of the strain. We remark that (E)

includes the equation of one-dimensional, compressible, viscous

flow of a gas (formulated in so-called Lagrange co-ordinates).

In the physical context it is not consistent to assume A is

a constant while allowing a to depend nonlinearly on u .

Thus, physically, it is much more realistic to allow A in (E)

to depend on u .

We study (E) with the additional conditions,

(A) u(O,t) = u(l,t). = 0,

(B) u(x,0) = f(x),

(G) ufc(x,0) = g(x) .

The results here parallel those of [1] in that we establish the

uniqueness, existence and stability of solutions of the problem

defined by (E), (A), (B), (C) .
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4We assume throughout that f and g belong to C [0,1]
2

and C [Ojl] respectively. We impose on the functions a and

A the following conditions:

.(*) (7(0) = 0* 0 < aQ £ oX£) £ a 1 Iff" (|)| £.cr2 for all |

(**) 0 < AQ £ M£) £ A1? |V(*)| £ *2
 for ^

where cro^crli0r2^O^^l^ an(^ ^2 a r e c o n s t a n t s*

We follow the notation and terminology of [1]• For func-
2

tions A and 0 which are in C [0,1] we set

(1.1) J(A,OJ = E max |A(i)(x)| + max |0(i)(x)|
1=0 xe[0,1] xe[0,1]

For any positive number T we denote by S- the strip.

ST = {(x,t) |0 £ x £ 1, 0 ̂  t ̂  T} .

2
Then if U € C (ST) we write

(1.2) lllulH(t) = I E ^ ^ ' i-k kl •
i=0 k=0 XLO^1J d x d t

An (f,g) displacement in ST will be any function u

such that:

(i) all derivatives appearing in (E) are continuous in S-.

(ii) u satisfies (E) in (0,l)x(O,T) and conditions (A),

(B), (C). The two main theorems are then as follows:

Theorem (1). There exists M such that for any (f,g) displace-

ment u *

(1.3) |||u||| (t) £ M

*Note that this condition can be assumed without loss of generality.



-3-

on any S-,. The constant M depends only on J(f ,g) ,on,G~> '^i*

^Q>^1>^2
 an<3 f° r fixed (cro*(yl*cr2*^O*^l'^2^ M tends to zero

as J tends to zero, Moreover any (f,g) displacement satisfies

the conditions

( 1 . 4 ) . l i m | | | u | | | = 0 ,

t -• °°

Theorem (2). There exists a unique (f,g) displacement in S m

for any T provided that J(f,g) jLs sufficiently small.

Remarks? 1. Theorems (1) and (2) are weaker than the correspond-

ing ones in [1] in two respects. In [1] the expression |||U|||(t)

contained also u
t t- It would be possible to obtain the results

(1.3) and (1.4) for u. . in this paper also but this

requires some additional computations which we do not include.

The second difference is more serious. In [1] we obtained

the results under the sole assumption that a1 was positive. Thus

it sufficed simply to assume that (*) holds on any compact subset

and our results were independent of the size, J(f,g)* of the

initial data. Suppose we replace (*) and (**) by the conditions:

(*)! a(0) ^ 0 c/(£) > 0 for all ^

(**)f A(£) > 0 for all £ .

Then conditions (*) and (**) will hold on any set | §]..<! p> with

some fixed constants o'o^CTl^cr2^ ̂ 0' ̂ 1' ̂ 2* Theorem (1)

states that we can choose J(f,g) so small that u will remain
x

in the interval |u I £ p so that (*) and (**) will in fact

be satisfied.

2. Physical considerations require that in the applications of

our equation in elasticity we must have u > -1 (positivity of
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the density). As in Remark 1 we point out that we can always

insure this condition by making J(f,g) sufficiently small.

The proof of Theorem (1) is similar to that in [1]. It

proceeds by a combination of energy estimates, obtained in Section

three, and the use of results for linear parabolic equations.

The latter presents considerable technical difficulty due to the

presence of u in A. The computations are presented in Sec-

tion four. In sections five and six we give the existence proof

which is somewhat more complicated than that of [1]. Section two

contains the necessary results for linear parabolic equations.

These will be used in the proofs of both theorems.

Note: After completion of this work the author's attention

was called to a paper by Constantine M. Dafermos. This

paper has been submitted to the Journal of Differential

Equations. Dafermos considers a more general equation of

the form,

utt = dr a (v uxt ) •

The function a satisfies the conditions,

CTq(P,q) 1 K , |orp(p,q)| £

The methods are related to ours but somewhat different

since Dafermos studies the equation with boundary conditions

a = 0 at x = 0 and 1. His stability results are some-

what weaker than the ones presented here; this reflects the

stronger hypotheses we have made on cr.



-5 —

2. Estimates for Linear Parabolic Equations.

In this section we collect some results which will be necess-

ary for further work. These consist of a collection of estimates

for linear parabolic equations. We need a number of such estimates

with increasing restrictions on the coefficients in order that we

can follow a step by step procedure to the desired fa priori1

bounds of Theorem 1.

The first result is essentially obtained in [4]. It concerns

the problem^

vt = fx (av*+ b)> 0 < x < 1 t > 0,

(P.I) v(0,.t) = v(l,t) = 0,

v(x,0) = if)(x) ,

It is assumed here that a is differentiable, with

(2.1) a(x,t) ̂  a Q > 0 for all (x,t) ,

and that b is continuous. Let k = max |0(x)). Then the

theorem is as follows:

Theorem 3. Suppose that

V 1 l'bllL4[0,l] ^ C for all t ^ 0 .

Let v be a solution of (P.I) such that

||v||(t) £ M± for al l t ^ 0 .

Define the constant M

(3.2) M 4 / 3 = M ^ 2 4 / 9 ( 2 C / a Q )
2 / 3 ,
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Then

|v(x,t) | £ k Q + 2M for t ̂  0 , 0 £ x £ 1.

The next theorems are analogs of some results of [1]. They

concern the following problems

v f c = A ( x , t ) V x x + B ( x , t ) v x + k , 0 < x < l r < t < T+aj

( P . 2 ) v ( O , t ) = v ( l , t ) = 0 ,

V ( X , T ) = <p(x).

Let us denote the solution of this problem (if it exists) by

V(x,t;r;k;p). In the three theorems to follow the same set of

hypotheses hold namely the following!

(i) A e C1 ([0,l]x[0,«))

(ii) |A(x, t)-A(x',t) |<̂ A|x-x'I for t J> 0 and for some p > 0.

(iii) B e C([O,1]X[O,-))

(iv) ,|B(Xit)J ^ B for t ^ 0.

(v) (p € C[0^1], k Holder continuous in x and t in

Theorem 4. Under hypothesis (i)-(v) V(x,t;r;k;^) exists and is

unique (This is a standard result).

In order to state our next two theorems we need some further

notation, again that of [1]. For functions h defined on

[0,l]x[r,T+a] we let

|h|(t) = max |h(x,.t)|,. | hi = max |h|(t).
xe[0,l] T'a tetT,r+a]

(2.3)

(t) = (J h 2 (x , t )dx) 1 / 2 , ||h|| „ = max ||h||(t) .
o r'a tetr,T+a]
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For functions SI defined on 0 £ x ̂  1 we let

fl 2

(2.4) 10| = max |O(x)j, ||q| = (J £&(x) dx)
X€[0,1]' O

Theorem 5* Let a > 0 be fixed. There exists a function Cj(KsB),

such that if %

then we have

(2.3)

C 1 l v I < T'a

[In this and subsequent theorems the functions C, (A,B) are

bounded on compact (A,B) sets] .

Theorem 6. Let a > 0 be fixed. There exists C2(K,B) such that

v(x) = V(x,r;T;O;<p), w(x) =

then

(2.4) IvL |v LI

Remarks (1) The constant C2 in theorem 6 tends to infinity as

r tends to zero. The content of the theorem is that the various

derivatives can be bounded at values of t away from r.

(2) Theorem 5 is very close to a standard result (Theorem 7

below). It differs in that we do not require that A be Holder

continuous in t. Its role is to give us a preliminary estimate
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which enables us to get into the hypotheses of Theorem 7.

We shall not give proofs of theorems (5) and (6) since they

are tedious and very close to ones in [1] and [5]. The

essential ideas can be easily stated though. Following a remark

in [5] we can construct a t-dependent parametrix for the differential

equation in (P.2). By a method of images we can modify this

parametrix so that it satisfies the boundary conditions. We

can then use this modified parametrix in the usual way to construct

a fundamental solution of the equation. This fundamental solution

also satisfies the boundary conditions, hence is a Greenfs func-

tion. The role of taking the t-dependent paramatrix is that it

eliminates the necessity of assuming Holder continuity in t for

the function A.

The Green's function G(s,t,£,r) which we construct has the

property that V(x, t ?T,k,<p) can be written in the form,

•t rl
V(x,t;T?k;<p) = J j k(£,T)G(x,t,£,x)d£dx

T o
1

~o
j

Theorem (6) follows from the fact that G,G ,G. and G are
X u XX

all bounded for t > r. Theorem (5) follows from the fact that

G and G satisfy estimates similar to those of [1] for the

Green!s function for the heat equation. Thus the proof is reduced

to that in [1].

The remaining theorems are standard ones which one finds in

[5]. In order to state them we need the notion of Holder norm.



Let s denote the strip

ST,T+a = £(x,t)|O£x£l, T<t<j+a) .

A function h will be called p-Holder continuous in s , if
TT+a

(2 *) fy f?j?Q 1 h(x',t')-h(x,t)l(2.5) (X, t)€S 1 — l—5^

fcili ( x-x' + (t-t')

If h is p-Holder continuous in s then we define

(2.6) |h|J'a = |h|^ a + Hp(h) .

The following two results are well known and easily verified.

Lemma 3.1. The set CT*a ^f functions which are 3-Holder

continuous in s forms a Banach space under the norm (2.6)

Lemma 3.2. Closed, bounded sets in C T{ a are compact in Cr*a

p p

If P! > P .

We return now to problem (P.2); more specifically to the case

(p = 0. We replace hypothesis (ii) with the following:

(ii)' AeC^a , |A|J^^A ,

with tiypotheses (i) 3 (ii) 5 (iv) and (v) remaining the same. Then

the following theorem is proved in [4].

Theorem (7). Let a > 0 and p!,p < pf < 1 be fixed. There

exists a. function C3(K3B) such that if,

v(x,t) = V(xst7Ti'k7O\

then
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Next we strengthen the hypotheses (v) to

(v<) k e CT>a |k|T'a £ K .

P P

Then again the following is a theorem from [5].

Theorem (8). Under hypotheses (i), (ii)1, (iii), (iv) and (v)

there exists a. constant C4(A, B) such that if %

v(x,t) = V(x,t;r;k;0)>

then

(2.8) |vjj'a, |vx|J'°^K.
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3. Energy Inequalities*

In this section we derive a number of bounds for solutions

of the problem (E), (A), (B), (C) of Section 1. These are almost

exactly like those of [1] and we only outline the proofs. We

use the notations

- [ J *2(x,(3.1) | * | ( t ) = max | * ( x , t ) | , |(*||(t) - [ J *2(x, t)dx]
xe[O,l] b

of the last section. Then the following result holds for any
2

function * e C [0, l]x[0,») which vanishes at x=0 and *=1:

o.2) ||*||(t) <; 1*1 (t) <: ||*x||(t) ̂  |*x|(t) ̂  ||*xx||(t) ̂  l*xxl(t) t

We observe also the following elementary result:

Lemma (3.1). Jf: 0(t) is uniformly continuous and integrable on

[(),») then

lim 0(t) = 0 .

In the remainder of this section it is assumed that u is an

(f,g) displacement on S^ .

We multiply (E) by u. and integrate the resulting expression

over • (0,1)xftjjtj)• If we use conditions (A) we obtain the rela-

tion,

J U x ^ 2 ( C ) d ^ d x + 2 J 2 J
0 ux(x,tx) tx 0

(3.3) ||u ||2(t ) + 2 J
0

= ||u.|| ( t-) + 2 J J o(£)d£dx.
O ii^Cx,^)

Next we multiply (E) by u obtaining
xx

uttuxx - * ' ( u x ) u xx + A'<ux )uxx uxt + A ( ux ) uxxtuxx •
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Hence

Auxxuxxt + Aaf ( V ( ux>>uxx + CT'fux)uxx - u t t u x x

( ututx )x+ utx •

Note that

Hence (3.4) can be written

<3-5' ft<*S£\ + 2^'<Vuxx • aii't'Wt - < V W * + utx

=2<<Xutuxx>t -

Now integrate over (0,1)X(t-,t_) and use condition (A). The

result i s ,

3.6) J A u x ( x , t 2 ) d x + J J cr'(u )A(u )uv;xx(x,t2)dx + j
 2 j a'(ux)A(ux)uxx (x,r)dxdT

2' I 2 I
+ 2 J J 2

o t
J
o ±

We can now derive various estimates from the two formulas

(3.3) and (3.6). In the succeeding results M,M^ and so on will

all denote constants which depend only on J(f,g).,A and A- of

(**) and tend to zero as J(f,g) tends to zero. We define E (a)

and E,(a) by the formulas,

(3.7) En(a) = inf a'(^), E1(a) =supa
f(?).

Both E Q and E^ are positive for any a > 0 by condition (*) .

Then (3.3) yields, just as in [1]* the following result.

*This argument is due to Professor James Greenberg.
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Lemma ( 3 . 2 ) . There e x i s t s M such that

2 ( t ) £ M2 and [ | | u | | 2 ( r ) d r £ M2[ ||uXT||u t i r ( t )£M- and 1 ||u_ir(T)dr £ *T t ^ O

The constant M is given by,

M2 »

where

M2 = J(f ,g)2 + E1(J(f,g))J(f,g)2

Corollary. ||ut|| (•) is integrable on [0,«) and

J ||ut||
2(r)dr i M2 .J

The next result comes from formula (3.6) and again is analogous

to one in [1].

Lemma (3,3). There exists M^ such that,

l|uxx||2(t) <; M2. and j ||uxx||2(r)dT ^ MJ t ^ 0 .

Corol lary. | u | ( t ) ^ | u v | ( t ) ^ M̂  t ^ O .

The following result is an exact analog of one in [1], hence

we omit the proof.

Lemma (3.4). lim ||u.||2(t) = 0 ; lim ||u j|2(t) = 0 .
t- • ^ t- «

The second inequality of Lemma (3.4) together with formula (3.2)

yields immediately the following result.

Corollary. lim u(x,t) = lim u (x,t) « 0 •
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4. A priori Estimates (Proof of Theorem 1).

Our first step in this section is to use Theorem 3 to obtain

a bound for the t derivative of an (f*g) displacement u. Let

u be such a displacement and let v = u. . Then by (E), (A) and

(C) we have.

(4.1) vt =

(4.2) v(O,t) = v(l.t) = 0,

(4.3) v(x,0) = g(x) .

This is for the form considered in Theorem 3. We have by (**) and

Lemma (3.2)

(4.4) A(ux) ;> AQ > 0,

(4.5) k Q = max|g(x)| £ J(f,g),

(4'6) Wl II!l

We know that |u I (t) £ M̂ . by the Corollary of Lemma (3.3).

Hence by (3.7)

|a(u x ) | (t) ^ E1(M#)|ux| (t) £ E^M^M* .

Thus we have

(4.7) A^llall^fo^j £ ^ E 1 ( M * ) M * " C«

Now we can apply Theorem 3 and deduce that

(4.8) |v | ( t ) = ju t | ( t ) <; kQ + CM224/9(2C/X0)2/3}3/4.

Note that both terms on the right side of (4.8) tend to zero as

J(f,g) tends to zero hence we have proved the following result*
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Lemma (4.1). There exists Mu such that

|ut|(t) =

We make use of the estimate for u. to derive an estimate

for u . Here we use a device which again is analoqous to one

in [1]. We write equation (E) as

(4.9) ufct - <*'(ux)uxx + ^(u^UxxUj

= Mtf- (A(ux>uxx> + ft
Now we consider this as an ordinary differential equation for

Mux)uxx' L e t

CT'(U.

Then (4.9) yields,

J s) e^ix, s,r)ds#ux(x,r) + J ufct(x,
T
J
T

If we integrate by parts we can write this in the form,

(4.10) A(ux(x,t))uxx(x,t) = ut(x,t)
ft

- ut(x,r) - J y(x,s)ut(xJJ y(x,s)ut(xJs)e

We deduce two kinds of information from (4.10)• First one

derives immediately, from (4.10) with r = 0, Lemma (4.1) and

our assumptions about a and A, the following result:

Lemma (4.2). There exists M ^ such that
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We can also deduce some smoothness results from (4.10). Let r=0

in (4.10) . Then A(ux(x,r)u^x,r) ~ut(x,r)=A(f ' (x) )f "(x) -g(x)=i/>(x).

The smoothness assumptions on f and g imply that the function

0 has two continuous derivatives. On the other hand a and A

3 2were assumed to be C and C respectively while for an (f>g)

displacement u
x'

ut'uxx*uxt5Uxxt a r e a 1 1 c o n t i n u o u s * O n e then

derives the following result from (4,10).

Lemma (4.3). For an (f,g) displacement u and u are
X X X _ _ . XXXX

continuous.

Now that we have a bound on u we can obtain a bound for
xx

•«
the x-Holder norm of A(u ). Indeed we have by (**)

(4.11) |Mux(x,t)) - Mux(x',t))| £ A2|ux(x,t) - ux(x',t)|

for any p, 0 < p < 1. We also have the bound,

(4.12) l A ' < u
x

) !

We can now use Theorems 5 and 6. Let v = u. . Then v is a

solution of the problem (P.2) with,

A = M u x ) , B =
 A I ( U

X )
U
X X '

 k = cr!(ux)

A is differentiable with respect to x while B and <p are

continuous, k is Holder continuous (in fact differentiable).

Thus hypotheses (i)-(v) of Theorems (4)s (5), and (6) are satis

fied with A,I3 given by (4.11) and (4.12).

1 2We observe that u. = v = v + v where,

(4.13) v1(x,t) = V(x,t;r;k;0), v2(x,t) = V(x,t;r?0,<p) .
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From Theorem 5,. (3.7), Lemma 4.2 and the Corollary to Lemma

3.3 we deduce that,

(4.14) |v£| £ C

From Theorem 6 and Lemma (4.1) we find that

(4.15) |v£| ^C2|<p| = C2|iut| £ C2M^ .

We combine (4.14) and (4.15) and deduce the following result.

Lemma (4.4). There exists M such that

Observe that Theorem 6 and Lemma (4.1) also yield the estimates,

(4.16) |*| |£|

We can obtain some further estimates by using those formulas

from Theorems (5) and (6) which involve L2 norms. By formulas

(2.3) and (2.4) we have,

It follows then from the second inequality of Lemma (3.4) that

|v I and |v | tend to zero as t tends to infinity. In the

same way we deduce also that |v | and |v | tend to zero as

1 2t tends to infinity. Since v + v = u. this yields the

following result.

Lemma (4.5). lim u.(x,t) = lim u .(x,t) = 0 •

From Lemma (4.5) and Equation (4.1O) one obtains,exactly as

in the proof of Lemma (5.3) of [1], the following additional result,
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L e m m a ( 4 . 6 ) . l i m u ( x , t ) = 0 .
t-co X X

Lemmas ( 4 . 2 ) and ( 4 . 4 ) show t h a t t h e f u n c t i o n A = A(u ) h a s

a bounded H o l d e r norm. I n d e e d we h a v e

- A ( x , t ) | ^ A [ | u x x | | x - x < | + | u x t | | t - t < | ]

£ ^^z1"P|x-x'|p + MT
1"P/2|t-t'|

- o P/2
£ A(|x-x«r + |t-f|)

The constant A depends only on r and p .

Now we apply Theorem 7 to the function v of (4.13). We

find

(4.17) I v 1 ! ^ 0 ^ C 3 r ^ 3 1

2

On the other hand it follows from (4.16) that the p-norm of v

is bounded by a constant C times M where C depends only on

T and p. Combining this fact with (4.17) we obtain the following

result.

Lemma (4.7). There exists a constant K, depending only on a ^

and J(f,g) such that

(4.18) Kip'" ^ Kl '

Moreover K, tends to zero as J(f,g) tends to zero.

From Lemma (4.2) and Lemma (4.4) we deduce that there is

another constant K2 with the same properties as K, such that

(4.19) l u
xlp'

a ^ K2 •

We emphasize that the estimates (4.18) and (4.19) depend only

on a, the width of the strip we considered, and not on r the
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starting position of the strip. Thus by fixing a we obtain

estimates which are uniform in t J> 0. This yields the following

result which we need for the existence theorem in Section 6. Let!

0 N
N > 0 be fixed. Let C * denote the Banach space of functions which

P

are p-Holder continuous in S~ XT# Let YT denote the space

C°'NxC°'N with the norm,
P P

( 4 . 2 0 ) | ( m , | * | | ° N | | ° N|(m,n)| m a x ( | m | , | n | ) ,

(see 2.6). YT is then also a Banach space and closed, bounded
P

subsets of K f are compact in K if pf > p .
P P

Lemma (4,8). If u is an (f,g) displacement then (u.,u )GK
— — _ _ —_ • — _ — "c x p

for any N. Moreover there exists _a constant K, depending only

on p and J(f,g); such that for any N.

KvVlJ ̂  K •
K tends to zero as J(f,g) tends to zero.

If we collect all our results we find that the proof of

Theorem (1) is complete. The boundedness of Mu||| follows

from the Corollary to Lemma (3.3) and Lemmas(4.1), (4.2) and (4.4).

The relation (1.4) follows from the Corollary to Lemma (3.4) and

Lemmas (4.5) and (4.6).
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5. Functional Equations*

We are going to reformulate the problem (E)i (A), (B)> (C)

as a fixed point problem. To this end we introduce certain

operators analogous to those in [1]. Throughout we assume that f

and g are a fixed pair of functions suitable for an (f,g)

displacement. The first operator derives from formula (4.10) of the

last section. Let V and W be continuous functions and define

r and E by the formulas

(5.1) T(w)(x,t) = Mwlxftn* ? E ( w ) ( x ' t } = e °

Then h(v,w) i s defined by,

(5.2) h ( v , w ) ( x , t ) = E(w)(x, t ) ( A ( f ' ( x ) ) f " ( x ) - g ( x )

- J r ( w ) ( x , s ) v ( x , s ) [E(w)(x , s ) ] xds) .
0

We observe that if u is an (f,g) displacement and we set v = u.

w = u then (4.10) yields the relation,

(5.3) A(w)w = v + h(v,w) .

Our aim is to find functional equations satisfied by v = u
.

and w = u if u is an (f,g) displacement. Our next step isx

to write Equation (E) in a different form. We have,

vfc = a
!(w)wx + A(w)wxvx + M

w)

or, if we substitute from (5.3),

(5.4) vfc =
 G(w)v x x + e(v,w)vx + C(v,w),

where
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G(w) = A(w), fc(v,w) = A'(w)7v~1(w) (h(v,w) + v)

C(v,w) = a'(w)A"1(w) (h(v,w) + v) .

Our second operator is suggested by (5.4). For a given (v,w)

we define T.,(v,w) as the solution $ of the problem,

(5.5) *. = G(w)* + B(v,w)« + C(v,w)

(5*6) $(0,t) = $(l5t) = O ; <£>(x,0) = g(x)#

By Theorem 4, $ will exist and be uniquely determined provided
§m

that &(v,w) is continuous and G and C are p -Holder con-

tinuous. Thus if v = u. and w = u for an (f,g) displacement

then

(5,7) v = T1(v,w) .

The final operator we introduce is similar to, but more

complicated than the corresponding one in [1]. It arises from

'solving1 (5.3) for w. Define A(w) by the formula,

rW

A(w) = A(£)d£ or Af (w) = A(w) A(0) = 0 ••r
Observe that A is a monotone increasing function. Then if

w(x,t) is a solution of (5.3) it must satisfy the equation,

(5.8) A(w(x,t)) = (h+v) (£,t)d£ + r(tK

0

for some function r. Now if w is to be u for an (f,g)

displacement then we must have,

J w(x,t)dx = J u(x,t)dx = 0 .
0 0
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Hence we impose on r in (5.8) the condition,

(5.9) T A"1 M (h+v)($,t)d£ + r(t)| dx - 0.

0 WO J

Since A is monotone it is easy to see that (5#9) uniquely

determines r(t) as an operator r(t) = R(v,w)(t) on v and w.

Then we define our final operator T2(v,w) by the formula,

(5.10) T2(v,w)(x,t) = A"
1 1 J (h(v,w) + T j M f ^

so that if v = u. , w = u for an (f,g) displacement then
"C X

(5.11) w = T2(v,w) .

Equations (5.7) and (5.11) suggest that if (v>w) is a

fixed point of the map *:(v,w)-> (T,(v,w),T2(v,w)) then v and

w will be the t and x derivatives of an (f,g) displacement.

The main result of this section is that such is indeed the case.

We fix N > 0 and p,0 < p < 1. Then our basic space will

be K as defined in Lemma (4.7). We shall prove the following

result.

Theorem (9) . Let (v,w) t>e ja fixed point of 0. Then there

exists ja function u such that

ut = v , u x = w

and u JL£ an (f5g) displacement.

We begin the proof by observing as above that v>v. /v , v
»- X XX

are all continuous. One sees by (5.2) that h is continuous

and w = T2(vjw) hence it follows immediately from (5.3) that

w is continuous and,

(5.12) w x =
 1
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It also follows from (5.2) that h is differentiable with res-

pect to t and

(5.13) ht(v,w, . $$L h(v>w) . a$L „ .

It is not clear immediately that w is differentiable with res-

pect to t. This is however true and is the key point of the

proof. We state it separately.

Lemma (5.1). w is differentiable with respect to t and

(5.14) w t = v x; w(x,O) =f'(x) .

Let us assume the lemma for the moment and indicate the rest

of the proof of Theorem (9). In view of (5.14) we can define a

function u(x,t) by either of the formulas,

i r x

u(x,t) = ir(x,t) = 1 w(£,t)d£
(5.15) *

u(x,t) = U2(x,t) = f(x) + J v(x,x)dx
0

Note that U2 = v while,

x

- v(0,t) =
i rx r x

Ut
X(x,t) = J wt(£,t)d£ = I v^(|,

2
Moreover U (x,0) = f(x) while,

1 TX T X
Ux(x,0) = J w(€,O)dg = f

0 J0
J £= f(x) - f(0) = f(x) .
0 J0

1 2
Thus U s U and u is well defined. The second of formulas

(5.15) shows that u possesses all the necessary derivatives for

an (f*g) displacement. Also we have

u(x,0) = U2(x,0) = f(x) , ufc(x,0) = U
2(x,0) = v(x,0) = g(x) .
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Now v satisfies (5.4) and v = u... Thus if we substitute

(5.14) into (5.8) and observe that w = u we see that u

satisfies (E). Finally

u(O,t) = U^Ojt) = 0, u(l,t) = U2(l,t) « f(l) + \ v(l,x)dx « 0.

Hence u is an (f,g) displacement.

We return to the proof of Lemma (5.1). Recall that h(v,w)

is differentiable with respect to t and so is v hence the

function

0(x,t) -7 h(v,w)(x,t) + v(x,t)

is differentiable with respect to t. But then it follows from

(5.9) that the function r is differentiable. In fact we have

r(t) = -1J ̂ "1 ff(h+v)(|,t)d| + r(tSS)dxj

)J TX(ht+vt)(|,
1R-i/r x , i
lA \ (h+v)(£,t)d£ + r(t)j 1 (h.+v. ) (̂ ,t)df dx.

-o L \jo
If follows from (5.10) that T2(v,w) is differentiable with

respect to t and then so also is w = T2(v,w).

Observe that by (5.2) we have 0(£,O) = A(f'(x))f" (x) .

Hence by (5.9) we have,

J A"1(A(f'(x)) - A(f'(O)) + r(0))dx = 0 .

This equation has a unique solution and that solution is clearly

r(0) = A(f'(o)) (recall that f(0) = f(l) = 0). Then by (5.10)

we have,

w(x,o) = T2(v,w)(x,0) = A"
1 A(£'(x)) -A(f'(O) +A(f'(O)) = f'(x)



-25-

We have still to verify the first of formulas (5.14), From

(5.4) and (5.15) we have,

(5.16) (h. + v.)A(w) = (h+v)A'A~2v + v .

From the construction of T2 we see that if w = T2(v,w) then

w is a solution of (5.3) with

r 1

I w(£)d| = 0-
J0

Hence w must satisfy the equation

rx,, . ri r/

(5.17) w(x,t) = \ \nY> dfi - ) AP )

Combining (5.16) and (5.17) we have

(5.18) w.(x,t) = \

0 0
0 0 A

vTrdr .

The last two integrals combine to yield v (x,t). Thus on

differentiation we have,

(5.19) (wt(x,t) - vx(x,t))x = - 2 ^ A'(wt(X,t) -vx(x,t))
A

Equation (5.18) shows that^

r 1

J (wfc(x,t)dx = 0.

On the other hand v is 0 at x = 0 and x = 1 henceI vx(x>_,t)dx = 0."0 X

wfc - v x is thus a solution of equation (5.19) which has

integral from 0 to 1 equal to 0, Hence w. = v .
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6. Existence and Uniqueness of a. Solution (Proof of Theorem 2)

According to the last section the proof of the existence of

an (f,g) displacement is reduced to showing that the map 4>

has a fixed point. Consider the family of problems (P ) .

utt = f

(A) ur(O,t) = uT(l,t) = 0 i

(B) ur(c,O) = rf(x),

(c) uj(x,o) = rg(x) ,

for 0'£ r <£ 1. An is the constant in condition (**). (̂ n)

is the problem of this paper while (P ) is the problem of [1]

in the special case f = g = 0. The results of [1] thus yield

the following lemma.

Lemma (6.1) Problem (Pn) has the unique solution u = 0.

Observe that the function AT(£) satisfies condition (**)

for all T in [0,1]. Observe also that the quantity J(Tf,rg)

which bounds the initial data of P is simply rJ(f,g) which

is less than or equal to J(f,g) in 0 <̂  r <£ 1.

We assume from now on that f,g, e,N are fixed.

We now form the operators hr,T^" and T I which derive from

(P ) in the same way as in (Pn). We need not write these downT i

since they differ only in that Ar replaces A. As in Theorem

(9),fixed points of the map $T:(V/W) - (TX(V,W), T2(V,W)) on

K^ will yield solutions of u of (P ) with v = u?. and

w = û " , From Lemma (4.8) we obtain the following estimate.x

Lemma (6.2). There exists a constant L, independent of r jLn

0 ^ r <£, 1 such that if (v,w) jus a. fixed point of $T then
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P

Our next result establishes the compactness of the maps

Lemma (6.3). Let pf,p < p < 1 be fixed. Then there exists a

function X(p) such that ify

I \yjw J I p £ p^

then

We are assuming that | v| N ^ p and | w| N £ p . in par-

ticular it follows that I vl 0 N
 a n d 1 wl 0 N are both bounded

by p (see(2.3)). Also we have by (**)

(6.1) | A (w) I <^ X^p 9 f°r a H T,0 £ T £ !•

Now T^(V^W) is obtained as the solution of the problem (5.4)-

(5.6) with the appropriate modifications in G,fil and C. Call

the modified coefficients GTSB
T and Cr. Then it is easy

to check from the preceding remarks, formula (5.2) and conditions

(*) and "(**) that,

N
(6.2) |GT| £ A2p , |B| Q N ^

 xi(/>) ̂  l CloN-^ X2^>

where X, and X^ depend only on N and the constants in

conditions (*) and (**). Then Theorem (7) yields,

(6.3) IT[i^ ^ C

Given the result (6.3) it is tedious but straightforward cal-

culation to verify that T*L satisfies
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(6.4) i T J l ^ < X
4P

and that completes the proof of Lemma (6.3).

It remains only to discuss the continuity of the maps $ .

In order to do this we need some estimates of second derivatives.

Consider again the modified Equation (5.4) with | (v,w) | <£ p .

We observe that the third inequality of (6.2) can be sharpened as

follows. From (5.2) (*) and (**) one can show that

(6.5) |C r | f = laf(w)A"1(w)(h(v,w)
p

£ |o-« (w) I 0 N |A"1(w)(h(v,w)

X5(p)

Now we can apply Theorems 6 and 8 with r = 0. If $ = T|(v,w)

then these theorems together yield the estimates,

v 7 ' v1 D NT 9 I * Y Y in NT ^ A

Lemma (6.4) . For any fixed r the map <£ J^ continuous in

(v,w) . $ J^ continuous with respect to r uniformly for (v,w)

in bounded sets.
TVT 1 1 O O

Suppose | (v,w) | ^ p. Let <£ = T, (v,w) and $ = Ti (v>w)

Then we have^

ft1 - T l A1 T]" 1 T]-

9 To o r2 2 r2
f P (v,w)* + c (v,w) .
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1 2Thus the difference ih - * - * satisfies the equation,

0t = G (w)0xx + fl •L(v,w)0x + S,

where

S = ( G T l ( w ) - G 2 ( w ) * J v + (B
 1 ( v , w ) - 8 2 ( v , J

Tl T2+ (C x(v,w) - C Z(v,w)) .

It is not too difficult to check that the differences in S are

uniformly small with \r - r | for | (v,w) | £ o • On the
p

2 2
other hand by (6.6) | <$> | and |$ | are bounded uniformly.
Hence given any € we can find £, independent of (v,w) in

I (v,w) | N £ p such that

|s| 0^ N £ € , f IT 1 - T
2| < C-

0 is a solution of Problem (5.4)-(5.5) with G and B replaced
rl rlby G and ft and C replaced by S. It follows by Theorem

7 that |0| can be made uniformly small with | r•. - T21 .

We have shown that T- is continuous with respect to r

uniformly with respect to (v,w). Similar calculations establish

its continuity with respect to (v,w). The continuity of T2 is

a straightforward calculation.

It follows from Lemmas (6.1)-(6.4) and the Leray-Schauder

Theorem that the map <J> has a fixed point. Hence by Theorem 9

we infer the existence of an (f5g) displacement.

In order to complete the proof of Theorem 2 it remains to

verify the uniqueness. Let u be an (f,g) displacement and

let r| be a twice differentiable function in ST which vanishes
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at x = O and x = 1. Multiply (E) by rjt and integrate over

ST. This yields,

(6.7) { ntu.. = \ r\. f- (cr(u) + A ( u ) u . ) .
ST ST

1 2
Form (6.7) for two (f,g) displacements u and u , subtract

1 2
the results and then set 77 = u - u . The result is the equation,

(6.8) J (uj - up(uj. - u^.) = f J (uJ(x,T) - u^(x,T))^dx
T

\ 1 2 11 22
\ (ur"(x.r) - uf ( X - T ) ) [ a1 (u )u - a f ( u )u

00

d T d x •

Now the quantity in square brackets on the right side of (6.8)

can be bounded by the following argument. By Lemma (4.8) u and

u. have bounded Holder norms. From (4.10)(with r = 0) one sees that

1 2
u and u have bounded Holder norms. Then one can apply
XX XX

1 2
Theorems 6 and 8 to u. and u. , considered as solutions of

1 2
(4.9) to deduce that u. and u are bounded on any Sm.

Then (6.8) yields,

\ \ (uJ(x,T) - u,?(x,T)2dx^ M j dr \ (ui(x,T) - u2(x,r))2

0 00 C

Since ut(x,0) - ut(x,0) = 0 it follows that u^(x,t) s u2(x,t)

1 2 1 2
and finally since u (x, 0) = u .(x90) u and u must be

identical.
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