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FOURTH ORDER MOMENTS OF NONNEGATIVE MEASURES ON S2 AND APPLICATIONS

Gilles FRANCFORT1

Francois MURAT2

Luc TARTAR 3

Abstract: We characterize the set of fourth order moments of a nonnegative measure on S2. This question
is motivated by problems of homogenization in linearized elasticity. As a consequence the minimum number
of layering directions for generating general anisotropic, transversely isotropic or isotropic multilayered media
is found. A key ingredient is a result about the decomposition of some nonnegative polynomials into sums
of squares of polynomials; this particular result is due to HlLBERT (1888).

0. Introduction
This paper is mainly devoted to a study of the fifteen dimensional set of all fourth-order moments of a

nonnegative RADON (BOREL regular) measure on S2. A complete characterization of the set, a closed cone,
is being sought with the help of the HlLBERT decomposition theorem for nonnegative polynomials of degree
four in two variables. Special emphasis is placed on the boundary of this set which is shown to be generated
by atomic measures made of five DlRAC masses or less, those being located on the intersection of S2 with the
zero set of a quadratic form. As a consequence it is shown that every point of the moment set is generated
by atomic measures made of six DlRAC masses or less.

As such, this study may be viewed as a contribution to the moment problem; remark that the analogous
two-dimensional case has been analyzed in AVELLANEDA & MILTON [AM]. Potential applications for this
result are however manifold, especially in a field familiar to the authors, that of homogenization. In the setting
of linearized elasticity, effective properties of fine mixtures of two phases are investigated. Specifically, the
goal is to analyze the coefficients of the linear second order elliptic system satisfied by the weak limit u of
the solution fields ue to a sequence of elastic problems of the form

= / in £2, u£ = 0 on <9Q, (0.1)

with

and
, 4 * = : X M + (1-X C )JB. (0.2)

In (0.2), A and I? are two elastic tensors and \e a given arbitrary sequence of characteristic functions on Q,
while in (0.1) / is a given arbitrary element of H~l(£l).

It is a well known result in the theory of homogenization (cf. TARTAR [T]), that u satisfies

-div(Aoe(ti)) = / in fi, u = 0 on dft,

with
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and where A0 is an elasticity tensor called the effective (or homogenized) tensor.
The only knowledge of the weak • limit 6 (in L°°(ft; [0,1])) of \€ does not uniquely determine ^4°: a

whole set G$ of possible effective tensors is generated. As of yet, no complete characterization of this set is
available in spite of the abundant literature on the topic (see e.g. HASHIN [H]).

A special kind of mixtures - laminates - which correspond to a specific kind of characteristic functions
X£, those that oscillate only in one direction, proves fruitful. On the one hand explicit formulae for the
effective tensor are at hand in such a case (FRANCFORT & MURAT [FM']). On the other hand the resulting
effective tensors are extreme among all microstructures (AVELLANEDA [A7]), i.e. for any A0 in G$ there
exist two tensors A and A associated to laminates such that

A<A°<A, (0.3)

in the sense of quadratic forms. Hence a thorough knowledge of such tensors will provide useful information
on the whole set G$.

The connection with the study of fourth order moments stems from the actual expression for the effective
tensor of a laminate. Assume that both phases are isotropic, i.e. that

A = Ait ® i + 2/ii/, with /ii > 0, NKi = NXi + 2/ii > 0

B = A2t ® t -I- 2fi2I, with /i2 > 0, NK2 = NX2 + 2/i2 > 0

where t is the identity matrix of RN and / that of R** (the space of symmetric matrices on RN with its
Euclidean structure). Then the effective tensors associated to (finite-rank) laminates (see Subsection 3.1 for
further details) are given by

e)(A°-Ar>h = {B-A)>h+± j (** ® * + ' ® ha±±£

with

(l-e)(A°-Ar>h = {B-A)'>h+± j ^ (** ® * + ' ® ha-±±£-(ha,)a®a)dl,(a), h € R?, (0.4)

or the analogous formula obtained upon permuting A and £ , and 0 and (1 — 6). Inspection of formula (0.4)
immediately evidences the role played by the fourth order moments of atomic probability measures on SN~l.
It will be established (see Section 2) that such measures are generic from the standpoint of the fourth order
moments among all probability measures on SN~X] this, in conjunction with (0.3), provides the desired link
between the moment problem and homogenization and permits to gain further insight into the structure of
G$. In particular it will be shown (cf. Section 3.2) that rank-6 laminates suffice to generate A and A in
(0.3).

The paper is organized as follows: Sectionl is entirely devoted to notation and to a review of the few
algebraic results needed for the subsequent study. Section 2 is the main part of the paper and it is devoted to
the study of the set of fourth order moments of nonnegative RADON measures on SN~l. In a first subsection
a few preliminary results that remain true in any dimension are derived. Firstly the generic character
of atomic measures is established (Lemma 2.1). Then a result specific to the two and three dimensional
cases provides a complete but unpractical characterization of the studied set (Theorem 2.1). Subsection 2.2
addresses the two-dimensional case; previously known results are rederived [AM]. Subsection 2.3 addresses
the three dimensional case; the main results are Theorem 2.3 and Remark 2.7 which pertain to the intimate
structure of the boundary of that set. In Subsection 2.4 measures that remain invariant under the action of
either one of two symmetry groups are considered and the resulting fourth order moments are characterized.
Section 3 is devoted to applications of the results of Section 2 to homogenization in linearized elasticity.
After a brief positioning of the concept of homogenization in Subsection 3.1, Subsection 3.2 illustrates on
three examples the additional information made available through an adequate use of the results of Section
2.



1. Notation and algebraic preliminaries
The following notation is adopted throughout:
VPtN is the space of polynomials of degree less than or equal to p in N variables
VptN is the subset of VPIN of all homogeneous polynomials of degree p
V+N is the subset of VPis of all nonnegative polynomials
M(SN-1) is the space of all RADON (BOREL regular) measures on SN~l

(N"1) is the subset of Af(5N~1) of all nonnegative measures
*"1) that of all probability measures

PJN is the set of p t h order moments of all elements of M+(5Ar"1)
O(N) is the set of all orthogonal matrices on RN

SO(N) is the subset of O(N) of all rotations
R?2 is the space of all symmetric matrices on RN

i(e R?2) is the identity matrix on RN

I is the identity matrix on R^2

M{aJ) = {A{x) € L°° (RN,C{R?2\R?2)),aI < A(x) < /?/ in the sense of quadratic forms}
® denotes the tensor product of two vectors or two matrices.
Our analysis of the moment problem relies on two classical results. The first one is concerned with

quadrature formulae for polynomials while the second one pertains to an old question of HILBERT on whether
a nonnegative real polynomial is a sum of squares of real polynomials.

The quadrature result is merely stated and the interested reader is referred to [CM], Theorem 2.2.

Lemma 1.1: Let n be a nonnegative measure on [a,/?], —oo < a,/? < oo, whose support contains strictly
more than 4 points in (a,/?) and such that L -,(1 + |r|9)cf7r < oo. Then there exists exactly one quintuplet
of distinct points (a i , . . . ,05) in (a,/?) and one quintuplet of positive real numbers (pi, . . . ,ps) such that

/ (1.1)

for all p €7>9,i

The support condition on TT easily implies that the quantity f£ pqdn, with p, q £ V\%\y defines an inner
product on 7 \ i and the proof of Lemma 1.1 then reduces to that of Theorem 2.2 in [CM]. The positive
character of the weights p,, 1 < t < 5, is readily verified upon choosing TT (x — a,)2 as test function p

in (1.1).

In 1888, HILBERT produced a complete characterization of the real polynomials for which the anounced
property holds true [H;]. The result is strikingly simple.

Theorem 1.1: (HILBERT) V+tl> V%n, n £ Nt and V^7 are the only sets of nonnegative real polynomials in
which every element can be written as a sum of squares of real polynomials.

Remark 1.1 In the context of Theorem 1.1, the number of elements in the sum may be taken to be 2 for
V}tl and 3 for Pf7 (cf. [CL], (1.1), (1.2)). It is worth mentioning that HlLBERT's proof of Theorem 1.1 in
the cases V±z and V£2 ~ fr°m which all other cases 7>+m with n > 4, m > 2, {n,m) £ (4,2), are easily
deduced (see e.g. [CL], (1.4)) - is nonconstructive. The first simple explicit counterexamples seem to have
been constructed in the late 1960's (see e.g. [M'J, or [CL]).

In any case we are only interested here in the sets V±x and V42 f°r which the property holds true. A
simple proof of the precise result used for V^2 is given in the Appendix.



2. Fourth order moments of a nonnegative RADON measure on S1 or S2

This section is essentially devoted to the study of the set M^N of fourth order moments of all nonnegative
RADON measures M+(SN""1) on SN~X. A first subsection investigates a general property of all points of
M2Ptw,p > 1, namely that they are obtained by measures supported on a finite number of points. A first
characterization of the boundary dM2P,N is also proposed, and in the case where N = 2 or 3, p = 2, a
complete (albeit unpractical) characterization of M^N is given in Theorem 2.1.

The second subsection proposes various characterizations of M4)2 (cf. Theorem 2.2) while the third
subsection, short of providing a handy characterization of Af.4,3, presents a useful analysis of dM^z (cf.
Theorem 2.3). In particular it is shown in Theorem 2.3 that all points on dM^z are obtained by measures
supported at five points or less of S2.

Finally the last subsection investigates the subsets of M+j or M+tz corresponding to various symmetry
restrictions.

2.1 The generic character of atomic measures
In any dimension TV, let mp^ be the dimension of the space Vp N of homogeneous polynomials of degree

p in N variables,
+ p-l\
tf-1 J =

From now onward we will write mp^ as m when used as an index or an exponent. Let p i , . . . ,pm be a basis
ofVpN and define the linear mapping F from M(SN'X) into Rm as

* =

The mapping F maps M+(SN~X) into a closed positive cone MPIN of Rm while it maps the set II(5N""1) of
all probability measures on SN~X (a convex set which is compact in the weak • topology of M(SN~1)) into
a compact convex subset of Mp^ which also lies in the hyperplane

o/2

if p is even since (Y^*?) is a homogeneous polynomial of degree p with value 1 on SN~X. The following

lemma, based on an argument of ARTSTEIN [A], holds true for any N and p.

Lemma 2.1: Any point in M2P,N yields a set of 2pth order moments of a nonnegative measure on SN~X

whose support is made of at most m2p,N points.
Proof: Let Q be a point in M2 P ,N- Then M% := F'1(Q)nM^(SN'1) is a convex subset of M(SN'1) which
is also weak • compact, because (/x,l) is fixed whenever p G MQ. According to KREIN-MlLMAN's theorem
MQ is the closed convex hull of its extreme points. Let v be such an extreme point. If Bw is any ball in a
finite dimensional subspace W of M(SN"1) of dimension greater than rri2P)N, then

v + By/ is not included into M +(5N""1). (2.1)

Indeed since dimW > m2PtNi

and there would exist a segment [—T^T], T ̂  0 with

and, since F(r) = 0,

which contradicts the extremality of v.



Thus v does not belong to the interior of a face of dimension greater than m2Pr/v of M +(SAr"~1). Assume
that the support of v is not purely atomic. Then there exists a immeasurable subset E of SN~l with v(E) > 0
and no */-atoms in E. Since v is a BOREL measure, E can be partitioned into m' (m' > rri2Pys) BOREL sets
£?! , . . . , £m', With

If Xj denotes the characteristic function of the set Ej then the measures i/j = x;*/, 1 < jf < m', are linearly
independent elements of M + (S N ~ 1 ) and

m'

(J sN-ixE- (2-2)

Let W be the m' dimensional subspace generated by vu . . . , i/m#. Then, in view of (2.2) there exists a small
ball Bw around 0 in W such that

by taking y^Cji/j with c; close to 1. But, in view of (2.1), this cannot be so. Consequently the support of

v is purely atomic and the same argument would demonstrate that at most rri2pyN points lie in the support
of i/, so Lemma 2.1 is proved.

We now focus our attention on the boundary of M2P,N and derive the following

Lemma 2.2: Any point on dM2PtN yields a set of 2pth order moments such that all nonnegative measures
with those moments are supported in the set of (double) zeroes of a nonnegative homogeneous polynomial
of degree 2p on SN~l. Furthermore it may be assumed that those zeroes lie strictly inside a hemisphere of
SN~K

Remark 2.1: The last statement of Lemma 2.2 bears a short comment. A nonnegative measure /i on SN~*
has moments of order 2p that are indistinguishable from those of the nonnegative measure obtained by
symmetrizing fi about the origin. Thus it may be assumed that the support of /i is symmetric about 0.
Further those moments are also undistinguishable from those of the measure

the support of which is contained in the northern hemisphere. The last statement of Lemma 2.2 pertains to
measures of the latter form.

Proof of Lemma 2.2: Let Q be an arbitrary point in dM2PtN distinct from the origin and let /x G Af+(S7V~1)
be such that F(fi) = Q. Because M^,^ is convex there exists at least one tangent hyperplane to M2PIN at
Q. It can be viewed as a homogeneous polynomial PQ of degree 2p, together with a constant 7, such that

7, (2.3)

(",PQ)>7> " G M + t S " - 1 ) . (2.4)

Define |/i| := (/i, 1), and note that |/i| > 0. Setting

transforms (2.3)-(2.4) into
</*,/%) = 0, (2.5)

- 1 ) . (2.6)



The choice of an arbitrary DlRAC mass weighted by |/i|, i.e. \fi\6a, (a € SN~X) as test measure in (2.6)
implies that

> 0. (2.7)

Since a is an arbitrary point on SN~l, (2.7) is equivalent to

Pk>0onSN-1. (2.8)

Denote by ZQ the set of all zeroes of PQ. By virtue of (2.5), (2.8) we conclude that

s\xpp(fi)cZQ.

The homogeneous character of PQ together with (2.8) implies that all elements of ZQ are (double) zeroes of
PQ (conversely any nonnegative homogeneous polynomial of degree 2p defines a tangent hyperplane at all
moments of measure /x whose support is contained in its zero set).

Further PQ is even; thus the set ZQ of all its zeroes may be assumed to lie in the northern hemisphere
XJSJ > 0. If, for a point a in ZQ, one has a^ = 0 then we are at liberty to assume that a^-i > 0. Repeating
this argument until a positive component of a is found we have identified a set Z'Q of zeroes of PQ which is
such that

Z'Q C {a £ SN-1 : aN > 0};
if a € Z'Q with aN = . . . = ak = 0, then afc_i > 0, 2 < Jb < N\ (2.9)
if a £ Z'Q, with as = . . . = <*2 = 0, then a\ > 0.

In view of (2.9) the origin is immediately seen not to belong to the closed convex hull of Z'Q , which permits to
conclude to the existence of an equatorial hyperplane L(x) = 0 such that L > 0 on (Z'Q) > 0, and completes
the proof of Lemma 2.2.

Remark 2.2: In the context of Lemma 2.2 and upon relabeling the N t h direction to be that which is normal
to the hyperplane L(x) = 0 we may take Z'Q to be such that

aN >0, aeZ'Q. (2.10)

Under the transformation Ts from RN into RN U +oo defined as

(2.11)

is transformed into a nonnegative polynomial PQ of degree less than or equal to 2p in (N — 1) variables

(an element ofV^, AT_I) and> in v*e w °f (210), the points — , with a G Z'Q, are (double) zeroes of PQ.

Remark 2.3: In the two dimensional case (N = 2) any element of V}pt\ has at most p double zeroes. Thus
in the context of Remark 2.2,

By virtue of Remark 2.2, the degree of the nonnegative homogeneous polynomial whose zero set contains
the support of the inverse image under F of any point of dM2PtN may be drastically reduced whenever
HlLBERT's theorem is applicable. In the case of interest to us in the remainder of this study P is taken to
be equal to 2 and we obtain the following

Theorem 2.1: If N = 2 or 3 the set M 4 | N is the set of all matrices Pij*m, 1 < * \ j , i , m < N, invariant under
any permutation of the indices and such that

N

AijAkm > 0, (2.12)



for all symmetric matrices A on RN. Furthermore the nonnegative measures on SN~l whose moments of
order 4 lie on dM^s are those that are supported on the zero set of a homogeneous polynomial of degree 2

N

R(x) = Y^ BijXiXj, and inequality (2.12) becomes an equality at such points of dM^N for the symmetric

matrix B.

Proof. We recall Remark 2.2 and conclude to the existence, for any point Q of dM^s, of a nonnegative
polynomial PQ of degree less than or equal to 4 in N - 1 variables. If TV = 2 or 3, HlLBERT's theorem (cf.
Theorem 1.1) implies that PQ is a sum of squares of real polynomials. The same holds true for PQ which
thus reads as

where /£, is a homogeneous polynomial of degree 2 and Jbg is an integer (which, in view of Remark 1.1, may
be taken to be 2 if N = 2 or 3 if N = 3). Recalling (2.5) we obtain

Oi>j£) = O > i = l > . . . l t Q . (2.13)

Furthermore note that if u is an arbitrary element of M+(SN~l) and R an arbitrary homogeneous polynomial
of degree 2 (an element of V^^), then

(i / , i? 2 )>0. (2.14)

Any element R of V^s reads as
N

R(x)= Y<Aii*i*h (2-15)

with A a symmetric matrix on RN. Thus, upon setting

F(v)ijkm = / XiXjXkXmdv, V € M + ( 5 N ~ 1 ) , (2.16)

relation (2.14) states that, for any v in M+(S^V~1) and any symmetric matrix ̂ 4,
TV

X^ fWtjfcm^fj^bm > 0, (2.17)
t j,fc,m=l

while (2.13) is equivalent to the existence of a symmetric matrix B such that

N

J2 ^hkmBijBkm = 0 (2.18)
t j,i:,m=l

(Q is the point with components F(/i)tJfcm for the choice of XiXjXkXm as generating set for ̂ 4 N ) . Conversely
let .A be any symmetric matrix; any nonnegative measure /x with its support on the zero set of R defined
through (2.15) will satisfy

N

Akm = 0,

while (2.18) is obviously satisfied. Thus R2 will define a tangent hyperplane to M^ts (N = 2 or 3).
We have thus established a one to one correspondence between the tangent hyperplanes to M4 # and the

symmetric matrices on RN. Since a convex closed set (M4|^) is the intersection of closed half spaces located
above its tangent hyperplanes (2.17), (2.18) provide the desired characterization (2.12) of MAtN (N = 2 or
3), while consideration of (2.15) and (2.18) completes the proof of Theorem 2.1.



2.2 The case of M4>2.
In the two dimensional case (N = 2) a characterization of M4|2 can be proposed with the help of

Theorem 2.1 or Remark 2.2 specialized to p = 2. This is the object of the Theorem 2.2 which also describes
the support of the measure whose moments lie on the boundary of M4j2.

Theorem 2.2: If N = 2, the set

M4|2 = {F, = j *<-V>, j = 0,... ,4; v € M+(S1)} (2.19)

is the subset of all Fo, • • • > F4 i& # 5 such that

Fo, F2, F4 > 0; F 2 < F0F2; F 2 < F0F4; F3
2 < F2F4; F0F2F4 + 2FxF2F3 - F0Fi - F2

3 - F 4 F 2 > 0. (2.20)

The elements of 9M4|2 are the fourth order moments of the measures supported at two points of Sl.

Proof. We firstly establish (2.20). To this effect we recall Theorem 2.1 and remark that a 2 x 2 symmetric
matrix A is characterized by three coefficients

An = a; Ai2 = A2\ = /?; A22 = 7-

Upon recalling (2.12) and the definition of Fj in (2.19) (together with (2.16)) we obtain

a2F0 4- 4/?2F2 + 72F4 + 4af3F1 + 2a7F2 + 4^TF3 > 0,

for every triplet (a,/?,7) in R3. Thus the matrix

Fo 2FX F2

2Fi 4F2 2F3

F2 2F3 F4

must be nonnegative. But a 3 x 3 matrix is nonnegative if and only if its diagonal elements, its diagonal
2 x 2 minors and its determinant are nonnegative, which yields (2.20).

The remainder of Theorem 2.2 is immediately derived upon recalling Remark 2.3 (specialized to p = 2)
and Lemma 2.2, and this completes the proof of Theorem 2.2.

Remark 2.4: Another characterization of M4|2 may be found in [AM].

Remark 2.5. In the context of Theorem 2.2 assume that the matrix of inertia of a given nonnegative measure
fi is known. At the possible expense of a change of basis, we are at liberty to consider a diagonal basis. Its
diagonal elements are

h = / x\d^ J2 = / zldfi, (2.21)

and we suppose, with no loss of generality, that I\ < h- Then the set of the fourth order moments of all
nonnegative measures on S1 with (2.21) as matrix of inertia is given by

F2 = h - Fo, F3 = -Fx, F4 = h - h + Fo,
? < Fo(A + J2), F 0 < J i ,
ft/i + h) < (h - Fo) (FO(7I + h) - if),

as immediately checked upon specializing (2.20) to the case under consideration and taking (2.21) into
account.

Remark 2.6: Every point in the interior of M4>2 can be attained by an element /1 of M+(SX) which is
supported at three points, one of the points being chosen arbitrarily.
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Indeed let v be an arbitrary element of M+iS1) such that its moments of order 4, F(i/) ; , lie in the
interior of M4,2- If <*o is an arbitrary point of S1 , the measure v - t6ao (t > 0) - maybe not an element of
M+(Sl) - has moments of order 4 that form a half line F(u) - tF(6ao) which must intersect dM^a for a
value t0 of t because M4>2 is a closed positive cone and thus contains no straight line; but M4f2 certainly
contains the half line F(v)+ tF(6ao).

Application of Theorem 2.2 yields the existence of a measure

such that

Hence

t = 0

2.3 The case of Af4)3.
The three-dimensional case is more intricate than its two-dimensional counterpart and an analytical

characterization of M4f3 seems to be algebraically inextricable. We will however prove the following theorem
which may be viewed as the three-dimensional analogue of the part of Theorem 2.2 concerned with

Theorem 2.3: Assume that AT = 3. All elements of #M4|3 are the fourth order moments of a measure
supported at five points of S2 .

If M 4 3 admits a single tangent hyperplane at the point of 9M4|3 under consideration, then the inter-
section of 9M4)3 with that hyperplane is a 9-dimensional closed positive cone of M4>3.

Remark 2.7: Theorem 2.3 can be enriched by adjunction of the result of Theorem 2.1. The support of any
element of M+(S2)} whose fourth order moments lie at a given point Q of dM^z must be contained in the
intersection CQ of the zero set of the homogeneous polynomial RQ of degree 2 described in Theorem 2.1 (and
denoted there by R) with S2 . Furthermore, since, according to Lemma 2.1, those zeroes may be taken to lie
strictly inside a hemisphere of S2 , Remark 2.2 permits to view the image of CQ under the transformation
T3, defined in (2.11) by

r 3 ( s i ,S2 ,S3) :=(^
^ £3 £3

as living on the image of RQ under that transformation, i.e. on a conic section.
Further, if the support of an element // of Af+(S2) has its image under 1^ that lies on a conic section,

then fi belongs to 9M4>3. In particular, all measures supported at five points of S2 or less belong to 3M4>3.

Remark 2.8: If, in the context of Remark 2.7, the symmetric form B associated to .ft, has three nonzero
eigenvalues, Theorem 2.3 can be strengthened. Specifically Q corresponds to the fourth order moments of a
one parameter family of measures supported at five points of 5 2 .

Proof of Theorem 2.8: According to Theorem 2.1, specialized to the case N = 3, any point Q of 5M4|3 is
the image under F of a measure /1 of Af+(52) , whose support lies in (the intersection of) the zero sets of
nonzero homogeneous quadratic polynomials. Let RQ be such a polynomial. It is diagonaJizable (or in the
notation of Theorem 2.1, the associated matrix B^ is diagonaiizable) in an orthonormal basis of iZ3. In such
a basis, RQ reads as

RQ(X1,X2, X3) = ax\ + 0x\ + 7x|.

Since the support of /1 is not empty, one of the coefficients a, 0 or 7 is nonpositive. There is no loss of
generality in assuming that

<*> 0 ,£> 0 ,7< 0.

9



Denote by CQ the intersection of the zero set of RQ with the sphere S2. Three cases will be distinguished.

Case 1. a > 0, /? > 0, 7 < 0.
Then CQ is the intersection of the surface

x\ = cTx\ + P l (*x\ = cTx\ + Pxl (a* = - - > 0,/T = - £ > 0) (2.22)

with the sphere S2 . Since CQ C S2 , one may replace x\ by 1 - x\ - x^ in the moments of order 4 of /i and
consequently 9 moments are to be considered, namely those with the following integrands

*X2 £ * X 1 X X ^

Because CQ is invariant under a sign change of any of the x(s (1 < s < 3) the four sets of homogeneous
polynomials

SX = {xl x 2 x 2 , x4
2},

5 2 = {x\x2,
5 3 = ?
54 =

are linearly independent from one another on CQ .
Further assume that either 52, S3 or S4 is not made of linearly independent polynomials on CQ. Then

CQ is imbedded in a union of equatorial planes of the type

xi = 0 , X2 = 0, X3 = 0, 6x1 -I- 77x2 = 0.

The same holds true for Si except maybe if x\x\ is a linear combination of x\ and x2, i.e.

i*2 = C*i + A*2

( X i \ ^ / X o \ ^

— ) (or ( — I ), we end up with an equation
X2' \X\J

of the type 6x\ + 77x2 = 0 (except when x\ = 0 and X2 = 0).
Thus Sj (1 < i < 4) is made of linearly independent polynomials on CQ unless CQ is included in a finite

union of equatorial planes. Such is not the case as easily checked upon recalling (2.22), together with the
constraint x\ = 1 — x\ — x\.

We conclude that, if a/?7 < 0, then
xj, xfx2, x\x\, x\x\, Xj, x\x$, x2x2x3 , xix2x3, x\xz are linearly independent on CQ. (2.23)

Cast 2. a = 0 and /? ̂  0 ^ 7, or a ^ 0 ^ 7 and /? = 0.
The zeroes of RQ lie on the union of two equatorial planes. If, for example, a = 0, the two planes are

x2 = ±^J*3. (2.24)

The measure /* introduced at the beginning of the proof is decomposed into two elements of M+(S2), /ii
and 1*2, each being supported on one and only one equatorial plane.

Since /x,, i = 1,2, is supported on the intersection of a plane with S2 , it is supported on a circle. An
appropriate change of coordinates (specific to t) reduces the analysis of/i,, i = 1,2, to the two-dimensional
case. According to Remark 2.6, the moments F(fi{) can be realized by an element /i* of M+(Sl) supported
at three points of S1, one of the points being chosen arbitrarily. But the two circles corresponding to ^1 and
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to /i2 intersect at two (antipodal) points. Choosing one of these points as the third support point for the
measures n\ and JA2 permits to construct a measure p* = pi + \i\ such that

F(jf) = Fin) = Q,

while its support contains at most five points, which proves, in Case 2, the first assertion of Theorem 2.3.
Note that in the case where relation (2.24) holds true, only 9 moments are to be considered, namely

1, x\, x\, xxx2, x\x2, *ix3, x\xz, x2x3) x\x2x3i

and that an argument similar to that used in Case 1 would show that

1, x\, x\, x\x2, x\x2, x\xz, x\x3, x2x3) x\x2x3i are linearly independent on CQ. (2.25)

A conclusion similar to (2.25) would be reached if /? = 0 instead of a = 0.

Case S. a = /? = 0 o r 7 = 0
Then the zeroes of RQ lie on a single equatorial plane as well as on S2 . An appropriate change of

coordinate reduces this case to the two-dimensional one; the zeroes of RQ may thus be assumed to lie on

x2 + s 2 = l, x3 = 0.

Remark 2.6 applies and yields a measure //* supported at three points of S1 or less such that

which proves, in Case 3, the first assertion of Theorem 2.3.
Note that there are many quadratic polynomials which are zero on the support of /x; for example

all quadratic expressions with a common x3 term. In other words the set M^3 admits several tangent
hyperplanes at the point Q. By virtue of (2.23), (2.25) we infer that, if A/^3 admits only one tangent
hyperplane at the point Q, the setting is that of Case 1 or Case 2, yielding 9 linearly independent homogeneous
integrands on CQ. Therefore, when the point a of S2 spans the curve CQ, the moments F(X6a)i A > 0, span
a 9-dimensional closed positive cone of R15. Since RQ(CL) = 0, the point F(X6a) belongs to 9M4)3 and the
point Q belongs to a 9-dimensional closed positive cone which establishes the second assertion of Theorem
2.3.

It remains to prove the first assertion of Theorem 2.3 in Case 1. To this effect we recall (2.22) and
propose a natural parametrization of CQ, immediately derived from that of the conic section J3(CQ) (cf.
Remark 2.7). Specifically we set

Xl(t) = ^ = ^ ; «,(<) = ^ ^ ; «,(«) = 5(t), - , < t < , (2.26)

with

Note that (2.22) is then identically satisfied and that

as it should be.
Upon setting r = t a n f - V (2.26) reads as

y ( r ) , x3(r) = 2 ^ 1 , «,(r) = (1 + , -00 < r < -hoc, (2.27)

11



with

/ ( r ) - ( i + r . ) -

Under the parametrization (2.27) a homogeneous polynomial P(xiix2,x3) of degree 4 in si, x2) 2:3 becomes
a polynomial q(r) of degree comprised between 1 and 8, multiplied by /4(r) with f(r) defined in (2.28), i.e.

P(X1(T),X2(T),X3(T)) := q(r)f\r), 1 < d°(q) < 8. (2.29)

The mapping T from S 2 into JR+ defined as

(2.30)
il

is introduced. Its restriction to CQ is the inverse of the mapping r »—• {X\(T),X2{T),X3{T)}.
If /iT denotes the image measure of a measure /i supported on CQ under T defined through (2.30) we

obtain, by virtue of (2.29)

/ / q(T)f\r)d»T. (2.31)

Upon defining the measure TTJ := / 4 (T) /XT, (2.31) reads as

q{T)d*T. (2.32)

We now appeal to a variant of Lemma 1.1 and conclude that, if the support of ITT contains strictly more
than 4 points, there exists a one parameter family of measures 7Tj with

such that the moments of order less than or equal to 8 of TTJ. are, for every value of A, those of 7rj. Notice
that although we know that / ( I -f \r\8)d7rT < 00, we are only in need of a quadrature formula which is exact
on 7̂ 8,1- Let L4 and L5 be two polynomials of degree exactly 4 and 5 which are orthogonal to ̂ 3,1 (for the
scalar product defined by (/.^) = J/(r)5f(r)c/7r, for which one cannot always compute the scalar product of
L4 and £5). Then for A € R, the points r*,j = 1 , . . . ,5 are the zeroes of L5 + AL4, with the corresponding
weights which give a quadrature formula exact on ̂ 4,1, automatically exact on V%y\ by the orthogonality
property. To each rf there corresponds a unique point ctj on CQ through (2.27). Consider the measure

According to (2.32), one has, for any element of V^3,

f Pdti= r « ( r ) d t r = /+°0«f(^«r
JS2 ./-oo J-oo j i J = = 1 j

= E j$rX*>(T3
x)>**tf Wtf)) = E 7^) p ( a ^ = L

J=I ^ ^ i ' i=i y v i ' ^ 5

where the third equality holds true because d°(q) < 8 and the fourth because all rĵ 's (1 < j < 5) are finite.

12



We have thus proved that, in Case 1,

where /xA is a one parameter family of elements of M+(S2) supported at 5 points of 5 2 , which establishes
the first assertion in Case 1 and completes the proof of Theorem 2.3 and of Remark 2.8.

Remark 2.9: If, in the context of Theorem 2.3, the point Q of 9M4 |3 admits two distinct tangent hyperplanes,
it corresponds to the fourth order moments of a measure in M+(S2) supported at 4 points at most. Indeed
there exist two nonzero homogeneous quadratic polynomials R\Q and R2q with common zeroes. The number
of zeroes is thus limited to 4 unless both polynomials are degenerate and admit a common affine factor L.
Then all the zeroes lie on the equatorial plane L = 0. Otherwise, setting

R\Q — LL\, R2Q =

with L\ and L2 affine, we would conclude that L\ and L2 have a common zero; thus either L\ = L2

R\Q = R2Q which contradicts the premise, or the support of /i belongs to L = 0 or to the intersection
of L\ = 0 with L2 = 0, i.e. a line passing through the origin, but then Q admits an infinity of tangent
hyperplanes. Consequently the support of fi is contained in the equatorial plane L = 0. But this case
corresponds to the Case 3 in the proof of Theorem 2.3 and in such a case M^z admits an infinity of tangent
hyperplanes, which once again is a contradiction.

Remark 2.10: The three-dimensional counterpart of Remark 2.6 holds true. Every point in the interior of
M.4,3 can be attained by an element /i of Af+(52) supported at six points of S2 , one of the points being chosen
arbitrarily. The proof of the above assertion is identical to its two-dimensional analogue upon application of
Theorem 2.3 in place of Theorem 2.2.

2.4 Symmetry restrictions
This short subsection serves as an illustration of the previous results. Specifically Theorem 2.3, Remark

2.7 and 2.10 are used towards a characterization of subsets of M ^ that correspond to fourth order moments
of nonnegative measures that remain invariant under certain subgroups of 50(3) .

As a first example the isotropic measure da, which is invariant under the action of 50(3) itself, is
considered. Consider, on 5 2 , the north pole, together with 5 equidistributed points on the intersection of

5 2 with a plane located at —•= above the equatorial plane. Note that the six directions defined in such a
v 5

manner are those of the northern vertices of a regular icosahedron. Their coordinates in the canonical basis
of R3 are

ai = (0,0,1), a,+i = (sin 2/? cos 2ia, sin 2/? sin 2ta, cos 2/?), i = l , . . . , 5

with
a=l, /?=Iarccos(-L).

Remark 2.11: The six directions ax,..., a6 are precisely those used in FRANCFORT k MURAT ([FM'], Subsec-
tion 4.2) to demonstrate that HASHIN & SHTRIKMAN's bounds on the bulk and shear moduli of an isotropic
two-phase composite are optimal. The reader is referred to Section 3 for further details.

A mere algebraic computation would demonstrate that the measure

* = i

has the same fourth order moments as the normalized LEBESGUE measure —, i.e. that
47T
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If F(da) were to belong to dM^s then, according to Remark 2.7, the image of the set A := {a,, t = 1 , . . . , 6}
under 1^ would lie on a conic section. The coordinates of the points in Ts(A) are

r3(<*i) = (0,0), r3(a t > 1) = tan2/?(cos2ta,sin2ia), i = l , . . . , 5

and these points cannot lie on a conic section as the last five points are distinct and belong to half a circle
whose center is the first point.

Thus, by virtue of Remark 2.7,
F(da) $ 0M4,3

and the number of DlRAC masses in (2.33) is minimal. We have then proved the following.

Corollary 2.1 The fourth order moments of the LEBESGUE measure on S2 belong to the interior of M4(3 and
cannot be obtained as fourth order moments of any element of M+(52) supported at less than six points of
S2. The construction (2.33) is then optimal.

As a second example we seek a complete characterization of all fourth order moments of nonnegative
transversely isotropic measures, i.e. of all measures which remain invariant under any rotation about a given
axis (which we take to be the x$ axis).

The assumed symmetry dramatically reduces the number of independent moments of order four. In
fact, three independent nonnegative numbers characterize the set of fourth order moments, namely

a = / x\dn = / x^dfi = 3 / x\x\d^i,
Js2 Js2 Js2

b = / x\x\dn = f x2x2d^ (2.34)
JS2 JS2

s2

all other moments being equal to zero. This last statement is immediately established upon rewriting x\ as
(x.e) and x^ as (x.e1) with |e| = je*1! = 1, e orthogonal to e x , e and e1 orthogonal to C3 (the unit vector in
the £3 direction). Thus, for example,

/
S2

8

where the second equality holds because of the transversely isotropic character of /i and the third results
from FUBINI's theorem.

Thus

z . e ) 2 ( x . e ^ = ±- f

= ± f (f (x.ef(x.ex)*de)dfl=±. f

/ x\x\dp = - / x\dn = r /
Js2 6 Js2 * Js2

which establishes (2.34). Since on S2 one has x\ 4- x\ = 1 - x\, we obtain

where

a = | ( M - 2J2 + J4), * = \{h - J4), e = J4,

= / x\dp, JA = / *\dii%
Js2 Js2
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M = ^ + 46 + c, J2 = 26 + c, J4 = c. (2.35)

For a given total mass |/x|, the set of all possible pairs (J2, JA) as /1 varies over all nonnegative measures on
S2 with fixed total mass is given by

l (2.36)

In view of (2.34)-(2.36), the set of values for a, 6, c is

362

a,fr,c>0, ac>—. (2.37)

We have thus proved the following.

Corollary 2.2: The set of all fourth order moments of the nonnegative transversely isotropic measures -
with fixed transverse axis, namely the x3 axis - is characterized by three nonnegative real numbers a,b,c
satisfying

362

-<ac

with
a = / x\dfi = / x\d\x = 3 / x\x\dyi

Js* Js* Js*

6= / x\x\dn= I x\x\d»

c = /

and all other moments equal to zero.

Remark 2.12: Note that this last result should not, in all rigor, be labeled a Corollary to the extent that its
derivation, which is elementary, did not appeal to the previously obtained results.

3. Fourth order moments and homogenization in linearized elasticity
The knowledge, acquired in Section 2, of the intimate structure of M^2 and M^z has immediate conse-

quences in the field of homogenization when applied to linearized elasticity. It is not our purpose to discuss
that theory in great details. We will merely recall the few needed definitions and theorems in Subsection
3.1. One of the outstanding problems in "elastic homogenization" is that of finding bounds - and when-
ever possible, optimal bounds - on various quantities involving the effective tensor (the limit in the sense
of homogenization) associated to (sequences of) two-phase mixtures of isotropic elastic materials (cf. e.g.
MILTON [M] for a compendium of available results). We will demonstrate in Subsection 3.2 how the results
of Section 2 permit to better circumscribe the task at hand.

3.1 H-convergence: a brief recall in the framework of linearized elasticity
Homogenization aims at describing the weak limits of solutions to partial differential equations with

oscillating coefficients. Within the framework of linearized elasticity, the following definition and theorem
are applied to an arbitrary sequence Ae of elasticity tensors in Af(a,/?).

Definition 3.1: A sequence Ae in M(ay/3) H-converges to A0, element of M(a,/?), if and only if for every
bounded domain fl of RN and any element / in (H"l(Q)) the solution u£ - unique in (HQ(Q))N - of

-div(,4ce(txe)) = / in fi, ue = 0 on 3Q,
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with

is such that

u —h u weakly in

A'e{u') — A°e(u°) weakly in (l2(fi))

where u° is the solution - unique in (J/Q (^)) ~ of

-div (.40e(u0)) = / in «, «° = 0 on

A0 is called the H-limit of the sequence Ae.

Theorem 3.1: TARTAR [T]) Consider a family Ae of elements of M(a, /?). There exists a subsequence of Ae

which H-converges to an element A0 of M(a,/?).

In physical terms, Definition 3.1 proposes a mathematical conceptualization of the intuitive notion of
effective behaviour while Theorem 3.1 asserts the existence of the notion of effective properties for any kind
of microscopically heterogeneous material.

A specific type of sequence is of particular interest in applications, that corresponding to mixtures of
two phases. If A and B denote the elasticity tensors associated to each phase, the sequence Ac reads as

(3.1)

where \e is the characteristic function of the yl-phase for fixed e. Assume that it is a priori known that

X
€ — 9 weak * in L°°(RN) (3.2)

as e tends to zero. Then the problem of bounds is the following: what is the set G$ of all possible H-limits
of sequences of the form (3.1) - the existence of such H-limits is guaranteed by Theorem 3.1 - for a given
weak • limit 6 (a given local volume fraction of the j4-phase)? Note that H-limits are actually local so that
it may be assumed, without loss of generality, that 6 is a constant element of [0,1] (cf. DAL MASO & KOHN
[DK]).

This problem, sometimes referred to as the G^-closure problem, is the object of a vast literature; the
reader is referred to HASHIN [H] for an application oriented overview and to MILTON [M] for a more theoretical
standpoint. It is as of yet an unsolved problem, even in the simplest case where A and B are both isotropic,
i.e. when

A = Kxi ® t + 2 / n ( I - i ^ i ) , # i = \x + - $ - ,
(3 3)

and when further only isotropic H-limits are considered. If A0 is such a H-limit it reads as

and optimal bounds are known on K and /i separately whenever A and B are well ordered, i.e. whenever

K\ < K2 and pi < ^2-
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These are the celebrated HASHIN-SHTRIKMAN's bounds (cf. e.g. HASHIN-SHTRIKMAN [HS], FRANCFORT k
MURAT [FM'], MILTON & KOHN [MK]).

The optimal character of the bounds has been demonstrated through the use of a special kind of com-
posite (a special kind of characteristic functions), multiple rank laminates [FM']. Specifically the following
characteristic function are considered

X'(*) = *'((*•<»))

where a € SN~l> xe being a sequence of characteristic functions with 6 as weak • limit. Then the associated
sequence Ae (cf. (3.1)) is shown to H-converge to A0 given by

* € R? • (3.4)

Note that it is implicitly assumed in (3.4) that A is isotropic and given through (3.3) and that B - A
is invertible. A more general formula holds true without such restrictions. The resulting A0 is a rank-1
laminate. Similarly a rank-p laminate is given by

^ * *< + " * ̂ ^ ( h a ^ a ^ ) h € flf, (3.5)

with

Vi > 0 , i = l , . . . , p ;
t=i

The vectors a,, i = 1 , . . . ,p, are the directions of lamination and 6 the total volume fraction of the ^4-phase
in the resulting mixture. The phase with elastic tensor A in formula (3.4), (3.5) is the matrix phase, that
with B the inclusion phase. Rank-p layers with the phase with elastic tensor B as matrix phase are defined
in a similar manner.

It was shown in [FM'] (Proposition 4.3) that, in a three-dimensional setting, six suitable chosen directions
of lamination give rise to an isotropic H-limit that saturates both bounds on K and /i simultaneously.
Corollary 3.1 will establish that this number is optimal.

As already mentioned the full G^-closure, or even the full G-closure (the union of the G^-closures as 6
varies between 0 and 1) is not known. A simpler problem with many application most notably in the fields
of relaxation and structured optimization is the investigation of quantities such as

1 p

sup (or inf ) - \

These are called energy bounds (cf. e.g. ALLAIRE & KOHN [AK]). Whenever p = 1 the problem is well
understood (cf. [AK] or [FM]). Bounds are known and their optimality is obtained - at least in the well
ordered case, i.e. when A < B as quadratic forms - by virtue of the following result:

Theorem 3.2: (AVELLANEDA [A']) Assume that A and B are isotropic (cf. (3.3)) and that A < B. Let T
be a subgroup of O(N) - the group of orthogonal matrices - and consider the subset G$(T) of G$ of all
possible H-limits of the form (3.1), (3.2) that remain invariant under the action of T. For every element A0

of G$(F), there exist two finite-rank laminates with respective elastic tensors A and *A such that ^ and ~A
remain invariant under the action of T and satisfy

&<A°<A.

Then A corresponds to a finite-rank laminate with the j4-phase as matrix phase, 'A to a finite-rank laminate
with the B-phase as matrix phase.

Corollary 3.2 will deliver the rank of such a laminate in the case N = 3 and without any symmetry
restrictions (r = t); the case JV = 2 was firstly derived in AVELLANEDA & MILTON [AM]. Corollary 3.3 will
investigate the case where N = 3 and T corresponds to rotations about a given axis, the X3 axis.
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3.2 A few results about bounds
This last subsection refers extensively to the terminology and to the results mentioned in Subsection

3.1.
Firstly it should be noted that the finite-rank lamination formula (3.5) reads as

p

where /i is a probability measure (/z = ]^f?»6ot) on SN~l. One of the main (although not explicitly stated)

ingredients in the proof of Theorem 3.2 in AVELLANEDA [A'] is the following remark which becomes obvious
in view of Subsection 2.1.

Remark 3.1: According to Lemma 2.1, all fourth order moments of a probability measure on S1*"1 can be
achieved by an atomic measure with a finite number of atoms. Thus formulae (3.5) and (3.6) yield the same
set of tensors A0 and can be used interchangeably.

If both phases are isotropic, as well as the resulting effective tensor A0, then the tensor X defined as

Xh = — / I — (ha.a) a 0 CL 1 dfi(ci\ ft £ R. ,
Hi J5N-1 V 2 Ai -f 2/ii /

must be isotropic. Hence, upon setting

X = At ® i + 2M7, Nh + 2M = NK, (3.7)

and choosing h to be of the form

, 1 , X , • • Kf

ft = - (e , <g>ej + e,- ® e^), 1 < t , j < N

the fourth order moment tensor J defined as

Jijkm = / < 1 t 0 j a i b f l m ^ / i ( f l ) ) 1 ^ l > i i ^ j m ^ «W

is easily identified as

+ 2fiX) - 2M/ix)(6 ifc6 im + «,-m«ifc) - 2fi1h6ij6km). (3.8)We remark that, because of the symmetry properties of J, together with the relation

N

(3.8) holds true if and only if

in which case,

2)^ik6jm + ^ m ^ * + *0'**m). (3.10)
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In the notation of Section 2, (3.10) reads as

where \SN~l\ denotes the surface of SN~l and da the LEBESGUE measure on SN~l.
Further, according to [FM'] (Subsection 4.2), there exists a unique tensor X of the form (3.7) compatible

with the finite rank lamination formula (3.5), in the sense that the resulting tensor A0 satisfies

(1 - 0)(A° - A)'1 = (B - A)'1 + OX. (3.12)

In (3.12), A and B are isotropic. It is determined through formulae (4.30) and (4.31) of [FM;] and the
resulting LAM£ coefficients K and M are immediately checked to be those determined in (3.9).

Recalling (3.11) we have proved thus that finite rank layering of two isotropic materials with the A-phase
as matrix phase may at most produce - at fixed volume fraction - one isotropic tensor A0; the tensor A0 is
given through (3.6) with

Remark 3.2: Application of the finite rank layering formula with the S-phase as matrix phase would yield
an analogous result.

Remark 3.3: The only two possible isotropic tensors A that could be produced through finite rank layering
(cf. Remark 3.2) are known to achieve HASHIN-SHTRIKMAN bounds in both bulk and shear (K and /i), see
[FM'], subsection 4.2.

We now restrict our attention to the three-dimensional setting and recall Corollary 2.1. The following
Corollary is then an immediate consequence of (3.6). (3.13).

Corollary 3.1: The number of directions (6) used in [FM'], Proposition 4.3, so as to generate through finite
rank lamination an isotropic effective material (whose bulk and shear moduli saturate HASHIN-SHTRIKMAN
bounds) in three dimensions is optimal. Those directions are given by the north pole together with 5

equidistributed points on the intersection of S2 with a plane located at —= above the equatorial plane.
V5

Next, Remark 2.10 immediately yields a corollary to Theorem 3.2 in [A']. Specifically we obtain the

Corollary 3.2: In the context of Theorem 3.2, the two finite-rank laminates A and A may be chosen to be
at most of rank 6 when N = 3.

* p

Remark 3.4: By virtue of Corollary 3.2, the infimum or supremum over A € G$ of - ^ ( A e t - . e , ) , with

c, € R^ , is always achieved by rank-6 laminates in the three-dimensional setting (rank-3 in the two-
dimensional analogue). Note that, in the case p = 1, it is implicit in [AK] that rank-N laminates are
optimal, for any N. The best possible lamination rank for N ^ 1,2,3 and p > 1 is not known.

We conclude this study by a rapid incursion into the set of laminates with transverse isotropic symmetry.
This problem was examined at length in LiPTON [L]. The second order moments of a nonnegative transversely
isotropic measure /i are immediately derived in terms of a, 6, c given in Corollary 2.2, We obtain, in the
notation of that Corollary,

z\dfi = / x\dn = ^ + 6,

[i = 26 + c,
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/ xix2dfi = / Xix3dfi = / x2x3dfi = 0.
Js* Js* Js*

Thus, for any such measure /i, (3.6) reads as

tjkm V / tjkm /ij

with

— >2222 — -5- + © — T"

\ , (3.14)2
= ^2233 = ~ x , 9 ^,

2a 6

= 2̂323 = X + -T- + T -
^ 4 4

T + T .
4 4 Ai -f

all other components being equal to zero.
The constraint that \i be a probability measure translates into

We appeal to Remark 3.1, Corollary 2.2, and conclude with the following

Corollary 3.3: The set of all transversely isotropic finite-rank laminates made from two isotropic phases with
elastic tensors A and B given through (3.3) and at volume fraction 0 of the -4-phase is the set of all tensors
A0 satisfying

L
with Y defined through (3.14), or

0(A° - B)-1 = {A - B)-1 + -
1*2

with Z obtained from Y by replacing Ax by A2 and /ii by /i2 in (3.14). In (3.14), a, 6,c are three nonnegative
real numbers satisfying

36^
~-ac>

Remark 3.5: Combining Corollary 3.3 with Theorem 3.2 would permit to obtain energy bounds on the set
of transversely isotropic effective elastic tensors. The reader is referred to [L], Section 4, for details.
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Appendix
After treating the 2-dimensional case using the fact that a nonnegative polynomial in one variable is the

sum of squares of polynomials, we wondered if this property was also true for nonnegative polynomials of
degree at most four in two variables in order to treat the 3-dimensional case. We first learned of the classical
result that a nonnegative polynomial is always the sum of squares of rational fractions but not always the
sum of squares of polynomials, but the counterexample that we read dealt with a polynomial of degree six
in two variables, so that the sought result could still be true, and we indeed derived a proof for it. A few
months later we learned that the result had been proved by HlLBERT; we did not try to obtain the smallest
number of squares, which HlLBERT had proved to be three. As HlLBERT's proof is not so transparent, we
deem it useful to sketch the only part of the proof which is of use to us, namely that if P is a nonnegative
polynomial of degree four which has five distinct zeroes a,, j = 1 , . . . , 5, then P is a sum of (three) squares.

Let us consider the case where three of the points a,- are on a line of equation L(xty) = 0. In that case
the intersection with P(x,y) = 0 with the line has three double zeroes, and therefore the degree of P being
at most four, P is divisible by L, so P = LS. As P is nonnegative we must have 5 = 0 on the line L = 0,
s o ? = L2T and T has degree < 2 and is nonnegative and so is the sum of (three) squares.

Assuming that we are not in the above mentioned degenerate case, we want to construct a conic section
going through all the points aj;, j = 1 , . . . , 5. This is certainly possible as a quadratic polynomial is defined
by six homogeneous coefficients and one writes one linear relation for expressing the fact that the conic
section goes through a point, and five linear relations can be imposed. Let Q{x,y) = 0 be the equation of
that conic section. In the intersection of the zero set of P and the zero set of Q, each of the points a; counts
for two, and this gives a counting of ten intersection points instead of eight for intersecting two algebraic
curves of degree two and four, and so there is a degeneracy and Q and P should have a common factor, i.e.
P is a multiple of Q, so there exists a polynomial R of degree at most two such that P = QR. Because P
is nonnegative, R must change sign when Q does and so R = 0 when Q = 0 and R is divisible by Q giving
P = cQ2 with c > 0.

The preceding argument can be made more analytical by parametrizing the conic section Q{x, y) = 0 by

x = -777, y = -7-7 with a, 6, c being polynomials of degree < 2, as Q is a nondegenerate quadratic polynomial
c(t) c(t)

(taking the origin on the conic section, any line of equation y = tx intersects the conic section at two points,
one value of x being 0 and the other being expressed as a rational fraction in t). Writing P = 0 gives an
equation of degree eight in t with 5 double zeroes and one deduces that Q = 0 implies P = 0. In order to
deduce that P is divisible by Q, we first change basis so that Q can be written as Q(x,y) = ax2 -f q(y) with
a ^ 0, and write P as P(x,y) = Pi(x,y) + xP2(xJy) where Px and P2 only contain even powers of x. As
Q{x,y) = 0 also implies Q{-x,y) = 0, it implies not only that P(x}y) = 0 but P\(x,y) = P2(x,y) = 0. By

replacing then each occurence of x2 in Px or P2 by -\Q{x,y) - q(y)\ one obtains a multiple of Q plus a
polynomial in y which must be 0 as Q = 0 implies P\ = P2 = 0.
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