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Chapter 1

Preliminaries

11. Multilinearity

Let (V; | i € I) be a family of linear spaces, we define (see (04.24) of [FDS]),
for each j € I and each v € X,;c; Vs, the mapping (v.j) : V; — X1 V; by the
rule

v, if e I\{j}
((v.j)(u)); :== L for all ueV;. (11.1)
u if i=j

Definition : Let the family (V; | i € I) and W be linear spaces. We say that the
mapping M : X,;c;r V; — W is multilinear if, for every v € X,;c;V; and every
J € I the mapping Mo (v.j) : V; — W is linear, so that Mo (v.j) € Lin(V;, W).
The set of all multilinear mappings from X ,;c1 Vi to W is denoted by

LiIl]( Xie[ VZ y W) (11.2)

Let linear spaces V and W and a set I be given.

Let Perm I be the permutation group, which consists of all invertible map-
pings from I to itself. For every permutation ¢ € Perm I we define a mapping
Ty, : VI — VI by

T,(v)=voo forall veVl, (11.3)
that is (T, (v)); := V,(;) for all i € I. In view of vo (cop) = (voo)op, we
have Ty,, = T, 0 T, for all o,p € Perm I. It is not hard to see that, for every

multilinear mapping M : V! — W and every permutation o, the composition
MoT, is again a multilinear mapping from V! to W, i.e. MoT, € Liny( VI, W).

Definition : A multilinear mapping M : VI — W is said to be (completely)
symmetric if
MoT, =M for all o € Perm I,

and is said to be (completely) skew if
MoT, =sgn(oc) M forall o€ PermI.

The set of all (completely) symmetric multilinear mappings and the set of
all (completely) skew multilinear mappings from VI to W will be denoted by
Sym;( VI, W) and by Skew;( VI, W); respectively.
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Both Sym;( V!, W) and Skew;( V!, W) are subspaces of the linear space
Lin;( VI, W) with dimensions

i I—-1
dim Sym, (V!, W) = (dlmV;I# )dimW (11.4)
and i@
dim Skew;( V!, W) = ( “;IV) dim W. (11.5)

For every k € , we write Ling(V*, W), Sym,( V¥, W) and Skewy(V*, W) for
Link](V’“],W), Symk](Vk],W) and Skewk](Vk],W); respectively.
In applicatins, we often use the following identifications
Ling ( VF, W) 2 Lin,_,(V*~1, Lin (V, W))
= Lin( V, Link_l( Vk_l, W))
and inclusions
Symk( Vk? W) - Symk—l( Vk_l? Lin ( V? W));
Skewy (VW) C Skewy,_1(V*™! Lin (V,W)).
In particular, we shall use Sym,(V?,) = Sym (V,V*) := Sym (V, Lin(V,))
and Skews(V?,) = Skew (V,V*) := Skew (V, Lin(V,)). It can be shown that

Skew (V,V*) has invertiable mapping if and only if dim V is even. (See Prop.3
of Sect.87, [FDS].)

Given a number k£ € and a multilinear mapping A € Ling( V¥, W), the
mapping Y., cperm s (58010) A o Ty : VF — W is a completely skew multilinear
mapping. Moreover, it can be easily shown that

1

i Z (sgno) WoT, =W

oc€Perm k!
for all skew multilinear mapping W € Skewy( VF, W).
Definition : Given a number k € , we define the alternating assignment

Alt : Ling (V*¥, W) — Skewy (VE, W) by

1
Alt A= o > (sgno)AoT, (11.6)

ocE€Perm kl

for all linear spaces V and W and all A € Ling(VF,W).
Given p € . We define, for each i € (p+ 1)), a mapping del; : VP! — VP by
v, if 1<i<j—1
(del;(v)); == for all v e VP (11.7)
viyr if j<i<p
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Intuitively, del;(v) is obtained from v by deleting the i-th term.
When the alternating assignment Alt restricted to the subspace
Lin (V, Skew,(V?,W)) of Lin (V, Lin,(V?,W)) = Lin,1( VPT1, W), we have
(p+1)(AltA)v = > (=1)"'A(v;,del;v) (11.8)
ie(p+1)!
for all v.€ VT and all A € Lin(V, Skew,(V?,W)). Similarly, when the
alternating assignment Alt restricted to the subspace Skew,( VP, Lin(V, W)) of
Lin (V, Lin,( VP, W)) = Lin,1 (VP W), we have
(p+1)(AltB)v = > (=1)P""B(deliv,v;) (11.9)
i€(p+1)]

for all v.€ VP*1 and all B € Skew, (V?, Lin(V, W)).

Definition: An algebra is a linear space V together with a bilinear mapping
B € Liny(V2,V). An algebra V is called a Lie Alegebra if the bilinear mapping
B is skew-symmetric, i.e. B € Skewo(V?,V), and satisfies Jacobi indetity

B(B(V17V2>,V3) + B(B(Vg,Vg),Vl> + B(B(Vg,vl),VQ) =0 (1110)
for all vi,vo, vy € V.

By using the inclusion Skewy(V?2,V) C Lin(V, Lin(V,V)) and (11.9), we see
taht (11.10) can rewriten as

Alt(BoB) =0 (11.11)
where (B o B)(vy,va,vs) := B(B(vy,va),vs) for all vi, vy, vy € V.
Remark 1: In the literature the alternating assignment given in (11.6) is of-
ten called “skew-symmetric operator” ([B-W]), “complete antisymmetrization”

([F-C]). The symmetric assignment, “symmetric operator” or “complete sym-
metrization” Sym : Ling (V¥ W) — Sym, (V¥, W) is given by

1
Sym M := - > MoT, (11.12)
ocPerm kl
for all linear spaces V and W and all M € Ling(V*, W). ]

Remark 2: Both assignments given in (11.6) and (11.12) are “natural linear
assignments” from a functor to another functor (see (13.16) of Sect.13). More
precisely, the alternating assignment is a natural linear assgnment from the
functor Lng to the functor Ski and the symmetric assignment is a natural linear
assgnment from the functor Lny to the functor Smy (see Sect. 13). 1



12. Isocategories, isofunctors and

Natural Assignments

An isocategory™ * is given by the specification of a class OBJ whose mem-
bers are called objects, a class ISO whose members are called ISOmorphisms,

(i) a rule that associates with each ¢ € ISO a pair (Dom ¢, Cod ¢)
of objects, called the domain and codomain of ¢,

(ii) a rule that associates with each A € OBJ a member of ISO
denoted by 14 and called the identity of A,

(iii) a rule that associates with each pair (¢,) in ISO such that
Cod ¢ = Dom ¢ a member of ISO denoted by ¢ o ¢ and called
the composite of ¢ and 1, with Dom (1) o ) = Dom ¢ and
Cod (¢ 0 ¢) = Cod 1.

(iv) a rule that associates with each ¢ € ISO a member of ISO
denoted by ¢~ and called the inverse of ¢.

subject to the following three axioms:

(I1) ¢olpome = ¢ =lcoago¢ forall ¢ eISO,

(I2) xo(Yo¢p) = (xoy)oep forall ¢,1,x € ISO such that
Cod ¢ = Dom v and Cod 1) = Dom .

(I3) ¢~ 0¢ = lpomy and ¢od~ = lceay for all ¢ € ISO.

Given ¢ € ISO, one writes ¢ : A — B or A %, B to indicate that
Dom ¢ = A and Cod ¢ = B.

There is one to one correspondence between an object A € OBJ and the
corresponding identity 14 € ISO. For this reason, we will usually name an
isocategory by giving the name of its class of ISOmorphisms.

Let isocategories ISO and ISO’ with object-classes OBJ and OBJ' be
given. We can then form the product-isocategory ISO x ISO" whose object-
class OBJ x OBJ' consists of pairs (A, A’) with A € OBJ, A’ € OBJ' and
ISOmorphism-class ISO x ISO’ consists of pairs (¢, ¢’) with ¢ € ISO, ¢’ € ISO’
and the following

(a) For every (¢,¢') € ISO x ISO’, Dom (¢, ¢') := (Dom ¢, Dom ¢’)
and Cod (¢, ¢') := (Cod ¢, Cod ¢').

* A category, introduced by Eilenberg and MacLane, is defined by (i), (ii) and (iii) with the
axioms (I1) and (I2). Roughly speaking, an isocategory is a special category whose “morphisms”
are called ISO-morphisms.

1 Since isocategories are widely used in differential geometry, we introduced them directly instead

of making them as a special category.



(b) Composition in ISO x ISO’ is defined by termwise composition,

ie. by (,¢") o (¢,¢') = (o, o¢") for all ¢,1) € ISO and
¢, 9" € ISO’ such that Dom (1, v’) = Cod (¢, ¢').

(c) The identity of a given pair (A, A’") € OBJ x OBJ' is defined to
be 144 = (1a,1a).

The product of an arbitary family of isocategories can be defined in a similar
manner. In particular, if a isocategory ISO and an index set I are given, one can
form the I-power-isocategory ISO! of ISO; its ISOmorphism-class consists of
all families in ISO indexed on I. In the case when I is of the form I := n!, we

write ISO™ := ISO™ for short. For example, we write ISO? := ISO x ISO. We
identify ISO' with ISO and ISO™™" with ISO™ x ISO™ for all m,n € in the
obvious manner. The isocategory ISO? is the trival one whose only object is
and whose only ISOmorphism is 1.

A functor @ is given by the specification of:

(i) a pair (Dom ®, Cod ®) of categories, called the domain-category
and codomain-category of @,

(ii) a rule that associates with every ¢ € Dom ® a member of Cod ®
denoted by ®(¢),

subject to the following conditions:

(F1) We have Cod ®(¢) = Dom ®(¢0) and ®(1p o ¢) = () o ®(¢)
for all ¢, € Dom ® such that Cod ¢ = Dom ).

(F2) For every identity 14 in Dom ®, where A belongs to the object-
class of Dom ®, ®(14) is an identity in Cod ®.

An isofunctor is a functor whose domain-category and codomain-category are
isocategories. In this book we only deal with isofunctors.

Let isocategories ISO and ISO’ with object-classes OBJ and OB.J' be given.

We say that ® is an isofunctor from ISO to ISO’ and we write ISO 2, 130/
or ® : ISO — ISO’ to indicate that ISO = Dom ® and ISO’ = Cod ®. By (F2),
we can associate with each A € OBJ exactly one object in OBJ’, denoted by
P (A), such that

B(14) = La(a)- (12.1)

It easily follows from (I3), (F1) and (F2) that every isofunctor ® satisfies

d(p7) = (®(¢))” forall ¢ € Dom . (12.2)

One can construct new isofunctors from given isofunctors in the same way as
new mappings are constructed from given mappings. (See, for example, Sect. 03
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and 04, [FDS].) Thus, if ® and ¥ are isofunctors such that Cod ® = Dom ¥, one
can define the composite isofunctor ¥ o ® : Dom ® — Cod ¥ by

(Vo d)(¢):=TV(P(¢)) forall ¢e& Domd (12.3)
Also, given isofunctors ® and ¥, one can define the product-isofunctor
P xV¥: Dom®P x DomW¥ — Cod ® x Cod ¥

of ® and ¥ by
(® x U)(¢,¥) := ((0), V(¥)) (12.4)

for all ¢ € Dom ® and all v € Dom V.
Product-isofunctors of arbitrary families of isofunctors are defined in a sim-

ilar way. In particular, if a isofunctor ® and an index set I are given, we define
the I-power-isofunctor ®*! : (Dom ®)! — (Cod ®) of ® by

(s |i€T)=(D(¢;) | i€T) (12.5)
for all families (¢; | ¢ € I) in Dom ®. We write ®*™ := " when n € .

We now assume that an isocategory ISO with object-class OBJ is given.
The identity-isofunctor Id : ISO — ISO of ISO is defined by

Id(¢) = ¢ forall ¢ € ISO. (12.6)
We then have
Id(A) = A forall A€ OBJ. (12.7)

If I is an index set, then the identity-isofunctor of ISO! is Id*!. In particular,
the identity-isofunctor of ISO x ISO is Id x Id.

Given an object C € OBJ. The trivial-isofunctor Tr; : ISO — ISO for C
is defined by
Tre(¢) = 1¢ for all ¢ € ISO. (12.8)

We then have
Tre(A)=C forall A€ OBJ. (12.9)

One often needs to consider a variety of “accounting isofunctors” whose
domain and codomain isocategories are obtained from ISO by product formation.
For example, the switch-isofunctor Sw : ISO? — ISO? is defined by

Sw(p,v) := (¢, ¢) for all ¢,¢ € ISO. (12.10)

Given any index set I, the equalization-isofunctor Eq; : ISO — ISO’ is
defined by
Eq;(¢):=(¢ | iel) forall ¢elSO. (12.11)
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We write Eq,, := Eq,,) when n € .

Let a index set I and a family (®; | ¢ € I) of isofunctors, with Dom ®; =
ISO for all i € I, be given. We then identify the family (®; | ¢ € I) with the
termwise-formation isofunctor

(®; | i€1):1SO0 - X Cod P,

el
defined by
(®; | 1€1):= X ®;0Eq,,
icl
so that
(®; | i€ I)(¢) = X ®;(¢p), forall ¢ e€ISO. (12.12)

el

In particular, if I = 2!, we then identify the pair ($;,Ps) with the pair-
formation isofunctor (®;, ®;) : ISO — Cod ®; x Cod P5.

Let isofunctors ® and V¥, both from ISO to ISO’, be given. A natural
assignment o form ® to VU is a rule that associates with each object F of ISO
a mapping

a, : O(F) — V(F),

such that
= Qgoq, © P(X) for all x € ISO; (12.13)

i.e. the diagram

®(Dom ) Domy ¥(Dom )

‘D(X)l l\l’(x)

®(Cody) —— ¥(Cody)

OéCodX

is commutative. We write « : ® — V¥ to indicate that ® is the domain

isofunctor, denoted by Dmf,, and ¥ is the codomain isofunctor, denoted
by Cdf,.

One can construct new natural assignments from given ones in the same
way as new mappings from given ones. Let natural assignments o :® — ¥
and f:¥ — O be given. We can define the composite assignment
Boa:® — O, by assigning to each object F of Dom® = Dom ¥ the map-
ping (Boa), :=0,0a,. If a,f are natural assignment, one can define the
product-assignment « x [ by assigning to each pair (F,G) of objects the

mapping (o x ) . o) = @y X Bg.
Given a natural assignment o : & — ¥ and a isofunctor © such that
Cod® = Dom® = DomVW, one can define the composite assignment
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aoB:PoO — ¥oO by assigning to each object F of Dom® = Dom ¥ the
mapping (a0 0), =«

O(F) "

13. Tensor Functors

We say that an isocategory ISO is concrete if ISO consists of mappings,
the object-class OB.J consists of sets, and if domain and codomain, composi-
tion, identity and inverse have the meanning they are usually given for sets and
mappings. (See, e.g. Sect. 01 — 04 of [FDS]).

‘Examples of concrete isocategory‘

The following are some concrete isocategories to be used in this book:

(A) The category FIS whose object-class F'S consists of all finite dimen-
sional flat spaces over and whose ISOmorphism-class FIS consists of all flat
isomorphism from one such space onto another or itself.

(B) Fix a field and we consider the concrete isocategory whose object-class
LS consists of all finite dimensional linear spaces over and whose ISOmorphism-
class LIS consists of all linear isomorphism from one such space onto another or
itself.

(C) Given s € , the category DIF® whose object-class DF consists of all
C® manifolds and whose ISOmorphism-class DIF*® consists of all diffeomorphism
from one such manifold onto another or itself.

From now on, in this section, we will deal only with LIS and the categories
obtained from it by product formation, such as LIS™ x LIS" when m,n € . We
use the term tensor functor of degree n € for functor from LIS™ to LIS.
(Under this definition, composition of tensor functors is somewhat strange: the

‘Examples of tensor functor

Here is a list of important tensor functors used in linear algebra and differential
geometry:

(1) The product-space functor Pr : LIS* — LIS. Tt is defined by
Pr(A,B):= A xB forall (A,B)c LIS (13.1)
We have Pr(V, W) :=V x W (the product-space of ¥V and W) for all V, W € LS.
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(2) Given k € , the k-lin-map-functor Liny : LIS* x LIS — LIS. It assigns
to each list (V;|i € k') in LS and each W € LS the linear space

Ling (Vi i € k), W) = Link( X Vi, w) (13.2)
ick]

of all k-multilinear mappings from X,;1V; to W, and it assigns to every list
(A;|i € k') in LIS and each B € LIS the linear mapping

Link((Ai |Z € k‘]) , B) (133)
from Link( X ;e Dom A;, Dom B) to Link( X ;ew Cod Ay, Cod B) defined by

Ling((A;|i € ¥),B)T:=BTo X A;! (13.4)
ick]

for all T € Lin( X ier Dom A;, Dom B).
When k£ = 1, Liny : LIS x LIS — LIS is called the lin-map-functor and
abreviated by Lin := Lin;.

(3) Given k € , the k-multilin-functor Ln; : LIS — LIS. It is defined by
Lny := Ling o (Eq,, x Id). (13.5)

We have
Lng(A,B)T := BT o (A71)** (13.6)

for all A, B € LIS and all T € Ling((Dom A)*, Dom B). and
Lng(V, W) := Liny (V¥ W) (13.7)

for all VW € LS

There are two very important “subfunctors” (see [E-M]), Smy, and Sky, given
in following. The symmetric-k-multilin-functor Smy, : LIS? — LIS assigns to
every pair of linear spaces (V, W) € LS 2 the linear sapce

Smy, (V, W) := Sym, (V¥ W) (13.8)

of all symmetric k-multilinear mappings from V¥ to W. It is clear that
Smy(A,B)T := BT o (A~1)*F (13.9)
for all A, B € LIS and all T € Sym,,((Dom A)*, Dom B). The skew-k-multilin-
functor Skj : LIS? — LIS is defined in the same manner as Smy, except that

Sym,, (V*, W) in (13.8) is replaced by the linear space Skewy, (V¥ W) of all skew
k-multilinear mappings from V¥ to W.



(4) Given n € , the k-linform-functor Lnfy, the k-symform-functor
Smfy, the k-skewform-functor Skfy, all from LIS to LIS. They are defined by

Lnfy, := Lng o (Id, Tr) , Smfy, := Smy o (Id, Tr) , Skfy := Sky o (Id, Tr). (13.10)

Given V € LS, we have
Lnfy (V) := Lin, (V*,), (13.11)

the space of all k-multilinear forms on V*. We have
Lnfi(A)w :=wo (A™1)** forall w € Ling((Dom A)*,) (13.12)

and all A € LIS. The formulas (13.11) and (13.12) remain valid if Lin is replaced
by Sym or Skew and Lnf by Smf or Skf correspondingly.

When k = 1, we have Lnf; = Smf; = Skf; which is called the duality-
functor and denoted by DI : LIS — LIS.

(5) The lineon-functor Ln : LIS — LIS. It is defined by
Ln := Lin o Eqs. (13.13)

We have
Ln(V) :==Lin(V,V) forall VelLS (13.14)

and

Ln(A)T := ATA™! forall A cLIS and T € Ln(DomA). (13.15)

‘It is clear that Lin; = Ln;, however, Ln; # Ln! Notation?‘

Remark : In much of the literature (see [K-N], Sect. 2 of Ch.I or [M-T-W],
§3.2) the use of the term “tensor” is limited to tensor functors of the form
T? := Lin o (Lnf,, Lnf,.) : LIS — LIS with r, s € , or to tensor functors that are
naturally equivalent to one of this form. Given V € LS a member of the linear
space T7(V) is called a “tensor of contravariant order r and covariant order s.”

Let a family of tensor functors (®; | ¢ € k') and a tensor functor ¥ with
Dom X;cp @ = LIS® = Dom ¥ be given. We say that a natural assignment
B: X,cp P — Vis a k-linear assignment if, for every F € LS*, the mapping

Br: X O;(F;) — VU(F) (13.16)
i€kl

is k-linear.
The following are examples for bilinear natural assignments.
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(6) Given k € , the alternating assgnment Alt : Ln;, — Skj it assigns
each pair (V,W) € LS? the mapping

AltmA = > (sgno)AoT, (13.17)

oEPerm kl

where Perm £! is the permutation group of k' and T, is defined as in (11.3), for
all A € Ling(VF, W).

(7) The tensor product tpr : Id x Id — Lin o (DI x Id) o Sw assigns each
pair (V, W) € LS? the mapping

tPr(y ) 1 V X W — Lin(W*, V) (13.18)
defined by
tpry ) (v, W) i=vew forall veVandweW, (13.19)

where v ® w is the tensor product defined according to Def. 1 of Sect. 25, [FDS],
with the identification W = W**,

We use v @ w € Lin(W*, V) but others use v @ w € Lin(V*, W) (see e.g.

The wedge product wpr : Id x Id — Lin o (DI x Id) o Sw is defined by
WDI'(y ) (V, W) :i=v Aw forall veVandweW, (13.20)

where v Aw is the wedge product defined according to (12.9) of Sect. 12, [FDS],
Vol.2, with the identification W = W**,

We now assume that the field relative to which LS and LIS are defined in
above is the field of real number. Given V, W € LS, the set

Lis(W,W) := { A € LIS | Dom A =V,Cod A =W } (13.21)

is then an open subset of the linear space Lin(V,W). (See, for example, the
Differentiation Theorem for Inversion Mappings in Sect.68 of [FDS].).

Let a tensor functor ® be given. For every pair of objects (V, W) of Dom ®,
we define the mapping

By  Lis(V, W) — Lis(B(V), B(W)) (13.22)

By (A) = D(A) forall A € Lis(V,W). (13.23)

11



Indeed, we can view (13.22) as a bilinear assignment from Lin = Ln; to
Lin o (® x ®). The one to be used in (13.27)

@,y 1 Lis(V) — Lis(®(V))

is a linear assignment from Ln to Lno® and hence whose gradient is also a linear

We say that the tensor functor ® is analytic if ®,, ,,) is an analytic map-
ping for every pair of objects (V, W) of Dom ®. We say that a natural assignment
a:® — VU is an analytic assignment if the mapping o : ®(F) — VU(F) is an
analytic mapping for every object F of Dom ®. All the tensor functors listed
in above are in fact analytic. (The fact that they are of class C* can easily be
inferred from the results of Ch.6 of [FDS]. Proofs that they are analytic can be
inferred, for example, from the results that will be presented in Ch.2 of Vol.2 of
[FDS].)

Theorem : Let an analytic tensor functor ® be given and associate with each
Y € Dom ® the mapping

@ : Ln(V) — Ln(®(V)) (13.24)

defined by .
Dy, = Vi, By (13.25)

(The gradient-notation used here is explained in [FDS], Sect.63.) Then ® is a
linear assignment from Ln to Lno ®. We call ®° the derivative of .

Proof: Let a pair of objects (V, W) of Dom® and A € Lis(V, W) be given. It
follows from (13.23), from axiom (F1), and from (12.2) that

Py w) (ALA™Y) = (A) () (L)P(A) ! (13.26)

for all L € Lis(V,V). By (13.15) we may write (13.26) as
(®(w,w) © Ln(A)) (L) = (Ln(®(A)) 0 Dy, )) (L) (13.27)
for all L € Lis(V, V). Taking the gradient of (13.27) with respect to L at L := 1y,

yields
®. oLn(A)= (Lno®)(A)od,,. (13.28)

In view of (12.13) it follows that ®° is a natural assignment from Ln to Ln o ®.
The linearity of ®" follows from the definition of gradient.

We now list the derivatives of a few analytic tensor functors. The formulas
given are valid for every V € LS.
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(6) Ln,, : Ln(V) — Ln(Ln(V)) is given by
(Ln,L)M = LM — ML for all L,M € Ln(V) (13.29)

(This formula is an easy consequence of (13.15) and, [FDS] (68.9).).
(7) Let k € be given. In order to describe

(Lnfg),, : Ln(V) — Lo(Ling (VF))), (13.30)

we define, for every L € Ln(V) and every j € k!, D;(L) € (Ln(V))* by

L if i=j
(Dj (L))z = for all ¢ k. (1331)
y if i#]
We then have
((Lnfy), L)w = — Z wo D;(L) forall w € Ling(V¥)) (13.32)

jEK!

and all L € Ln(V). The formula (13.32) remains valid if Lnf is replaced by Smf
or Skf and Lin by Sym or Skew, correspondingly.

The General Chain Rule for gradients (see [FDS], Sect.63) and the definition
(13.25) immediately lead to the following

Chain Rule for Analytic Tensor Functors
Let ® and ¥ be analytic tensor functors. Then the composite functor W o ®
is also an analytic tensor functor and we have
(Tod) = (U 0d)od, (13.33)

where the composite assignments on the right are explained in the end of Sect.12.

For example, (13.33) shows that, for each V € LS,
(LnoLn),, : Ln(V) — Lo(Ln(Ln(V)))

is given by . .
(LnoLn), =Ln, ., Ln,. (13.34)

Ln(V) %

In view of (13.29.) above, (13.34) gives

(((Ln o Ln), L)K)M = ((Ln, L)K — K(Ln,L))M

(13.35)
= L(KM) — (KM)L — K(LM — ML)
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for all V € LS, all K € Ln(Ln(V)), and all L, M € Ln(V).
If ® and ¥ are analytic tensor functors so is Pro (®, ¥) and we have
(Pro(®,9)); = (®,L) x Ly + Ly x (L) (13.36)
for all V € LS and all L € Ln(V).

Let a be an analytic assignment of degree n € . If we associate with each
V € LS the mapping (Va), := V(ay,), the gradient of the mapping a,, then
Va is again an analytic assignment of degree n and we have Dmfy, = Dmf,
and Cdfy, = Lin o (Dmf,, Cdf,). We call Va the gradient of «.

Let tensor functors ®,, 5, ¥, all of degree n € but not necessarily analytic,
be given. Each bilinear assignment (3 : Pr o (®1,®3) — VU is then analytic and
its gradient V3 : Pro (®1,®5) — Lino (Pro (&1, ®5), V) is given by

((VB)v(v1,v2)) (a1, uz) = By (vi, uz) + Bo(ur, v2) (13.37)

for all V € LS, all vi,u; € ®;1(V), and all vo,uy € ®(V).

If « is an analytic assignment of degree n € and if ® is any isofunctor from
LIS* to LIS™ with & € , then avo ® is an analytic assignment of degree k and we
have V(a o ®) = (Va) o .

14



14. Short Exact Sequences

Let a pair (I, P) of mappings be given such that CodI = Dom P. We often
write

u v Zw oo o ow 2 v Loy (14.1)

to indicate that f = Dom1I, VV = CodI = Dom P and CodP = W. If U, V and
W are linear spaces and if I is injective linear mapping, P is surjective linear
mapping with

RngI = NullP,

we say that (I, P), or (14.1), is a short exact sequence *. In the literature, a
short exact sequence is often expressed as

o — U = vE w — o.

Let a short exact sequence U v E W be given.

Notation: The set of all linear right-inverses of P is denoted by
Riv(P) := { K € Lin(W,V) | PK = 1,y }, (14.2)
and the set of all linear left-inverses of 1 is denoted by

Liv(I) ;== {D € Lin(V,i) | DI = 1 }. (14.3)

Proposition 1: There is a bijection A : Riv(P) — Liv(I) such that, for every
K € Riv(P)

U — VvV «— W (14.4)
A(K) K

1s again a short exact sequence. We have

KP +IA(K) =1y forall K € Riv(P). (14.5)

Proof: It is easily seen that (K — RngK) is a bijection from Riv(P) to the
set of all supplements of NullP = RngI in V. Also, (D +— Null D) is a bijection
from Liv(I) to the set of all supplements of RngI = Null P in V. The mapping
A is the composite of the first of these bijections with the inverse of the second
one.

%
The term short exact sequence comes from the more general concept of an “exact sequence”

which is not needed here.
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Let K € Riv(P) be given. Both KP and IA(K) are idempotents with
Rng KP = Rng K and Rng IA(K) = RngI. Since Rng K and Rng1I are supple-
mentary in V, it follows that

KP +IA(K) = 1y. (14.6)

Since K € Riv (P) was arbitrary, the assertion follows. I

Proposition 2: Riv(P) is a flat in Lin(W, V) whose direction space is
{IL | L € LinOV,U) },
Liv(I) is a flat in Lin (V,U) whose direction space is

{-LP|LeLinW,U)}.

Proof: Given K, K’ € Riv(P), we have 1), = PK = PK’ and hence
P(K—-K')=0. It follows that Rng (K — K’) € NullP = RngI and hence
K — K’ = IL for some L € Lin(W,U). On the other hand, given K € Riv(P)
and L € Lin(W,U), we have P(IL) = 0 and hence 1, = PK = P(K + IL),
which implies K + IL € Riv(P). These facts show that Riv(P) is a flat in
Lin(W, V) with direction space { IL | L € Lin(OW,U) }.

Similar arguments show that Liv(I) is a flat in Lin (V,U) with direction
space { — LP ‘ LELin(W,Z/l)}. 1

Proposition 3: Let K and K’ in Riv(P) be given and determine L € Lin(W,U)
such that K — K’ =1IL. Then

A(K) — A(K') = —LP. (14.7)

Proof: It follows from (14.5) that KP + IA(K) = 1y, = K'P + IA(K') and
hence
IA(K) - AK')) = —-(K-K)P.

Since K — K’ = IL and I is injective, we obtain A(K) — A(K’) = —LP. 1

It follows from the injectivity of I and from the surjectivity of P that
both the direction space {I}Lin(W,U) of Riv(P) and the direction space
LinOWV,U){P} of Liv(I) are naturally isomorphic to Lin(W,U). Hence we may

and will consider Lin(WW,U) to be the external translation space (see Conventions
and Notations) of both Riv(P) and Liv(I). We have

dim Riv(P) = (dim W)(dim U/) = dim Liv(I). (14.8)
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Proposition 4: The mapping A : Riv(P) — Liv(I), as described in Prop. 1, is
a flat isomorphism whose gradient VA € Lin(Lin(W,U)) is —1vinow,u), so that

VA(L)=-L forall L & Lin(W,U). (14.9)

Proof: It follows from Prop. 2 and the identification Lin(W,U){P} = Lin(W,U)
that A : Riv(P) — Liv(I) is a flat isomorphism with VA = —11;,00 ) 1

Notation: Let K € Riv(P) be given. We define the mapping

'Y : Riv(P) — Lin W, U)

'“(K'):= —AK)K' forall K’ecRiv(P). (14.10)

Proposition 5: For every K € Riv(P), the mapping T'¥ : Riv(P) — Lin (W, )
is a flat isomorphism whose gradient VIT'¥ € Lin(Lin(OW,U)) is —1rinowu); i-e.

VI¥(L)=-L forall L & Lin(W,U).

Proof: Let K, Ks € Riv(P) be given; then we determine L € Lin(W,U) such
that K; — Ky = IL. It follows from (14.10) and A(K)I = 1, that

T%(K,) — T%(Ks) = —A(K)(Ki — Ks) = —A(K)(IL) = L.

Since K1, Ky € Riv(P) were arbitrary, the assertion follows. I

Proposition 6: We have

K- K =IT'*(K)

(14.11)
AK) - AK') = -T¥(K')P
and hence TX (K) = —T'¥(K') for all K, K’ € Riv(P). Moreover,
'K (K;) — TK2(K3) = TKI (K,) (14.12)

for all K1, Ko, K3 € Riv(P).

Proof: In view of (14.5) and (14.10), we have
K-K =(KP-1,)K = —(IAK)K =IT¥K)
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for all K, K € Riv(P). The second equation (14.11), follows from (14.11); and
Prop. 2 with L replaced by T'K(K’).
We observe from (14.11) that

ITK (Ky) =K; — Ky = (K; — K3) — (Ko — K3)
= I(T™ (K3) — T™(K3))
for all K1, Ko, K3 € Riv(P). Since I is injective, (14.12) follows. I

Remark: We consider Lin(V,U) to be the external translation space of Riv(P).
Given K € Riv(P), in view of (14.11);, we have

M'“(K)=K-K' foral K’ cRiv(P).

Roughly speaking, the flat isomorphism I'K : Riv(P) — Lin(W,U) identify
Riv(P) with Lin(W,U) by choosing K as the “zero” (or “orgin”). I

15. Brackets and Twists

We assume now that linear spaces V, W and Z and a short exact sequence
LinOWV,2) —— v 2w (15.1)

are given. Recall from Prop. 1 of Sec. 14 that to every linear right-inverse K of
P there corresponds exactly one linear left-inverse A(K) of I such that

Lin(W, 2) ;\(—K) 1% N 4% (15.2)

is again a short exact sequence. In view of the identification
Lin (W, Lin (W, Z)) = Lin, (W?, 2) (15.3)

we may identify the external translation space Lin (W,Lin (W, Z)) of Riv(P)
with Ling (W?2, Z).

Assumption : From now on, we assume that in this section, a flat F in Riv(P)
with direction space {I}Sym, (W?, Z) is given. Here Sym, (W?, Z) is regarded
as a subspace of Liny (W?, Z) = Lin (W, Lin (W, 2)).

Proposition 1: For every K;,Ks € F,
(AK)V)(PV') = (AK1)V')(Pv) = (A(K2)v)(PV') — (A(K2)v')(Pv) (15.4)

holds for all v,v' € V.
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Proof: Let Ki,Ky € F be given. Then we determine L € Sym, (W?, Z) such
that K; — Ky = IL . It follows from Prop.3 of Sect.14 that

(A(K;)v)(PV') — (A(K2)v)(PV') = —L(Pv,PVv')

holds for all v,v/ € V. By interchanging v and v’ and observing that L is
symmetric, we conclude that (15.4) follows. I

Definition: In view of Prop. 1, the F-bracket B € Skws (V2,Z) can be
defined such that

Br(v,v) = (AK)v)(PV) — (A(K)V)(Pv) forall v,v eV  (15.5)
is valid for all K € F. Using the identification (15.3) we also have

B € Lin (V,Lin (V, 2)).

Proposition 2: The F-bracket Br € Lin (V, Lin (V, Z)) satisfies

Br(IM)=MP for all M € Lin(W, Z),

15.6
(Brv)K = A(K)v forall K& FandallvelV. (15.6)

If dim Z # 0, then Bg is injective; i.e. Null Bx = {0}.

Proof: The equations (15.6); and (15.6)2 follow from Definition (15.5) together
with A(K)I = 1pi,(,z) and PK = 1,,, respectively.
Let v € Null Bf be given, so that B v = 0 and hence
0 = (Bzv) IM = Bz (v,IM) = —(B(IM))v
for all M € Lin(W, Z). Using (15.6)1, it follows that —MPv = 0 for all
M € Lin(W, Z), which can happen, when dim Z # 0, only if Pv = 0 and hence
v € NullP = RngI. Thus we may choose M’ € Lin(W, Z) such that v = IM’
and hence Bx(IM’) = 0. Using (15.6); again, it follows that M’ P = 0. Since
P is surjective , we conclude that M’ = 0 and hence v = 0. Since v € Null Bx
was arbitrary, it follows that Null B = {0}. I
Definition: The F-twist
Tr : Riv(P) — Skwy (W2, 2) (15.7)

1s defined by

Tr(K) := —Br o (K x K) for all K € Riv(P), (15.8)
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where Br is the F-bracket defined by (15.5).

Proposition 3: For every H € F, we have
T =TH _rH" (15.9)

where ~ denotes the value-wise switch, so that TR (K)(s,t) = TH(K)(t,s) for
all K € Riv(P) and all s,t € W.

Proof: Let K € Riv(P) and s,t € W be given. By (15.8) and (15.5), we see
that for every H € F we have

Tr(K)(s, t) = —Br(Ks, Kt)

= —-A(H)(Ks)P(Kt) + A(H)(Kt)P(Ks). (15.10)
We conclude from P K = 1y, (15.10) and (14.10) that
Tr(K) (5, ) = TR(K)(s, t) - TR(K) (s, 1)
Since s,t € W and K € Riv(P) were arbitrary, (15.9) follows. I

Remark: It is clear from (15.9) and (11.6) that
Tr=2AltoT™  forall He F.

The numerical factor 2 is conventional which reduces numerical factors in cal-
culations. 1

Proposition 4: The F-torsion Tr is a surjective flat mapping whose gradient
VTr € Lin (Ling (W?, 2Z), Skwa (W?, Z))

s given by
(VIF)L=L —-L (15.11)

for all L € Ling (W2, Z).

Proof: Let H € F be given. It follows from (15.8) and (15.5)
Tr (H-iIL) =L  forall L € Skwy(W? 2)
and hence Tr is surjective.
Prop. 3 together with Prop. 4 in Sec. 14 shows that the F-torsion Tr is a
flat mapping whose gradient is given by (15.11). I

In view of definitions (15.8), (15.5) and (15.11), we have Tr<({0}) = F.
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Definition: We say that K € Riv(P) is F-twist-free (or F-symmetric) if
Tr(K) =0, ie. if K € F.

F is a flat in Riv(P) with the (external) direction space Sym, (W?, Z) and
hence

1
dim T<({0}) = dim Sym, (W2, Z) = @m, (15.12)
where n := dim W and m := dim Z. The mapping

‘T}'<({O})

Sr = (1givp) + 51TF) (15.13)

is the projection of Riv(P) onto T5({0}) with NullVSz = Skwy (W2, 2). If
K € Riv(P), we call
1

Sr(K) = K + 51(Tx(K))

the F-symmetric part of K.
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Chapter 2
Manifolds and Bundles

21. Charts, Atlases and Manifolds

Let a set M and r € be given. A chart y for M is defined to be a bijection
whose domain is included in M and whose codomain is an open subset of a
specified flat space, denote by Pag x and called the page of x. The translation
space of Pag x is denoted by

V, = Pagx — Pag x. (21.1)

Let f be a mapping whose domain is a subset of M and whose codomain
is an open subset D of a specified flat space. We say that f is C"-related to a
given chart x for M if

(R1) x>(Dom x N Dom f) is an open subset of Pag ¥,
(R2) f o x™ :x>(Dom xNDom f) — D is of class C".

We say that two charts x and v for M are C"-compatible if v is C"-related to
x and y is C"-related to 7.

Pitfall: In general, C"-compatibility is not an equivalence relation. ]

A class 2l of charts for M is called a C"-atlas of M if
(A1) Any two charts in 2l are C"-compatible,

(A2) The domain of the charts in 2l cover M, i.e.
M = {Domy | x € A}. (21.2)

It is clear that a C"-atlas is also a C*-atlas for every s € 0. .r.

Proposition 1: Let 2 be a C"-atlas for M and let x be a chart that is C"-
compatible with all charts in . If f is a mapping that is C"-related to every
chart in 2 then it is also C"-related to x .

Proof: Let x € Dom y N Dom f be given. By (A2) we may may choose « € A
such that x € Dom a. We put

G := Dom y N Dom a N Dom f. (21.3)
Since « is injective we have
as(G) = as(Dom y NDom «) N as (Dom f NDom «).
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Since x and f are both C"-related to «, it follows from (R1) that both
as(Dom x NDom «) and o~ (Dom f N Dom «) are open subsets of Paga and
hence that a~(G) is also open in Paga. Since a = x is continuous by (R2),
it follows that x(G) = (o o x7)<(a=(G)) is an open neighborhood of x(z) in
Pag x. Using (0.1) and (0.2) it is easily seen that

o - P o> (9)
(2 XD = = a0 @ o x D] g,

Since both f o ™ and a o x are of class C" by (R2), it follows from the chain
rule that the restriction of f o " to a neighborhood x= (G) of x(z) in Pag x is
of class C". Since z € Dom x N Dom f was arbitrary, it follows that the domain
X>(Dom x N Dom f) of f o x is open in Pag x and that f o x~ is of class C",
i.e. that f is C"-related to ¥. I

We say that a C"-atlas 2 for M is C"-saturated if every chart for M that
is C"-compatible with all charts in 2l already belongs to 2[. The following is an
immediate consequence of Prop. 1.

Proposition 2: Let A be a C"-atlas for M. Then there is exactly one saturated
C"-atlas A that includes A. In fact, 2 consists of all charts that are C"-
compatible with all charts in 2 .

Definition: Let r € ™ be given. A C"-manifold is a set M endowed with
structure by the prescription of a saturated C"-atlas for M, which is called the
chart-class of M and is denoted by Ch" M, or if no confusion is likely, simply
by ChM .

In view of Prop. 2, the structure of a C"-manifold on M is uniquely deter-
mined by specifying a C"-atlas included in Ch.M. Of course, two different such
atlases may determine one and the same C"-structure.

Let M be a C"-manifold with chart-class Ch" M. Then, for every
s € 0..r, M has also the natural structure of a C®-manifold, determined by
Ch" M regarded as a Cs-atlas. Of course, the chart-class Ch® M of the C*-
manifold structure includes Ch" M, but we have Ch" M Ch*M if s < r.

Examples of manifold

Example 1: Let D be an open subset of a flat space. Then the singleton {1p} is
a C“-atlas of D. It determines on D a natural C“-structure and hence a natural
C"-structure for every r € .

Example 2: (Product manifold) Let M and A be manifolds of class C",
then the product M x N has the natural structure of a C" manifold. 1
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We now assume that a C"-manifold M with chart-class Ch.M is given. We
use the notation

ChyM :={ x € ChM | = € Domy } . (21.4)

It is easily seen that the spaces Pagx and 1, x € Ch,M, all have the same
dimension. This dimension is called the dimension of M at x, and is denoted
by dim, M.

The C"-manifold M is endowed with a natural topology, namely the coarsest
topology that renders all y € ChM continuous. A subset P of M is open if
and only if, for each x € ChM, the image x~ (P N Dom x) is an open subset of
Pagx. Given z € M, one can construct a neighborhood-basis 8, of z in M
in the following manner: Choose a chart xy € Ch, M and a neighborhood-basis

M, () of x(z) in Pagx. Then put

B, :={ x“VNCody) | NNy }. (21.5)

Pitfall: The natural topology of M need not be separating.

Let P be an open subset of M. Then P has the natural structure of a
C"-manifold whose chart-class Ch P is

ChP = { x € ChM | Domy C P } (21.6)

The natural topology of P as a C"-manifold concides with the topology of P
induced by the topology of M.

Let f be a mapping whose domain is an open subset of M and whose
codomain is an open subset D of a specified flat space £ with translation space
V=& —E&. We say that f is of class C?, with s € 0..r, if it is C*-related to
every chart x € ChM, i.e. if f o x™ is of class C® for all charts y € ChM.
(Since Dom f is open, Dom f o x~ = x~ (Dom y NDom f) is automatically open
in Pag x when xy € ChoM.) It follows from Prop. 1 that f is of class C* if fox—
is of class C? for every chart y in some C"-atlas included in ChM. If f is of
class C*® with s > 1 and if x € Ch.M, we define the gradient

Vyf : Dom x NDom f — Lin(V,, V)
of f in the chart y by
(Vi )(x) := Vy@)(fox™) forall 2 € DomynNDom f. (21.7)
More generally, for every s € 1..r, the gradient of order s
V) £ : Dom x N Dom f — Sym,((Vy)*, V)
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of f in the chart y defined by
(Vés)f)(x) = Viil)(f ox~) forall 2z €& Dom yxNDom f. (21.8)

The following transformation rules are easy concequences of the rules of calculus.

Proposition 3: Let f be a mapping of class C*, x € Dom f and x,vy € Chy M.
Then
(V5 )(@) = (Vi) () (Vyx) () (21.9)

If f is also of class C?, then

(V1) (@) = (V) f)(@) o (Vax(@) x Vax(@)) + (Vo f) (@) Vi x (@) (21.10)

In the case when f := 7 the formulas (21.7) and (21.8) reduce to
(Vy)(@) =1y,  and  (ViP9)(z) = 0.

Hence Prop. 3 has the following consequence:

Proposition 4: Let € M and x,~v € Ch,M be given. If r > 1, then
(Vyy)(z) € Lin (W, V) is invertible and

(V) (@)™ = (Vax) (2). (21.11)
If r > 2, we also have

(VX)) (@) = = (Vo) (2) (V) (@) o (Vyx (@) x Vyx(2)))- (21.12)

If the manifold M is itself the underlying manifold of an open subset of a
flat space (see Example 1 above), then a mapping f is of class C° as described
above if and only if it is of class C® in the ordinary sence (see Notations).

Let f be a mapping whose domain is a neighborhood of a given point x € M
and whose codomain is an open subset of a specified flat space. We say that f is
differentiable at x if f o x is differentiable at y(x) for some, and hence all,
X € Ch, M. If this is the case, (21.7) remains meaningful for the given z € M
and the transformation formula (21.9) remains valid. The concept of “s times
differentiable at 2” when s € 0..r is defined in a similar way.

More generally, let C"-manifolds M and M’ be given. Let g be a mapping
whose domain and codomain are open subsets of M and M’ respectively. We
say that ¢ is of class C*® with s € 0..r if X' o g o x~ is of class C? in the
ordinary sense for all Y € ChM and all x’ € ChM’.
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Definition: Let M be a C"-manifold and let P be a subset of M. We say that
P is a submanifold of M if for each point x € P there is a chart x € Ch, M
such that x> (P N Dom ) is an open subset of a flat F, of Pagyx.

Let P be a C" submanifold of the manifold M. We left it the readers to
show that P has the natural structure of a C” manifold. The natural topology
of P as a C"-manifold concides with the topology of P induced by the topology
of M, i.e. P a topological subspace of M.

Let f: S — M be a C® mapping from a manifold & to another manifold
M. The mapping f is called a C° immersion at x € S if there exists an
open neighborhood N, of z (in &) such that the restriction f|x;, is injective
and fs (M) is a submanifold of M. We say that f is an immersion if it is
an immersion at every y € S. If f is an immersion, the domain S called an
immersed manifold of M. However, being an immersion is a “local property”
and hence the range Rng f := f<(S) of f may not be a submanifold of M. For
example (see [L]):

Figuell.l

An injective immersion f from manifold A to manifold B is an imbedding
if the range Rng f := f< (A) is a submanifold of B. The domain of an imbedding
is called an imbedded manifold of its codomain manifold. It is clear that for
every submanifold P of a given manifold M the inclusion 1p~ ¢ is an imbedding.

Remark: Let A and B be topological spaces and f : A — B be an injection.

We say that f is an imbedding if the topology of A is induced by f from the
topology of B. I

More details on submanifolds



22. Bundles

We assume that r € = with r > 2 and a C"-manifold M are given. Let a
number s € 0..r be given and let 7 : B — M be a surjective mapping from a
given set B to the manifold M.

Let a concrete isocategory ISO with object class OBJ be given with the
following properties:

(i) Each set in OBJ has the natural structure of a C*-manifold.
(ii) Every isomorphism in ISO is a C*®-diffeomorphism.

The most inportant special cases are (1) the isocategory of LIS consisting of
all linear isomorphisms, whose object class LS consist of all (finite dimensional)
linear spaces and (2) the isocategory of FIS consisting of all flat isomorphisms,
whose object class FS consist of all flat spaces. The object sets in LS and FS
have the natural structure of C“-manifolds and the isomorphisms in LIS and
FIS are C“-diffeomorphisms.

Definition: An ISO-bundle chart for B (for ) is a bijection
¢ :7(04) — Op X Vg,
where Oy is an open subset of M and Vy is a set in OBJ such that the diagram

<(0,) —25 04 x Vy

o
T‘Tj(oh lew ' (22'1)

Oy

is commutative, i.e. evi o ¢ = T|?f(0¢).
Notation: For every y € M, we denote B, = 7<({y}) and for every
ISO-bundle chart ¢ we use the following notations

¢| =evaodo (lg cr<(o,)) : By — Vs (22.2)

Y

for all y € Oy, i.e. we have the following commutative diagram



Put (22.1) and (22.2) together, we have the following commutative diagram

Let ¢ and v be ISO-bundle charts for B. We say that ¢ and 1 are C*-
compatible if

w 0 gb<_ : (O¢ N Ow) X V(z) — (O¢ N O¢) X Vw (22.3)
is a C'*-diffeomophism such that, for every y € Oy N Oy, the mapping
V] 0| Vs —Vy (22.4)

belongs to ISO.

A class 21 of ISO-bundle charts for B is called a C* ISO-bundle atlas for
B if

(BA1) every two ISO-bundle charts in 2 are C'*-compatiable,
(BA2) for every x € M there is a bundle chart ¢ € A with x € Oy; i.e.

we have
M= ] 0,
peA

Proposition 1: Let 2 be a ISO-bundle atlas for B and let ¢ be a ISO-bundle
chart that is C*-compatible with all ISO-bundle charts in . If ¢ is a ISO-

bundle chart that is C*®-compatible with every ISO-bundle chart in 2 then it is
also C®-compatible with ¢.

Proof: Let x € O, N Oy be given. By (BA2), we may choose a ISO-bundle
chart 6 € 2 such that z € Oyg. Put O := Oy N Oy N Oy. Since both ¢ and 7
are C®-compatible with 6, we see that the restriction

0(r={0})

Yeo| = (po67) e ton

o(r<{0})

o (0eo¢)

0(r<{0})

on ¢(7<{0}) is a C*-diffeomorphism and the induced mapping
], 00), =], 00, )0(0], 00])
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is a ISO-isomorphism. Since z € Oy N O, was arbitrary, we conclude that 1
and ¢ are C'*-compatible. ]

We say that a ISO-bundle atlas 2l of B is C*-saturated if every ISO-bundle
chart for B that is C*-compatible with all ISO-bundle charts in 2{ already belongs
to 2. The following is an immediate consequence of Prop. 1.

Proposition 2: Let A be a C* ISO-bundle atlas for B. Then there is exactly
one C*-saturated ISO-bundle atlas 2 that includes L. In fact, 2 consists of all
I[SO-bundle charts that are C*-compatible with all ISO-bundle charts in B .

Let 2 be a saturated ISO-atlas for B and let ¢ be a ISO-bundle chart in 2.
On each fibre B,, z € Oy, we can transport the ISO-structure of 1, by means
of qﬁjx : By — Vy. The result is independent of the choice of ¢, since every pair
of bundle charts ¢ and 1 in 2l are compatible and hence wjm o (bj;_ Ve — Vy
is a ISO-isomorphism.

Definition: A C* ISO-bundle over M is a set B and a mapping 7 : B — M
endowed with structure by the prescription of a saturated C* ISO-bundle atlas
for B, which is called the bundle structure for B and is denoted by Ch®(B, M),
or if no confusion is likely, simply by Ch(B, M). We denote the ISO-bundle by
(B, 7, M) or simply by B.

The mapping 7 is called the bundle-projection. For every z € M,
B, :=7<({z}) is called the fiber over z and the inclusion mapping of B, in
B is called the bundle inclusion at x. Right inverses of 7 are called cross
sections of B. We also use the following notation

Chy (B, M) := { ¢ € Ch(B,M) | z € O, }. (22.5)

As explained above, for every x € M, the fiber B, is naturally endowed
with the structure of a ISO-set in such a way that ngx : By — Vy is in ISO (is an
isomorphism) for all ¢ € Ch, (B, M). Thus the dimension of B, can be obtained
from all ¢ € Ch, (B, M).

Locally (relative to M), the manifold structure of the bundle manifold
B is completely determined by the manifold structure of the base manifold
M and the manifold structures of V, for a single ¢ € Ch(B, M). Every bundle
chart ¢ in Ch(B, M) transports the manifold structure from Oy x V, to 7<(0y),
and hence a manifold chart can be easily obtained from ¢.

Let b € B be given and put x := 7(b). The dimension of B at b can be
obtained from the codomain of each bundle chart ¢ € Ch, (B, M). We have

dimpB =m + n,
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where dim , M = m and dim B, = n.

Let ISO-bundles (B',7',M’) and (B,7, M) be given. =~ We say that
(B, 7', M") is a ISO-subbundle of (B, 7, M) provided B’ is a submanifold of
B, M’ is a submanifold of M and 7" = 7|"" such that, for each bundle chart

B/
¢ € Ch(B', M), we have ¢ = ¢|g§fn(fp for some bundle chart ¢ € Ch(B, M).
P

r<(P)’

It is easily seen that for every open subset P of M, (7<(P), 7" P)

is an open subbundle of (B, 7, M).

Definition: A cross section on O of B, where O is an open submanifold of
M, is a mapping s : O — B such that Tos = 1opca. For every p € 0..s, we
denote the collection of all CP cross sections of B by Sec’B.

If ISO is the category DIF that consists of all C®-diffeomorphisms between
C? manifolds, we call B a C*-bundle. If ISO = FIS, we call B a flat-space
bundle. If ISO = LIS, we call B a linear-space bundle.

Proposition 3: Let D be an open subset of a flat space £ and let V, W be linear
spaces. Let F': D — Lin(V, W) be given. If f : D xV — W is defined by

f(z,v) = F(z)v for all (z,v) € DxV (22.6)

then f is of class CP, p € , if and only if F is of class CP.

Proof: The assertion follows from the Partial Gradient Theorem [FDS]. 1

If B is a linear-space bundle, then it follows from (22.3), (22.4) and Prop. 3
that for every pair of bundle charts ¢,1 € Ch(B, M), the mapping

Yod:OpNOy — Lin(Vy, Vy)
defined by

(o)) :=v] op| ' forall zeO0sn0, (22.7)

is of class C*.

Before closing this section, we give two examples of constructing a new
bundle from given ones. We omit the details.

Examples :

(1) Trivial bundles : M x G, where G € OBJ. The fiber B, = {z} x G at
r € M is G tagged with z. ]



(2) Fiber-product bundles : Let two bundles (A, a, M) and (B, 3, M)
over the same base manifold M be given. Put

Ax, B =~ B
Ax, Bi= ] A x B,
reM ; evll lﬁ . (228)
ax, f:=aoev; = oev
M

A 04

The bundle (A x,, B, a x,, 3, M) is called the fiber-product bundle of
(A, a, M) and (B, 3, M). The bundle projection a X, : Ax,, B — M is given
by

aXuB(v) € {y|veA xB,} (22.9)

Let bundle charts ¢ € Ch(A, M) and 1 € Ch(B, M) be given. The mapping

PX (11 XuT2) < (Op N Oy) — (O N Oy) x Vy x V) (22.10)
given by

PXub(v) = (y, (¢ly x¥]y)v) forall veAx, B (22.11)
is a bundle chart for (A x,, B, ¢ x,, ¥, M). i
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23. The tangent bundle

Let » €, a C"-manifold M, and a point z € M be given.

Definition: The tangent space of M at x is defined to be

T, M = { t e XV, | (23.2) holds } (23.1)
a€Chy M
where the condition (23.2) is given by
t, = Vyv(z) t, forall x,vye€ Ch,M. (23.2)

T, M is endowed with the natural structure of a linear space as shown below and
dim T, M = dim, M.

For every x € Ch,M, define the evaluation mapping ev, : T,M — ), by
evy (t) ==t for all te T, M.

It follows from (21.10) that the evaluation mapping ev, is invertible and that its

: - .
inverse evy~ : ), — T, M is given by

(evy )(u) = (Vya(z)u | a € ChyM ) forall ue),.

X

Hence we have

evyoev, =V, x(r) € Lis(),)) (23.3)

for all v,x € Ch,M. It follows from that the linear-space structure on T, M
obtained from that of 1, by ev, does not depend on the choice of x € Ch, M and
hence is intrinsic to T, M. We consider T, M to be endowed with this structure.

Let f be a mapping whose domain D is a neighborhood of z in M and
whose codomain is an open subset of a flat space with translation space V. It
follows from (23.3) and (21.7) that

Vif(x)oev, € Lin(T,M,V)
is the same for all y € Ch, M. Hence we may define the gradient of f at = by
Vof =V f(z)oev, € Lin(T,M,V) (23.4)
for all x € Ch, M. In particular, if we put f := x we get V,x = ev, and hence
(Vex)t =t for all x € Ch, M. (23.5)
Also, if f is given as above, we have
Vif = Vi f(z)Vx for all x € Chy M. (23.6)
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Let P be an open neighborhood of x in M. By (21.6) we have Ch,P C
Ch, M and the mapping

(t = tley, »): ToM — TP
is a natural bijection; we use it to identify

TP = Ty M. (23.7)

Definition: The tangent bundle TM of M is defined to be the union of all
the tangent spaces of M :

TM:= | T, M. (23.8)
xeEM

It is endowed with the natural structure of a C"~!-linear-space bundle as shown
below.

In view of the identifications (23.7) we may regard TP as a subset of TM
when P is an open subset of M.

Let D be an open subset of a flat space £ with translation space V := & —€&.
Then the singleton {1p} is a C¥-atlas of D. It determines on D a natural C*-
manifold structure and hence a natural C"-manifold structure for every r € .
Given =z € D, the linear isomorphism evy, : T,D — V will be used for the
identification

T,D = {x} x V. (23.9)

Let f be a mapping whose domain is an open neighborhood of x and whose
codomain is an open subset of a flat space £ with translation space V'. If f
is differentiable at € D then the gradient V, f in the ordinary sense of (23.4)
belongs to Lin({z} x V,V’) when the identification (23.9) is used. No confusion
is likely because we have

Vef(z,v) =N, fv for all vey (23.10)
when V, f is used with both meanings.
If D is the underlying manifold of an open subset of a flat space, then (23.9)

gives rise to the idetification
TD =D x V. (23.11)

Note that the family (T, M |x € M) is disjoint. The bundle projection
pt : TM — M of the tangent bundle is given by

pt(t):e {zeM | teT,M }. (23.12)
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Every manifold chart y € ChM induces a bundle chart for TM as shown
in the following. We define the tangent-bundle chart

tgt, : pt=(Dom x) — Dom x x W (23.13)

by
tet, (t) = (2, (V) t) where 2z := pt(t). (23.14)

It is easily seen that tgt, is invertible and that
tgty (z,u) = (VL ) lu (23.15)

for all z € Domy and all u € .. Let x,v € ChM be given. It follows from
(21.7) and (23.6) that

Vi) (7 2 Xx7) = (VN (2) = (%) (V%x) ™ (23.16)

for all z € Dom v N Dom y. Hence, by (23.14) and (23.15) with x replaced by
v, we have

(tgt, o tgty )(z,u) = ( z, Yy exT)u) (23.17)

for all 2 € Dom~y N Dom x and all u € ). It is clear that tgt, o tgt) ™ is of class
C™1. Since yx,vy € ChM were arbitrary, it follows from (23.17) that

{ tgt, | a € ChM }

is a C"~! bundle-atlas of TM. We consider TM has being endowed with the
C"~! linear space bundle structure determined by this atlas.

It is also easily seen that { (a x 1y, ) otgt,, |« € ChM } is a C"~1 manifold-
atlas of TM. If xy € ChM then the page of the manifold chart (x x 1y, ) o tgt,
is

Pag ((x x 1y, ) otgt, ) = Pag x x W (23.18)
and we have
V(xxlvx)otgtx = (VX)Q (2319)
and hence
dim¢ TM = 2dim )M for all t € TM. (23.20)

It is easily seen that the bundle projection pt : TM — M defined by (23.12)
is of class C™ 1.

Let r € and C"-manifolds M and M’ be given. Let g be a mapping whose
domain and codomain are open subsets of M and M’, respectively. We say that
g is of class C*® with s € 0..r if Y/ o g o x is of class C* in the ordinary sense
for all y € ChM and all ' € ChoM’. This is the case if and only if x’ o ¢ is
of class C?® in the sense of Sect.21 for all ' € ChM’. Also, g is of class C* if
X' o g o x* is of class C?® for all x in some atlas included in Ch.M and for all
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X' in some atlas included in ChM’. The notion of differentiablity of ¢ is defined
in a similar way.
Assume that g is differentiable at © € M. It follows from (23.16) that

Ve = (Vy)X) ™ Vi) (X © 9 5 X7)Vax (23.21)
does not depend on the choice of x € Ch, M and x’ € Chy(,M'. We call
Vyg € Lin ( T, M, Tg(m)./\/l,) (23.22)

the gradient of g at x. Appropriate versions of the chain rule apply to gradients
in this sense. If M’ is an open subset of a flat space £ with translation space
V', then the gradient Vg in the sense of (23.22) is related to the gradient Vg
in the sense of (23.4) by

(Veg)t = (g(x), (Vpg)t) for all te T, M (23.23)
when the identification Ty, M’ = {g(x)} x V' is used.

Definition: A mapping h : M — TM is called a vector-field on M if it is a
right-inverse of pt, i.e. if

h(z) € T,M for all r € M. (23.24)

If h and k are vector-fields, then h + k is the vector-field defined by value-
wise addition, i.e. by (h+ k)(z) := h(z) + k(z) for all x € M. If h is a vector-
field and f a real-valued function on M (often called a “scalar-field”), then fh
is defined by value-wise sacalar multiplication, i.e. by (fh)(x) := f(z)h(z) for
all z € M.

The set of all real-valued functions of class C*, s € 0..(r — 1), on M will
be denoted by C*(M). The set of all vector-fields of class C*, s € 0..(r — 1), on
M will be denoted by X°(TM). Using value-wise addition and mutiplication,
C*(M) acquires the natural structure of a commutative algebra over . The
constants form a subalgebra of C*(M) that is isomorphic to . Using value-
wise addition and mutiplication, X°(TM) acquires the natural structure of a

C?(M)-module.
Let h : M — TM be a vector-field and x € ChM. Define hX : Domyx — V),

by
hX(y) := (V,x)h(y) foa all y & Domy. (23.25)

Given x € Dom y, we define
VXh := (V,x)"*V,hX € Lin T, M. (23.26)
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It is easily seen from (V,x) ™'V, hX = (V,x) ™ (W hX(2)) V,x that VXh is simply
the ordinary gradient of hX in the chart x, transported from Lin V), to Lin T, M
by Vex.

A continuous mapping p : J — M from some genuine interval J € into the
manifold M will be called a process. If p is differentiable at a given ¢ € J, then

Op = (Vy)X) ' 0:(x o p) (23.27)

does not depend on the choice of x € Chy,) M. We call d;p € TpM the
derivative of p at t. If p is differentiable, we define the derivative (-process)
p:J —TM by

p(t):=0p forall telJ (23.28)

24. Tensor Bundles

We now assume that a number s € and a C? linear-space bundle (B, T, M)
are given.

With each analytic tensor functor ® one can construct what is called the
associated ®-bundle of B

®(B):= ] ®(B,). (24.1)
yeM

It has the natural structure of a C* linear-space bundle over M. For every open
subset P of M, we also use the following notation

B(r<(P)) == | ®(8,). (24.2)

yeP
We define the bundle projection 7% : ®(B) — M of the bundle ®(B) by
T®?(v):e{yeM | ve®B, } (24.3)
For every bundle chart ¢ : 7<(0g) — Oy x Vj, we have
o(v) = (y, 6ly(8))  where yi=7(t)
We define the mapping
®(¢) : 2(1(05)) — Op x B(Vy) (24.4)
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by
(®@(9)(v) == (y, ®(d)y)v)  when y:=7%(v). (24.5)

It follows from the analyticity of the mapping (L +— ®(L)) that
{®(9) | ¢€Ch(B,M)}

is a C*-bundle-atlas of ®(B). It determines the C* linear-space bundle structure
of (®(B), 7%, M).

The bundle projection 7% : ®(B) — M defined by (24.3) is easily seen to
be of class C°.

Notation: For every p € 0..s, we denote the collection of all CP cross sections
of ®(B) by X (®(B)). The collection of all differentiable cross sections of ®(B)
is denoted by X (®(B)).

In the special case B = TM, we call ®(TM) the tansor bundle of M of
type ®. A cross section of the tensor bundle ®(TM) is called a tensor-field
of type ®. When ® := Dl is the duality functor (see Sect.13), we call DI (TM)
the cotangent bundle of M which will be denoted by T*M.

Remark: Let M be a C*®-manifold. With every h € X°(TM) we can then
associate a mapping h : C°°(M) — C>(M) defined by

h(f):=(Vfh forall feC®WM) (24.6)

where the gradient Vf of f is the covector field of class C* given by
Vf(x):=V,f for all z € Dom f. It is clear that h' is -linear. By using the
product rule Vfg = fVg+ gV f, we have

v v v

h (fg) = fh (g) +gh (f) forall f,geC*(M). (24.7)
This shows that h is a derivation of the module C>°(M). One can prove that
every derivation of C*° (M) can be obtained in this manner. (The proof is fairly

difficult.) 1

Let a cross section section H : M — ®(B) be given. For every bundle chart
¢ € Ch, (B, M) we define the mapping

H? : 04 — ®(V,)

by
H?(y) := ®(¢|

Given z € Oy, we define

JH(y), forall ye O,. (24.8)

Y

VPH := ®(¢] )V, H? € Lin (T, M, ®(B,)). (24.9)
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When ® = Id and B = TM, we have V,°*h = V*h for all Y € ChM and all
x € Dom .

One defines value-wise addition of cross sections of ®(B) and value-wise
scalar multiplication of a real function on M and a cross section of ®(B) in the
obvious manner. X”®(B) has the natural structure of a C?(M)-module, where
CP(M) is the ring of all real-valued functions of class C? on M.

Let (£1,71, M) and (L2, 72, M) be linear-space bundles over M and let
L1 X, Lo be the fiber product bundle of £; and L5. For every tensor bifunctor
Y, it follows form (24.5) that for each bundle chart ¢; € Ch(L;, M) and each
buhdle chart ¢o € Ch(Ly, M)

Y (o1 Xud2)(v) = (¥, T(e)y x 6Jy)v) (24.10)
where y := (11 X 72) ¥ (v) (see 24.3).

Let a cross section H : M — Y (L1 X,,L2) be given. For each bundle chart
¢1 € Ch(L1, M) and each buhdle chart ¢5 € Ch(L2, M), we define the mapping

I‘Id)l’d)2 : O¢ — T(V¢,1 X V¢2)

by
H? %2 (y) = @((bjy)H(y), for all y € Op, NOg,. (24.11)

Given x € Oy, N Oy, , we define
VOO H = Y (] X ¢o) ) GHO2 (24.12)

which is in Lin (T, M, Y (L1, X L2,)).
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Chapter 3

Connections

31. Tangent Connectors

We assume that » € ~ with » > 2 and a C"-manifold M are given. Let a
number s € 1..r and a C* bundle (B, 7, M) be given. We assume that both M
and B have constant dimensions, and we put

n:=dimM and m:=dimB —dim M. (31.1)

Then m = dim B, for all z € M.

Recall that for every bundle chart ¢ € Ch(B, M), we have evio¢(v) = 7(v)
and

o(v) = (z, en(d(v))) where z:=71(v) (31.2)

for all v.€ Dom ¢. Moreover, if ¢,¢ € Ch(B, M), it follows easily from (31.2)
with ¢ replaced by ¢ that

(WeoT)(zu) = (2, en((¥s¢7)(z0))) (31.3)
for all z € Oy N Oy and all u € V. I
Now let b € B be fixed and put = := 7(b). Let in, : B, — B be the

inclusion mapping
inm = 1BxCB- (314)

Consider the following diagram
B, X, B T, M,
the composite 7oin, is the constant mapping with value x. Taking the gradient
of (T oing) at b, we get (Vp7)(Vping) = 0 and hence Rng Vpin, C Null V7.
Indeed, we have Rng Vin, = Null V,,7 as to be shown in Prop.1.
Notation: We define the projection mapping Py, at b by
Py, := V7 € Lin (TbB, Tm./\/l) (315)

and the injection mapping I, at b by

I, := Win, € Lin (Tbe, TbB). (316)



Proposition 1: The projection mapping Py, is surjective, the injection mapping
Iy, is injective, and we have

Null P, = Rng Iy, (31.7)
i.€. ! o
TpyB, — TpB — T, M (31.8)

1$ a short exact sequence.

Proof: Choose a bundle chart ¢ € Ch, (B, M). It follows from (31.2) that

(poing)(d) = (=, ¢J$(d)) for all d e B,.

Using the chain rule and (31.6), we obtain
(Vo) Ip) m = (O, Vb¢Jmm> for all m e TypB, . (31.9)
Since both VW, ¢ and Vbqﬁjw are invertible, it follows that NullI, = {0} and
RngIy = (Vbo) ({0} x TyVy) where v :=evw(p(b)). (31.10)
On the other hand, it follows from (31.2) that
(Tod™)(z,u) =2 forall z € Oy
and all u € V. Using the chain rule and (31.5) we conclude that
Py (Vo) (t,w) =t for all t e T, M (31.11)
and all w € TyVy. Since V¢ is invertible, it follows that Rng Py, = T, M and
Null P, = ((Vb9) 1) ({0} x TyVs) where v :=ev(¢p(b)). (31.12)

Since ((Vpp)™1)s = (Vbo)<, comparison of (31.10) with (31.12) shows that
(31.7) holds. I

Definition: A linear right-inverse of the projection-mapping By, will be called a
right tangent-connector at b, a linear left-inverse of the injection-mapping
I, will be called a left tangent-connector at b. The sets

RconpB := Riv(Pyp)

31.13

Leonp B := Liv(Ip) ( )
of allright tangent-connectors at b and all left tangent-connectors at b will
be called the right tangent-connector space at b and the left tangent-
connector space at b, respectively.




The right tangent connector space Rcony, B is a flat in Lin(T, M, Tp,B) with
direction space

{I,L | L € Lin (T, M, Tp ;) }, (31.14)

and the left tangent connector space Lconp 3 is a flat in Lin (TpB, Tp,B,) with
direction space

{-LP, | L € Lin (T, M, Tp8,) }. (31.15)

Using the identifications
Lin (T, M, TpB,){Pp} = Lin (T, M, TpB,) = {Ip }Lin (T, M, TpB),

we consider Lin (T, M, TpB,;) as the external translation space of both Rcony,B
and Lconp,B. Since dim Lin (T, M, Tp,B,) = nm, we have

dim RconpB = nm = dim LconyB. (31.16)

By Prop. 1 of Sect. 14, there is a flat isomorphism
A : Rconp B — Lconp B
which assigns to every K € RconpB an element A(K) € Leony, B such that
0 TpB, TpyB T, 0 31.17
(0} — TuB. o TeB oo TM — {0} (LD
is again a short exact sequence. We have

KPy, + IbA(K) =115 (31.18)

Proposition 2: For each bundle chart ¢ € Chy(B,M), let Aﬁ in
Lin (T, M, Tp,B) be defined by

Alt = (Vo) L(t,0)  forall teT, M. (31.19)

Then Aﬁ 1 a linear right-inverse of Py; i.e. Aﬁ € RconpB.

Proof : If we substitute w := 0 in (31.11) and use (31.19), we obtain
P,(Alt)=t  forall teT,M

which shows that Aﬁ is a linear right-inverse of Py,. 1
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Proposition 3: If ¢,4 € Ch,(B, M), then AL and A differ by
A} — A} =T, T
b Tb T Th (31.20)
A(A) — A(A}) = ~I)"Py
where
T = (V) ) 7 (e 0 %00 67)( 0], b)) (31.21)
which belongs to Lin (T, M, TpB,).
Proof : It follows from (31.2) that
¢(b) = (x,¢]_b). (31.22)
Using (31.3) and (31.22), we obtain
Vo) (¥ 5¢7)(t,0) = (t , eva (Vi (9o <b‘_)(~,<bij))t)> (31.23)

for all t € T, M.
In view of (23.16), with = replaced by b, v by 9, and x by ¢, we have

Vo) (¥ 267) = (V1) (Vog) "
If we substitute this formula into (31.23) and use (31.19) and (31.21), we obtain
(ou)(Aft) = (£, Vou] L)"t)
for all t € T, M. Using (31.19) with v replaced by ¢, we conclude that
Aft=Aft+ (o) (0, Viw| TVt)
for all t € T, M. The desired result (31.20); now follows from (31.9), with ¢

replaced by ¥ and m := I‘{f’d’t. Equation (31.20), follows from (31.20); and
Prop. 3 of Sect.14. ]

Notation: Let ¢ € Ch, (B, M) be given. The mapping
I‘l(f : Reonp, B — Lin (T, M, Tp,B,)
18 defined by T? .= T4 in terms of (14.10); i.e. by

Y(K):= —A(A{)K for all K € Reonp,B. (31.24)



If ¢ € Ch, (B, M), we have, by Prop. 6 of Sect. 14,

A K =T, TV(K)

A(A?) — A(K) = -T2 (K)Py, (31.25)

for all K € RconpB. Moreover; if ¢, € Ch, (B, M), then (31.20) and (31.24)
give
Y(K) - TY(K) =T>Y forall K € ReonyB, (31.26)

where I‘ff’w is defined by (31.21). It follows from (31.26) and I‘g} (Aﬁ) = 0 that
L)Y = T2 (A}) for all ¢,9 € Ch, (B, M).

Convention : Assume that B is a flat-space bundle. Let b € B be given and
put x := 7(b). The fiber B, has the structure of a flat space; the translation
space of B, is denoted by U,,. We may and will use the identification as described
in (23.9) and (23.10); i.e. we identify TpB, with U,. Then (31.8) becomes

I, Py

u, —— TpyB — T, M. (31.27)

In particular, if B is a linear-space bundle, we have U, = B, and (31.27) becomes

In P,

B, — TyB — T,M. (31.28)

Remark 1: For every bundle chart ¢ in Ch, (B, M), we have

Py, = ev; 0 V0, Aﬁ = (Vb¢)_1 oinsy,

L 5 » (31.29)
I = (Vo) ' oinsy o Vo) | A(A}) = (Vbo] )" (eva 0 Ving),

. C o] . . . .
where ev; and ins;, ¢ € 2, are evaluations and insertions, respectively.

Proof: Let ¢ € Ch,(B, M) be given. Using (31.9), (31.19) and also observing
AP, + ILA(AL) = 14,5, we have

Voo = Voo (ALP, + IbA(AD)) = (Py, (Vbo)| A(AD)). (31.30)

The desired result (31.29) follows from (31.9), (31.19) and (31.30). 1

If in addition ¢Jm = 1p_, then we have

I, = (Vo) ! oinsy and A(Aﬁ) = (eva 0 V).
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Remark 2: For every cross section s : M — B, we have Tos = 1. If sis
differentiable at z € M, then the gradient of 1y = 7 os at = gives

1Tw/\/l = Vm(T 0] S) = (VS(I)T)(VQCS) = Ps(m)vms. (31.31)
We see that Vs is a right tangent connector at s(z); i.e. Vs € Reong,)(B). 11

Remark 3: Let B be a linear space bundle and let x € M be given. Denote
the zero of the linear space B, by 0,. It follows from (31.21) that I"g:w =0 and

then from (31.20) that A& = Agw for all ¢,1 € Ch, (B, M). This shows that
{Agz | ¢ € Ch,(B, M) } is a singleton and hence

{A$ | ¢ € Chy(B,M)} Reong,B. I

Remark 4: For every b € B, we define the vertical space V,B of B at b by
VbB =NullP, = R,Ilg I, C TbB . (3132)
Since Iy, is injective, VB is isomorphic with Ty B (p,). The sequence

VpB «—— TpB —t T, ;M (31.33)

is a short exact sequence. For every right tangent connector K € RconpB, the
range of K

HEB := RngK ¢ TpB (31.34)
is called the horizontal space of B at b relative to K. It is easily seen that
VB and HE B are supplementary in Ty, B. I

Notes 31

(1) The convention that we made in this section was first introduced by
Noll, in 1974, on the tangent bundle TM (see [N3]). This convention plays a
central role in our development.

(2) The short exact sequence (31.33) can be found in [Sa].



32. Transfer Isomorphisms, Shift Spaces

We assume that » € ~ with r > 2 and a C"-manifold M are given. Let a
number s € 1..r be given and let B be a C? linear-space bundle over M. We
assume that both M and B have constant dimensions, and put n := dim M and
m := dim B — dim M. Then

m =dim B, forall ze M. (32.1)

Now let x € M be fixed. We define the bundle of transfer isomorphisms
of B from x by

Tlis, B := | J Lis(B,,B,). (32.2)
yeM

It is endowed with the natural structure of a C®-fiber bundle as shown below.
The corresponding bundle projection 7, : Tlis, B — M is given by

72(T):€ { y e M | T € Lis(B,,B,) } (32.3)
and the bundle inclusion ¢, : Lis B, — Tlis, B at x is
tz = L1isB, cTlis, B (32.4)
For every bundle chart ¢ € Ch, (B, M), we define
tlis? : Tlis, (Oy) — Oy x Lis(By, V) (32.5)

by
tlis?(T) := (2, ¢].T), where z:=m(T). (32.6)

It is easily seen that tlisﬁ is invertible and that
tlis? (L) = (¢],) 'L (32.7)

for all z € Oy4 and all L € Lis(B,,V,). Moreover, if ¢, ¢ € Ch, (B, M), it follows
easily from (32.7) and (32.6) with ¢ replaced by 1 that

(tlis;f . thsgf> (L) = (2, (Woo)(2)L) (32.8)

for all z € Oy N Oy and all L € Lis(B,,Vs) (See (22.7) for the definition of
Yo ¢). It is clear that tlis? s tlis?  is of class C*. Since ¥, ¢ € Ch,(B, M)
were arbitrary, it follows that { tlis] | @ € Chy(B, M) } is a CS-bundle atlas
of Tlis,B. We consider (Tlist, Wm,M) as being endowed with the C?® fiber
bundle structure over M determined by this atlas.
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Remark : We may view Tlis, B as a Tran,-bundle, where Tran, is the iso-
category whose objects are of the form Lis(B,,V) with V € LS and whose
isomorphisms are of the form

(T — LT) : Lis(B,, DomL) — Lis(B,, CodL)
with L € LIS. I

It is easily seen that the mappings 7, and ¢, defined by (32.3) and (32.4)
are of class C°.

We now apply the results of Sect.31 by replacing the ISO-bundle B there
by the bundle Tlis, B and b € B there by 15, € Tlis,B.

Definition: The shift-space S, B of B at x € M 1is defined to be
SeB 1= Ty, Tlis,B. (32.9)
We define the projection mapping of S.B by
P, := Py, = Vi, 7 € Lin (S, B, T, M) (32.10)
and the injection mapping of S.B by
I, :=T1,, = Vig, te € Lin(LinB,, S, B) (32.11)

in terms of (31.5) and (31.6); respectively, where 7, and v, are defined by (32.3)
and (32.4).

It is clear from (32.5) that

dim (Tlis,B) = dim (S, B) = n + m?. (32.12)

Proposition 1: The projection mapping P, is surjective, the injection mapping
I, is injective, and we have

NullP, = RngI, (32.13)
1.€.
LinB, = S§,B 2 T,M (32.14)

s a short exact sequence.

Definition: A linear right-inverse of the projection-mapping B, will be called a
right shift-connector (or simply right connector) at x, a linear left-inverse
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of the injection-mapping I, will be called a left shift-connector (or simply left
connector) at x. The sets

Reon, B := Reony, Tlis, B

. (32.15)
Leon, B := Lcony,; Tlis, B

of all right connectors at x and all left connector at x will be called the right
connector space at x and the left connector space at x, respectively.

The right connector space Rcon, B is a flat in Lin(T,M, S, B) with direction
space
{LL|L € Lin(T,M,LinB,) }, (32.16)

and the left connector space Lcon,B is a flat in Lin (S, B8, Lin B,,) with di-
rection space
{ —LP, | L € Lin (T, M, LinS,) }. (32.17)

Using the identifications
Lin (T3 M, LinB,){P, } = Lin (T, M, LinB,) = {I,}Lin (T, M, LinB,),

we consider Lin (T, M, Lin3,) as the external translation space of both Rcon, BB
and Lcon,B. Since dim Lin (T, M, LinB,) = nm?, we have

dim Rcon,B = nm? = dim Lcon,B. (32.18)

The flat isomorphism
A : Rcon,B — Lcon,B
assigns to every K € Rcon, B an element A(K) € Lcon,B such that
Lin B, R) S.B o T, M (32.19)

is again a short exact sequence. We have

KP, +I,AK) =155 forall K € Rcon,B. (32.20)

Convention : Since there is one-to-one correspondence between right connec-
tors and left connectors, we shall only deal with one kind of connectors, say right
connectors. If we say “connector”, we mean a right connector. The notation

Con,B := Rcon,B

is also used.




Proposition 2: For each ¢ € Ch,(B, M), let AS € Lin (T, M,S,B) be defined

tlis?®

by AS := Cy.* in terms of (31.19); i.e.
Aft = (Vi tlis?)7'(t,0)  forall teT, M. (32.21)

xT

Then A$ is a linear right-inverse of P,, i.e. A% € Con,B.

Let ¢ € Ch, (B, M) be given. We have the following short exact sequence

LinB, «— S,B «— T, M (32.22)
A(AD) A
and
ASP, + T,A(A?) = 1g_p. (32.23)

Proposition 3: If ¢, ¢ € Ch, (B, M) are given, then

A? —AY =1,T9Y

32.24
A(AD) - A(AY) = ~TYVR. 22
R tlisi’,tlisf . .
where LY =Ty in terms of (31.21) is of the form
LoV = (] )7 (VMo d)) o (1r,58 x ¢] ) (32.25)

which belongs to Lin (T, Lin B,). Here, the notation (22.7) is used.

Proof : Applying Prop. 3 in Sect. 32 with ¢ replaced by tlisf and v replaced
by tlis¥ together with (32.6) and (32.8), we obtain the desired result (32.25). 1

Notation: Let ¢ € Ch,(B, M) be given. We define the mapping

L : Con,B — Lin (T, M, LinB,)

is? . .
by T? := TAY = TV in terms of (14.10) and (31.24); i.e.

15,

L?(K)=-A(A2)K forall K € Con,B. (32.26)

€T

If ¢ € Ch,(B, M), then (31.25) reduces to

A? -~ K = I, L (K)

A(A?) — A(K) = —-T?(K)P, (32.27)
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for all K € Con,B. Moreover; if ¢, ¢ € Ch, (B, M), then
LK) -LY(K)=T%% forall K € Con,B, (32.28)
where T'?% is defined by (32.25). It follows from (32.28) that T'¥*¢ = —T'$¥ and
fromTY (AY) = 0 that I'Y (AY) = I'$¥ for all bundle charts ¢, ¢ € Ch, (B, M).
For every cross section H : O — Tlis, B of the bundle Tlis, B, the mapping

T : M — Tlis, B defined by

T(y) := H(y)H () for all y e M (32.29)

is a cross section of the bundle Tlis, B with T'(z) = 15, .
Definition: A cross section T : O — Tlis, B of the bundle Tlis, B such that

T(x) = 1p, is called a transport from zx.

For every bundle chart ¢ € Ch(B, M), we see that
(v (¢],)7"8],) : Oy — Tlis, B

is a transport from z which is of class C*.

Remark 1: For every K € Con, B, there is a bundle chart ¢ € Ch, (B, M) with
qﬁjx = 1p, such that

K=V, (¢])~" = AL. (32.30)
Proof: Let K € Con,B be given. It is not hard to construct a transport
T : O — Tlis, B from z such that (Ask Prof. Noll!!I!IIITHHHIIIIIT
K =V,T. (32.31)
There is a bundle chart ¢ : 7<(0) — O x B, induced from T by
o(v):=(y, T (y)v) where y:=7(v) (32.32)

for all v € 7<(0). It is easily seen that (¢|)~! = T. The first part of (32.30)
follows from (32.31). In view of (31.29) we have

A(A2) (Vi (8])7Y) = (eva 0 Vi, tlis?) V(o)) ?

=evw oV, (y — tlisi((¢Jy)_1)). (32.33)
Using (32.6) and ovbserving gzﬁjy € Lin (By, B;), we have
ist((6],)™) = (v, 6] (6] )71 = (v, 1s,). (32.34)
Taking the gradient of (32.34) at z, we observe that
Vi (y = tlis (6] )7) = (11,4, 0)- (32.35)
It follows from (32.33) and (32.35) that
A(AD)(V(¢])7!) = 0.
This can happen only when V,(¢|)~' = AZ. I
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33. Torsion

Let r €7, with r > 2, and a C"-manifold M be given. For every z € M, we
have; as described in Sect. 32 with B := TM,

Tlis, TM := | ] Lis(T.M, T, M). (33.1)

yeM

We also have the following short exact sequence

I, B

Lin T, M S, TM T, M. (33.2)

The short exact sequence (33.2) is of the form (15.1) and hence all of the
results in Sect.15 can be used here.

For every manifold chart x € Ch.M, the tangent mapping tgt, ; as defined in
(22.13), is a bundle chart of the tangent bundle TM such that evy o tgt, = V.
Note that not every tangent bundle chart ¢ € Ch(T.M, M) can be obtained from
the gradient of a manifold chart. To avoid complicated notations, we replace
all the superscript of ¢ = tgt, by superscript of x; i.e. we use the following
notation ot

AX = AEX TX.=T,%% and TX7.=T,5x"%" (33.3)

for all manifold charts y,v € ChM. Given y,y € ChM. It is easily seen from
(32.25) and (23.16) that

X7 = (%) 'V 9(2)) o (Vx x Vix)- (33.4)

It follows from the Theorem on Symmetry of Second Gradients (see
Sect.612, [FDS]) that X belongs to the subspace Sym,(T,M? T, M) of
Ling(TzM?, T, M) = Lin(T,M, Lin T, M).

Proposition 1: There is exactly one flat F in Con,TM with direction
space {I,}Symy(T,M? T, M) which contains AX for every manifold chart
x € Ch, M, so that

F = AX + {I,}Symy (T, M? T,M) forall x & Ch,M. (33.5)

Definition: The shift-bracket B, € Skws (S, TM?, T, M) of S, TM is de-
fined by
B, :=Br (33.6)

where Br is defined as in (15.5).
Definition: The torsion-mapping T, : Con, TM — Skws (T, M2 T, M) of
Con,TM is defined by

T, .= Tr (33.7)
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where Tr is defined as in (15.8).

It follows from Prop.3 of Sect.15 that, for every manifold chart y € Ch, M,
we have
T, =LX-LX" (33.8)

where ~ denotes the value-wise switch, so that TX (K)(s,t) = LX(K)(t,s) for
all K € Con, M and all s,t € T, M.

The torsion-mapping T, is a surjective flat mapping with T,~({0}) = F
whose gradient

VT, € Lin ( Ling (T, M? T, M) , Skwo (T, M? T, M)) (33.9)
is given by
(VI,)L=L - L (33.10)
for all L € Liny (T, M?, T, M).
Definition: We say that a connector K € Con,TM is torsion-free (or

symmetric) if T,(K) = 0, i.e. K € F. The flat of all symmetric connec-
tors will be denoted by Scony M := T~ ({0}).

The mapping
S, = (1

( Cong TM

] (33.11)

1
_IJET:E
+ 2
is the projection of Con,TM onto Scon, M with
Null VS, = Skws (T, M2, T, M).

If K € Con,TM, we call S,(K) = K + 1I,(T,(K)) the symmetric part of
K.

Theorem : A connector K € Con, TM is symmetric if and only if K = AX
for some x € Chy M. Thus Scon, M = { AX|x € Ch, M}.

Proof: Let K € Con, M be given. If K = AX for some xy € Ch, M, then
LX(K) = 0 and hence T, (K) = 0 by (33.8).
Assume now that T, (K) = 0. We choose v € Ch, M and put

L:=VyL'(K)o (%) x (%)) (33.12)

It follows from (33.8) that L is symmetric, i.e. that L € Sym,(12?,)}). We now
define the mapping o : Dom v — ), by

1

a(z) ==v(z) + §L(7(z) —y(z), v(z) =(x)) forall ze€ Domr .
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Take the gradient at x, we have Voo = Vv ie. that is (Va)(Vy) ™ = 1y, It
follows from the Local Inversion Theorem that there exist an open subset N of

Dom « such that y := 04|7v>w) is a bijection of class C". It is easily seen that
x € Ch, M and that
V#x(z) =L

Using (33.12), (32.25) and V. x = V7, we conclude that
I(K) = (V%x) 'V Px 0 (Vy x Vy) =T7X.
Hence, by (32.24) and (32.27), we have
AT - AX=LIVX =LT)(K)= Al - K,

which gives K = AX. 1

34. Connections, Curvature

From now on, in this chapter, we assume a linear-space bundle (B, 7, M)
of class C?, s > 2, is given. We also assume that both M and B have constant
dimensions, and put n := dim M and m := dim B — dim M. Then we have, as
in (32.1),

m =dim B, forall ze& M. (34.1)

Definition: The connector bundle Con B of B is defined to be the union of
all the right-connector spaces

ConB := U Con,B . (34.2)
zeEM

It is endowed with the structure of a C*~'-flat space bundle over M as shown
below.

If P is an open subset of M and z € P, we can identify Con,.A = Con,B,
where A := 7<(P), in the same way as was done for the tangent space. Hence
we may regard ConA as a subset of Con B.

Note that the family (Con,B |z € M) is disjoint. The bundle projection
p: ConB — M is given by

p(K):€ {ye M | Ke Con,B }, (34.3)
and, for every x € M, the bundle inclusion in, : Con,B — Con B at x is
inm = 1C0nIBCCOnB . (344)
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For every (x,¢) € ChM x Ch(B, M) we define

con®?) : Con(Dom¢) — (Dom x N Oy) x Lin(W, Lin)},) (34.5)
by
(68 (H) -— AAYH) (VM x ¢
con : z, 2 2
(H) := (=.0), AADE) (Vx " x 6] ") ) (34.6)
where z := p(H)
for all H € Con(Domg). It is easily seen that con®®) is invertible and
con®9 (2 L) = A? + Iz(bjz_l L (Vix x 6] ) (34.7)

for all z € (Domy N Oy) and all L € Lin(),, Linl},). Let (x, ¢), (7, 9) € ChM x
Ch(B, M) be given. We easily deduce from (34.7) and (34.6), with (x, ¢) replaced
by (v,¢) and A(AY)(A?) = T =T, that

(Conw,w) o Con(xxb)‘_) (z,L)

- ( 2, ] TV x| ) + R(2) L (WA x m(z)_l)) (34.8)
where \:=7yo0x™ and k:=vo¢ (see (22.7))

for all z € (Domyx NOy) N (DomyNOy) and L € Lin()}, Lin)},). It is clear that
con%) o con®? " is of class C*~1. Since (v,v), (x,¢) € ChM x Ch(B, M)
were arbitrary, it follows that { con(*?) | (o, ¢) € ChM x Ch(B, M) } is a C*~1-
bundle atlas of Con B; it determines the natural structure of a C*~! flat-space
bundle over M.

The mappings p and in, defined by (34.3) and (34.4) are easily seen to be
of class C*~1.

Definition: Let O be an open subset of M. A cross section on O of the con-
nector bundle Con B

A:0O— ConB (34.9)

s called a connection on O for the bundle B. A connection on M for the
bundle B is simply called a connection for the bundle B. For every bundle chart
¢ in Ch(B, M), the connection A® on Oy is defined by
A?(z) := A2 for all z € Oy, (34.10)
where A$ is given by (52.21).
Definition: The tangent-space of ConB at K is denoted by
T« Con B. (34.11)
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We define the projection mapping of TxConB by
P« := VYp € Lin (TxCon B, T, M) (34.12)
and the injection mapping of TxCon B by
I := Vkin, € Lin (Lin(T,M, LinB,), TxCon B) (34.13)

where p and in, are defined by (34.3) and (34.4).

It is clear from (34.5) that

dim (Con B) = dim (TxCon B) = n + nm?. (34.14)

Proposition 1: The projection mapping Px is surjective, the injection mapping
I« is injective, and we have

Null B = Rng T (34.15)
i.€. ! b
Lin(T, M, LinB,) — TxConB —— T, M (34.16)

1s a short exact sequence.

The short exact sequence (34.16) is of the form (15.1) and hence all of the
results in Sect.15 can be used here.

Proposition 2: For each (x, ) € Chy M x Chy (B, M), let
AX? € Lin (T, M, TxCon B)
be defined by A1(<X’¢) = A‘;g’“"’“ in terms of the notation (32.21); i.e.
AL = (Veeon®?) ™! o ins, (34.17)

Then A&X’qﬁ) s a linear right-inverse of Pg; i.e. PKA&X’QS) =11, M.
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Proposition 3: If (7,9), (x,¢) € ChyM x Ch, (B, M), with A? = K = AY,

then

(34.18)
A(AE(X’QS)) _ A(AI(;Y’IM) — _I\I((X7¢)a(7,1/’)PK

con<X’¢>,con(7’w) .

where FK(X’@’(%W = Ik in terms of the notation (32.25) is given by
L0 (4 8y = (] )TV (00 ) (Trt, Yy t))e],  (3419)

for all t,t' € T,M. We have I‘K(X’QZ))’(W’W € Sym, (T, M2, LinB,). Here, the
notation (22.7) is used.

Proof: Let (v,1), (x, ¢) € Ch, M x Ch,(B, M), with A? = K = AY, be given.
Then, we have V(¢ o ¢) = A(A%2)(K) = 0. It follows from (34.6) that

con®? | (K) = 0. (34.20)
Using (34.8), (34.20) and (33.25), we obtain
(Con(%w) 5 Con(x,qb)‘_) (z, COH(X»¢)J L(K))
X . (34.21)
= (=, V- od)(Vr x (8] 0w] ).

Taking the gradient of (34.21) with respect to z at  and observing V,.(¥¢¢) = 0,
we have

evy (Vx ((COH(’Y’d}) o conX:9) (_) (-, con(X’d’)J . (K)) )t)
= (VS0 (@0 9) %) Ly, x (8], 0v].")

for all t € T, M. Using (34.22), (34.6) with (x, ¢) replaced by (v,?) and
applying Prop. 3 in Sect. 32 with ¢ replaced by con®® and 1 replaced by
con™¥) | we obtain the desired result (34.19). 1

(34.22)

If ¢, € Ch,(B, M), with A? = K = AY, we have L% = 0 by (33.25).
It follows from (21.9) that the right hand side of (34.19) does not depend on
the manifold charts x,~ € Ch, M. In particular, when ¢ = ¢ we have A&X’d)) =

Ag’d)) for all manifold charts x,y € Ch, M.
By using the definition of the gradient

VA% = (VKconX’¢)_1VX(x) (conX¥? o A% o X7)Vix
and (34.6), we can easily seen that for every bundle chart ¢ € Ch, (B, M) with
A? =K
V,A? = AX?  forall y e ChyM. (34.23)
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for all bundle charts ¢ € Ch, (B, M) with A = K.
Proof: The assertion follows from (34.23) together with (34.18) and (34.19). |

Definition: The bracket By € Skwy (TxCon B2, T, M) of TxCon B is defined
by
Bk =B, (34.25)

where Br, is defined as in (15.5).

Definition: Let A : M — Con B be a connection which is differentiable at x.
The curvature of A at z, denoted by

R, (A) € Skws (T, M? LinB,), (34.26)
18 defined by
R.(A) = Tr,,,(VA) (34.27)

where Tr, ., is defined as in (15.8).

If A 18
differentiable, then the mapping R(A) : M — Skwso(TanM? | LinB) defined
by

R(A)(z) :=R,(A) for all reM

is called the curvature field of the connection A.

A fomula for the curvature field R(A) in terms of covariant gradients will
be given in Prop. 5. If the connection A is of class CP, with p € 1..s — 1, then
VA is of class CP~1, and so is the curvature field R(A).

More generally, if ¢, 1) € Ch,(B, M), without assuming that A = K = AY,
then Eq. (34.19) must be replaced by

Féx’¢)’(7’w)(t,t’)
LV ()L (K)(H) + LY (K)(t)LY (t) + TP (K)LOT (6, t)  (34.28)
— LY NLSY () + (v )T (VP (Yo 9) () (Vv t, iy ) e

for all t,t’ € T, M. If one of those two bundle charts, say ¢, satisfies A? = K,
then it follows from (34.28), T?(K) = 0 and —L[#% = L¥(K) that

I‘I<(X7¢)?(’771/)) (t’ t/)

34.29
= LYWLV (K)t + (¢] ) (V2 (o 9)(2)(Vrt, iy t)e| (3429

for all t,t’' € T, M.
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Proposition 5: Let A : M — ConB be a connection that is differentiable at
x € M. The curvature of A at x is given by
(Rz(A))(s,t) = (V) YT¥(A))(s,t) — (V] 'TY(A))(t,5)

34.30
+ (LY (AG)SEY (At - LY ALY AG)s) O

for all (v,v) € Chy M x Ch, (B, M) and all s,t € T, M.

Proof: Let a bundle chart (v,1) € Ch, M x Ch,(B, M) be given. It follows
from (42.6) and A(AY)(A(z)) = —L¥(A(z)) that

con 0 A(2) = (2, —v] LY (A() (W xv]]")) (34.31)
In view of (32.29), we have

A(Afg(f)))(v A) = con(”*”/’)J " (eVQ 0 VA (z) (con(%‘b))) (VEA)
= con(’y’w)Ja_7 evy 0 (V, (con(%‘“ oA))

= V(2= 0 6] T AR IV x 0] o))

(34.32)

By using
AL =%V(z—=Vy'%) . AY=Vi(z =] %))
and (42.38), we observe that
—1
A(AE&;%)WA) V(2 =), ), THAE) (T Ny x v ) )
(LT (A)) (AL, Aw>
—vngrw(A).

Together with (42.27) and (42.29), we prove (34.12). [

Remark : When the linear-space bundle B is the tangent bundle TM, we have

(Rz(A))(s,t) = (VXTX(A))(s, t) — (VTX(A))(t,5)

(34.33)
+ (LX(A@)STX(A ()t — TX(A(0)PTX (A (2)s)
for all manifold chart x € Ch, M and all s,t € T, M.

If a transport T : M — Tlis, M from x is differentiable at y, we define the
connector-gradient, V, T € Lin (7,,S,), of T at y by

V, T :=V,(z — T(z)T(y)_l). (34.34)
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Theorem : A connection A : M — ConB is curvature-free if and only if,
locally A agrees with A?® for some bundle chart ¢ € Ch(B, M). In other word,
for every x € M, there is an open neighbourhood N, of x and a transport
T : N, — Tlis, M from x such that VT = A

Na

35. Parallelisms, Geodesics

Let a connector K € Con B be given and put z := p(K).
We now apply the results of Sect. 32 by replacing the ISO-bundle there by
the flat-space bundle Con B and b € B there by K.

Definition: The shift bundle SB of (B, T, M) is defined to be the union of all
the shift spaces of B :
sB:= | J s,B. (35.1)
yeM

It is endowed with the structure of a C™~2-manifold.
We defined the mapping o : SB — M by
o(s):e{yeM|seSB}, (35.2)
and every y € M the mapping in, : S,B8 — SB by
iny := 1g gcss - (35.3)
We define the projection P : SB — TM by
P(s) := P, (s)s for all s € SB (35.4)
and the injection I: Lin B — SB by
I(L) := L)L for all L e LinB (35.5)

where Ln is the lineon functor (see Sect.13) and

Lin B :=Ln(B) = | J LinB,. (35.6)
yeM
We have
pt(P(s)) = o(s) for all s €SB (35.7)
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and

o(IL)=7""(L) forall L&LinB. (35.8)

It is easily seen that P and I are of class C" 2.

We now fix x € M and consider the bundle Tlis, B of transfer-isomorphism
from x as defined by (32.2). A mapping of the type

T:[0,d — Tlis, B  with  T(0) =15 (35.9)

x )

where d € *, will be called a transfer-process of B from x. If T is differentiable
at a given ¢ € [0, d], we defined the shift-derivative sd;T € S, (p())B at ¢ of
T by

sdyT := 9, (s T(s)T(t)") . (35.10)

We have
o (sd;T) =7, (T(¢)) , (35.11)

when 7, is defined by (32.3). If T is differentiable, we define the shift-
derivative (-process) sdT : [0,d] — SB by

(sdT) (t) := sd;T forall  t€]0,d] . (35.12)

If T is of class C*%, s € 1..(r — 2), then sdT is of class C5~ 1.

Proposition 1: Let T : [0,d] — Tlis, B be a transfer-process of B from x and
put
p:=my,0T =00(sdT):[0,d — M. (35.13)

Then p is differentiable and

Po(sdT)=p" . (35.14)

Proof: Let ¢t € [0, d] be given and put y := p(¢). Then T(s)T(¢)™* € Tlis,B and

my (T(s)T(t) ™) = ma (T(s)) = p(s)

for all s € [0,d]. Differentiation with respect to s at ¢, using (35.10), (32.10),
and the chain rule, gives P, (sd;T) = p*(t). Since ¢ € [0, d] was arbitrary, (35.14)
follows. 1
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Proposition 2: Let T be a differentiable transfer-process from x and let p be de-
fined as in Prop. 1. Assume, moreover, that ¢ € Ch, (B, M) is a chart such that
Rngp C Op. If we define H :[0,d] — LisB, and V :[0,d] — LinB, by

H(t) .= (gbjy) T(t) (35.15)
and
V(1) = ¢], (A(AD)(sd,T)) (8] )7 (35.16)
when y :=p(t) and t € [0,d], then
H =VH , H(0)=1s, . (35.17)

Proof: Let t € [0,d] be given and put y := p(t). Using (32.6) with = replaced
by y and T by T(s)T(t)™}, we obtain from (35.15) that

tlis( (T(s)T(6) ") = (p(s) , @] H(s)HE) (@] )7") foral se0,d.
In view of (31.30) with ¢ replaced by tlisg’ and (35.10) we conclude that
(Vhe, Hs2) (s T) = (1 () , 6] (H)@)(6] )7).
Comparing this result with (31.29) and (35.16), and using the injectivity of
Vir, tlisg, we obtain (H'H™)(¢) = V(t). Since t € [0,d] was arbitrtary, (35.17);

follows. Since both qzﬁjx = 1, and T(0) = 15,, (35.17)9 is a direct consequence
of (35.15). I

Theorem on Shift-Processes: Let U : [0,d] — SB, with d €, be a continu-
ous shift-process of B such that p := o o U is differentiable and

PoU=p :[0,d] - TanM . (35.18)

Then there exists exactly one transfer-process T : [0,d] — Tlis,B of B from
x := p(0), of class C', such that sdT = U.

Proof: Assume first that ¢ € Ch(B, M) can be chosen such that Rngp C
Dom x. Define V : [0,d| — LinV, by

V(t):=(¢],) (AMADU() (¢],)7 when y:=p(t). (35.19)

Since U is continuous, so is V. Let H : [0, d] — LinV, be the unique solution of
the initial value problem

TH

H=VH , H0)=1y,. (35.20)

Y
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This solution is of class C!.

Now, if T is a process that satisfies the conditions, then V, as defined by
(35.19), coincides with V, as defined by (35.16). Therefore, by Prop. 2, we have
H = H and hence T must be given by

T(t):(qﬁjp(t))_lﬁ(t)qﬁjw forall  t€0,d]. (35.21)

On the other hand, if we define T by (35.21) and then H and V by (35.15) and
(35.16), we have 7, o T = p, H = H, and V = V. Thus, using (31.30) with ¢
replaced by tlis,;/*'s and (35.19), we conclude that

(Vlsy tlisz)(sdtT) = (VlBy tlisz))(U(t)) when y := p(t)

for all ¢ € [0,d]. Since V4, tlisf; is injective for all y € M, we conclude that
U =sdT.

There need not be a single bundle chart ¢ € Ch(B, M) such that Rngp C
Dom x. However, since Rngp is a compact subset of M, we can find a finite set
§ € ChM such that

Rngp C U Dom .
XES

We can then determine a strictly isotone list (a; |7 € (m + 1)[ ) in such that

ap = 0, a,, = d and such that, for each 7 € m[, P ([ai, ai+1]) is included in a
single chart belonging to §. By applying the result already proved, for each
1€ m[, to the case when U is replaced by

(t—Ula; +t) ) : [0, aiy1 — a;] — SB,
one easily sees that the assertion of the theorem is valid in general. ]

We assume now that a continuous connection C is prescribed.
Let d € * and a process p : [0,d] — M of class C! be given and put
x := p(0). We define the shift process U : [0,d] — SB by

U(t) :== C(p(t))p (t) forall ¢e[0,d]. (35.22)

Clearly, U is continuous and, since B,C(y) = 1, for all y € M, (35.18) is valid.
Hence, by the Theorem on Shift Processes there is a unique transfer process
T : [0,d] — Tlis, B of class C! such that

sdT = (Cop)p . (35.23)
This process is called the parallelism along p for the connection C.

Let H : [0,d] — ®(B) be a process on ®(B) and put p := 7 0o H. We say
that H is a parallel process for C if H(0) # 0 and if

H(t) = ®(T(t))H(0)  forall te [0,d] (35.24)
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where T is the parallelism along p for C.
Let H : [0,d] — ®(B) be a process on ®(B) and let T be the parallelism
along p := 7% o H for the connection C. Given ¢ € Ch,(B, M) that satisfies
Rngp C Oy. Define (H?!)" : [0,d] — 7<(Rngp) and (HT)" : [0,d] — 7<(Rngp)
by
. -1
(BH)*(1) = 01 (5 = (6] 0] () ) H() )

. (35.25)
(HT)"(t) := 0, ( s — ®(T(t)T(s))H(s) )

for all t € [0,d].

Proposition 3: A process H : [0,d] — ®(B) is parallel with respect to C if and
only if H is of class C' and satisfies the differential equation

0= (H")" = (H*)" + & ((I*(C)op)p*)H. (35.26)

We assume now that the linear space bundle B is the tangent bundle TM
and that a continuous connection C : M — ConTM for TM is prescribed.
We say that p: [0,d] — M is a geodesic process for C if p*(0) # 0 and if

T(t)p*(0) =p°(t) forall te]0,d], (35.28)
where T is the parallelism along p for C, i.e. p*® is parallel with respect to the
parallelism T.

Let p: [0,d] — M be a process of class C* such that p*(0) # 0 and given
x € ChM that satisfies Rngp C Dom x. Define p: [0,d] — Codx by p:= xop
and I : Cod x — Liny (VZ,V,) by

T(2) == VxLX(C) o (Vx™ x Vx™') when y:=x"(z),  (35.29)

where L)X is defined by (33.3).

Proposition 4: The process p is a geodedic process if and only if p is of class
C? and satisfies the differential equation

p*+ (Top)(p*,p*)=0. (35.30)

Geodesic Deviations: Study the derivative of (35.26)777
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36. Holonomy

Let a continuous connection C : M — ConlB be given. For every C! process
p : [0,dp] — M there is exactly one parallelism T, : [0,d,] — Tlis,B from
x := p(0) along p for the connection C. The reverse process p~ : [0,d,] — M
of p:[0,d,] — M is given by

p (t) :=p(d, — 1) for all ¢ € [0,d,].

Proposition 1: Let p~ : [0,d,] — M be the reverse process of a C' process
p:[0,dp] — M. We have

T, (t) = T,(d, — )T, (d,) forall te]0,d,). (36.1)

p

Let C! processes p : [0,d,] — M and ,q : [0,d,] — M with ¢(0) = p(d,) be
given. We define the continuation process ¢ * p : [0,d, + d,] — M of p with
q by

p(t) te [0,d,),
(g% p)(t) = (36.2)
q(t — dp) t € [dp,dp + dg.

If in addition that ¢* (0) = p° (dp), then the continuation process ¢ * p is of class

C! and
Ty (t) t€[0,dy),

Tyup(t) = (36.3)
Ty(t —dy)Tp(dy) t € [dy,dp +dg].

Definition: For every pair of C* processes p : [0,d,] — M and ,q : [0,d,] — M
with q(0) = p(d,) be given. We define the piecewise parallelism (along ¢ *p)

Typ: [0,d, +dy] — Tlis, B where =z :=p(0)

T, (t) t€0,dp],
Toup(t) := (36.4)
Ty(t —dy)Tp(dy) t € [dp,dp +dgl.

In view of (36.1), if ¢ := p~ we have T,,- (t — d,,)Ty(d,) = T, (2d, —t) and
hence
T,(t) t €[0,d,],
T_,,(t) == (36.5)
T,(2d, —t) t € [dp,2d,).




In particular, T,-,,(2d,) = T_p.,(0) = 15,.
Let O be an open neighboorhood of z € M and let £(O, x) be the set of all

piecewise C! loops p : [0,d,] — M at z with Rngp C O. It is easily seen that
(L(O,x),*) is a group. We also use the following notation

H(O,z) :={Ty(dp) |p € L(O,x)}. (36.6)

Proposition 3: For every q,p € L(O,x), we have
Tq*p(dp + dq) = Tq(dq)Tp(dp)~ (36.7)

Hence H(O, x) is a subgroup of LisB,, which is called the holonomy group on
O of the connection C at x.

Let T : M — Tlis, M be a transport from € M of class C'. For every
differentiable process A : [0,1] — M, we see that T o A : [0,1] — Tlis, M is a
transfer process from x and

sdT = ((VT) o M)A
Hence To\ is the parallelism along A for the connection VT. For every t € [0, 1],
(T o A)(t) = T(A(t)) depends on, of course, only on the point y := A(¢), not on
the process \. When A\ is closed, beginning and ending at A(0) = 2 = A(1), then
(ToA)(1)=T(z) =1g,.

T

The following theorem is a immediated consequence of the above discussion and
the Theorem of Sect.34.

Theorem : A continuous connection C : M — ConB is curvature-free; i.e.
R(C) = 0 if and only if locally the holonomy groups are H(O,z) = {1,} for
some open subset set O of M and all x € M.

Question ?: Does there exist a connection C such that H(O,z) = LisB, for
some x?
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Chapter 4

Gradients.

In this chapter, we assume a linear-space bundle (B, 7, M) of class C*, s > 2,
is given. We also assume that both M and B have constant dimensions, and put
n = dim M and m := dim B — dim M. Then we have, as in (32.1), m = dim B,
for all z € M.

41. Shift Gradients

Let x € M be fixed.
Let ® be an analytic tensor functor and let H : M — ®(B) be a cross
section of ®(B) that is differentiable at . We define the mapping

H : Tlis, B — ®(B,) (41.1)

by
H(T) := ®(T) 'H(7,(T)) forall T & Tlis,B, (41.2)

where 7, is defined by (32.3). Since ® is analytic, it is clear that H is differen-
tiable at 15, .

Difinition: The shift-gradient of H at z is the linear mapping

O,H € Lin (S, B, ®(B,))

defined by R
O0.H := Vy, H, (41.3)

where H is given by (41.2).

For every bundle chart ¢ € Ch,(B, M), the spaces RngI, and Rng A%
are supplymentary in S, B. Hence, for every s € S, B there is exactly one pair
(M, t) € Lin B, x T, M such that s = I, M + A%t and thus

(0.H)s = (O, H)I,M + (O0,H)A%.

Proposition 1: We have
(O, H)I,M = —(&_M)H(z) forall M € LinB,, (41.4)

where ®,, € Lin (Lin B,, Lin ®(B,.)) is defined to be the gradient of the mapping
(L— ®(L)) : Lis B, — Lis (®(B,)) at 15, .




Proof: In view of (32.4) and (41.2) we have Ho, : LisB, — ®(B,) and
(Ho,)(L) = ®(L) 'H(z) forall L € LisB,.

Taking the gradient of (H, o ¢,) at 1z, and using (32.11) and (41.3), we obtain
the desired result (41.4). I

Example 1: Let B* := DI (B), where DI is the duality functor.

Let h be a cross section of B, let w be a cross section of B*, let L be a cross
section of Lin B, let G be a cross section of Lin (B, B*) = Liny(B?,) and

let T be a cross section of Lin (B, Lin B) 2 Liny (B2, B). Assume that all of
these cross sections are differentiable at . Then

(O,h)I,M = —Mh(z); (41.5)

(Opw)I.M = w(z)M; (41.6)

(0,L)I,M = L(z)M — ML(x); (41.7)
(0,G)I,M=G(z)o (M x 15 ) + G(z) o (15, x M) (41.8)

and

(O, T)I,M=T(x)o (M x 15,) + T(x) o (15, x M) — MT(x) (41.9)
for all M € Lin B,.

Let a bundle chart ¢ € Ch,(B, M) be given. We define the mapping

H(’b . O¢ — (I)(V¢)

H?(y) := ®(¢| JH(y), foral ye O,. (41.10)

Y

Proposition 2: We have

(O.H)A? = V/H = A(A5Y) V. H (41.11)

where ®(p) is defined by (24.5), VPH is described in (24.9) and Az((g is defined
in terms of (31.19).

Proof: Let y € Oy4 be given. Substituting T := (qﬁjy)_lgbj in (41.2) gives

1
x

H((¢],)7'¢],) = ®((¢] ) "0],) " H(y)
= ®(0],) 7 ®(¢] JH(y) = B(0],) TH(y).
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Since tlis? (y,¢] ) = (¢],)7"¢], by (32.7), we obtain

(Hotlis? )(y.0|,) = ®(¢] ) "H(y) forall ye O,
Taking the gradient with respect to y at z and observing (51.2) gives
(Vag, H)(Vi, tlis?) 7 (£,0) = ®(¢] ) (H?) ¢

for all t € T, M. In view of definition (32.19) and (24.9) we obtain the first
equality of the desired result (41.11).
It follows from (41.2), (41.3) and (31.29) with ¢ replaced by ®(¢) that

(O.H)AS = (Vi H)V, (0] 6] )
=Va(y — ®(¢], ¢ JH(y))
= (®())] " (ev2 0 Vian)®(¢)) V. H

= A(Ag() VH.

-1

1

Since ¢ € Ch, (B, M) was arbitrary, the second part of (41.11) follows. I

The results of Props. 1 and 2 give the following commutative diagram

. I A?
Lin B, — S.B — T, M

—(‘P;)Nﬂwl (1) /DxH (2) H : (41.12)

®(B,) —— Tum®B) —— T.M

M) =

Prop. 1 and Prop. 2 are illustrated by (1) and (2) in the diagram, respectively.

Let tensor functors ®;, ®5 and ¥ and a natural bilinear assignment
B:(®,,P3) —» ¥ be given. Also, let Hy : M — ®;(B) be a cross section
of ®1(B) and let Hy : M — ®5(B) be a cross section of ®(5). Then the
mapping B(H;,Hy) : M — ¥ defined by

B(Hy,Hy)(z) := B; (Hi(z),Ha(x)) forall ze M (41.13)

is a cross section of ¥(B).

General Product Rule
If Hy and Hy are differentiable at x, then B(Hy,Hs) is also differentiable
at x and we have

(0.B(Hy,Hy))s = By, (O,Hy)s, Ha(2)) + By, (Hi(z), (O,Hy)s) (41.14)

for all s € S,.B.




Proof: Put H := B(H;,H>) in (41.2), we have

H(T) = By, (®1(T ™ )Hy (. (T)), ®2(T ") Ha(r,(T)))
= By, (H,(T), Hy(T))

for all T € Tlis,B. Since B is bilinear, the desired result (41.14) follows from
(41.3) together with the General Product Rule in flat spaces [FDS]. I

Example 2:

Let f be a scalar field, and let h : M — B be a cross section of B and
H : M — LinB be a cross section of Lin B that are differentiable at . Then
fH and Hh defined value-wise are also differentiable at x, and we have

(Hz/H)s = (0 f)s)H(x) + f(z) (O.H)s (41.15)
and

O.(Hh)s = ((d,H)s)h(x) + H(z)(d,h)s (41.16)
for all s € S, B. 1
Example 3:

Let w : M — Skw,(B?,) be a skew-p-form field and 7 : M — Skw,(B9,) a
skew-g-form field that are differentiable at . Then w A T is a skew-(p + ¢)-form
field which is also differentiable at x and we have

Oz (wAT))s=([w)s N7+ wA (O,7)s (41.17)
for all s € S, B. |
Let £, and £’ be linear-space bundles over M. For every x € M, we denote

the fiber product bundle (see Sect.22) of (Tlis, L, m,, M) and (Tlis, L, 7, M)
by

x

(Tlismﬁ X, Tlis, £, 7w X, 70! M). (41.18)
Taking the gradient of the mapping

e X 1 ¢ Tlis, £ X, Tlis, £/ —— M (41.19)

at 1z, X 12/, we have

P, Xo P!t SoL Xy Sol! —— TyM (41.20)

where P, = V1, 7, and P; = V; , /.. It follows from

/ /
Ty Xpy My = Ty O €V] = T, O €V
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that
(B, X, uP))(s,8') =PBs =P, (s') (41.21)

for all (s,s’) € Sz LX ¢, Sz L.
Let YT be a tensor bifunctor and let H be a cross section of Y (LX,,L')
which is differentiable at z. We define a mapping

H : Tlis, £ X,, Tlis, £’ — Y (L, x L) (41.22)

ﬁ(T X T’) = Y(T x T')"L H(y)
where y:= m,(T) = 7, (T')

(41.23)

for all T x T/ € Tlis, £ X,, Tlis,£'. The shift-gradient of H at x is the linear

mapping
O.H: S, LX S L — X (L, x L) (41.24)

defined in (41.3); i.e.
O0.H =V, H, (41.25)

where 1p, := 1., X 12,. We also use the following notations
I, :=Vi, in, and I, := Vlﬁ/,.in;

where in, := 1, . and ingC := 1z, are inclusion mappings.

Proposition 3: We have
(O,H)(I,M,I.M’) = =Y. (M x M')H(z) (41.26)

for allM € Lin L, and all M" € Lin L, where T; is the gradient of the mapping
(LxL' —YLxL)) atly, x1z.

Example 4:

Let ® be a analytic tensor functor and let £ := TM and £’ := B. If
L: M — Lin(TM,®(B)) and T : M — Liny (TM? ®(B)) are cross sections
that are differentiable at x, we have

O,L: S, TM X, ,S.B — Lin (T, M, ®(B,))
0,T : S, TM X, S, B — Liny (T, M? ®(B,))

and

L(z)M — &, (M')L(x)
T(z)M + T(z) "M — & (M')T(x)

(0,L) (LM, I,M)

(41.27)
(0, T)(I,M,T.M)
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for all M € Lin T, M and M’ € LinB,.

Proposition 4: We have
(O.H)(AZ,AS) = V"2 H, (41.28)

where V1?2 H is described in (24.12), for all bundle charts 6 € Chy (£, M) and
¢ € Chy (L', M).

42. Covariant Gradients

Let z € M and a connector K € Con B be given.
Let ® be a tensor functor and H : M — ®(B) be a cross section of ®(B5)
that is differentiable at x.

Definition : We define the covariant gradient of H relative to K by
VkH := (O,H)K € Lin (T, M, ®(B,)), (42.1)

where O, H s the shift-gradient of H at x as defined by (41.3).

Given a bundle chart ¢ € Ch, (B, M). It follows from (41.11) and (42.1)
that
VaeH = V/H.

If f: M — is a scalar field differentiable at x, then we have O, f = V. f B,
and hence
Vf=VNf for all K € Con . B. (42.2)

Proposition 1: For every bundle chart ¢ € Ch, (B, M) we have

(VkH)t = (VPH)t + @, (LY (K)t)H(z) forall t e T, M, (42.3)

where ®, € Lin (Lin B, Lin ®(B,)) is defined as in Prop. 1 of Sect.41.

Proof: By (32.27), we have

(O, H)Kt = (O, H)A%t + O, H(K — A2)t

xT

= (O, H)A%t — O, H(L,L? (K)t)
for all t € T, M. Using (32.4), we obtain
(O,H)Kt = (O,H)A% + & (L (K)t)H(x).
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The result (42.3) follows from the definition (42.1). 1

Example 1:

Let h be a cross section of B, let w be a cross section of B*, let L be a cross
section of Lin B, let G be a cross section of Lin (B, B*) 2 Liny(B?,), and

let T be a cross section of Lin (B,LinB) = Liny(B?, B). If these cross
sections are differentiable at z, we have

(Vich)t = (V/h)t + L (K)(t, h(z); (42.4)
(Viw)t = (Vew)t — w(@)L? (K)t; (42.5)
(VL)t = (VIL)t — L(2) (T (K)t) + (LK)H)L(x);  (426)

T

VG (t,b) = (V/G)(t,b) — (G(z)b) (L (K)t) — G(z) (L (K)(t,b)) (42.7)

and
(42.8)

forallt € T,M and all b € B,.

General Product Rule
Let Hi,Hy be cross sections as given in the General Product Rule of
Sect. 41, then we have

VKB(Hl, Hg)t = BBZ ((VKHl)t, HQ ({IJ)) -+ BBZ (H1 (l’), (VKHg)t) (429)

for allt € T, M.

Proof: Substituting s := Kt in (41.14) and observing (42.1), we obtain (42.9).

The formulas (41.15), (41.16) and (41.17) remain valid if the shift gradient
O, there is replaced by the covariant gradient Vi and s € S,B by t € T, M.

Let £ and £’ be linear-space bundles over M. Let Y be a tensor bifunc-
tor and let H : M — Y(LX, L") be a cross section of Y (L X, L") which is
differentiable at z. Let a pair of connectors (K,K’) € Con,L x Con, L’ be
given.

Definition: The covariant-gradient of H at z relative to (K, K') is defined
by
Vik xHH = (0,H)(K,K') (42.10)

which is in Lin(T, M, X (L, x L])).




Proposition 2: For every (K,K’) € Con,L x Con,L" and all bundle charts
¢ € Chy (L, M) and ¢' € Ch, (L', M) we have

(Vik.xH)t = (V2O H)t + Y, (L2 (K)t x TP (K')t)H(x) (42.11)

for all t € T, M, where T; is described in Prop. 8 of Sect. 41.

’

Proof: Equation (42.11) follows from K = A? — I,T?(K), K' = A? —
I.LY (K'), (42.10) and (41.28). I

43. Alternating Covariant Gradients

Let a number p € , with p > 1, connections C : M — ConTM and
D : M — Con B of class C! be given.

Let ® be an analytic tensor functor. For every differentiable ®(B)-valued
skew-p-linear field S : M — Skw,(TMP, ®(B)), the covariant gradient of S at
x € M relative to (C,D) is the mapping

V(C(a:),D(a:))S : M — Lin(T,M, Skw,, (T, MP, &(B,)).
Taking the alternating part of V¢ (»),p(x))S, we obtain the skew (p + 1)-linear

mapping
Alt (V(C(x),D(a:))S) € SkWp+1(TmMp+1, (I)(Bx)) (43.1)

Proposition 1: Let x € M be given. For every manifold chart x € Ch, M and
every bundle chart ¢ € Ch, (M, B), we have

(P + DAL (Vic@)p() S)(V)
— (p+ 1)Alt <V§’¢S + (<I>;(F§(D(w)))~s(x>)) (v) (43.2)
= > (FD)TTS(@)(Tu(C(@)) (v, v;), deli jyv)

1<i<j<p+1

where del; ;) : yr+l  yr=1 s defined by del(; jy := delj odel;, ¢ < j, for all
v € T,MPHL,

Proof: Let x € Ch, M and ¢ € Ch,(B, M) be given. We have
C(r) = AY ~LTX(C(x)) and D(x) = A? — L,T¢(D(x)
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For every i € (p+ 1)), (42.11) gives

V() D()S(Vi, del;v) = VX?S(vi, del;v) + @, (T2 (D(z)v;)S(z)(del,v)

— > S(@)(del( V) H)TX(C()) (vi, V)
jE€(p+1)\ {3}

(43.2)
for all v € (T, M)*®*+1 . Sum up and rearrange all the terms, we obtain the
desired formula by observing that T, = I'X — T'X™ ]

Prop.1 has several applications. The first application is given in the follow-
ing Prop.2. The second kind of applications are Bianchi identities in Sect.44 and
the third application leads to the definition of exterior differential in Sect.45.

For every cross section H : M — ®(B) of class CP, p > 2, we define the
covariant gradient-mapping of H relative to D
VpH : M — Lin(TM, ®(B))
by
VpH(y) := VpyH forall ye M. (43.3)

The second covariant gradient-mapping of H relative to (C, D) is defined
by

Voo H = Vi) (VoH) : M — Ling (TM?, &(B)). (43.4)

The second covarient gradient-mapping V((é)D)H is not necessarily symmetric.
Indeed, we have the following:

Proposition 2: We have

Vo H ~ (Vo)p H)™ = & (R(D)(,-))H — (VoH)T(C) (43.5)

where, for each x € M, ® (z) := ®, € Lin (Lin B, Lin ®(B,)) is defined as in
Prop. 1 of Sect. /2.

Proof: Let x € M be given. Choose x € Ch, M and ¢ € Ch, (B, M). Applying
Prop. 1 with H replaced by Vp(;)H and ® replaced by Lin o (Id, @) (see [N2]),
we have

(2) (2)
V&(a) D)y B V) = Vg, pe)yHVu) + (Vb () H) T, (C(z))(u,v)

= (May,as WH)(1,v) = (Va3 a0 VD H)(v, 1)

+ @, (T (D(2))u) (Vb @ H)v — &, (T (D(2))v) (Vb @ H)u
(43.6)



for all u,v € T, M. Observing VpH = Vo H + @, (I'?(D)), we have

Viax.ag) Vo H(u v) = V)

a1, V) + Vax.a) . (T?(D)) H(u, v).

(43.7)

for all u,v € T, M. Since (I>; is a natural linear assignment, the second term on
the right handside of the equality in (43.7) is

(V(Agg,Ag)q);(Fd)(D))NH) (u,v)

. . (43.8)
= ®,(Vax oy T?(D)(w, v))H(z) + P, (L7 (D(2))v) (Ve H)u.

We also have, the third term on the right hand side of the equality (43.6) satisfies

2))u) (Voo H)v

))u) (Vg H + 2} (02 (D () v o)
) ) Ve Y + @4 (02 (D ())) @ (L (D (x) )

) ) Vs HY + @ (T (D) ul (D())v).

x

/N —
e
/\/e —~
~—~ o~

Combining (43.6) to (43.9) with (43.2) and observing that

2 p—
Ve anH=2(],) 7 (WVH?) (Vx x Vix) (43.10)
is symmetric and x € M was arbitrary, we obtain (43.5). 1

Remark: When the given bundle B is the tangent bundle TM, then we only
need one connection say; the connection C. If this is the case, we have

WH - (YYH)” = " (R(C)(-,-))H — (VcH)T(C). (43.11)
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44. Bianchi Identities

Let connections C : M — ConTM and D : M — ConB of class C!
be given. Both of the torsion field T(C) : M — Skwy(TM? TM) of the
connection C and the curvature field R(D) : M — Skwy(TM?, LinB) of the
connection D are skew-2-linear fields. Applying Prop.1 of Sect.43, the alternat-
ing part of VoT(C) gives the first Bianchi idetity and the alternating part
of Vic,pyR(D) gives the second Bianchi idetity.

Proposition 1: (First Bianchi idetity) We have
Alt (VeT(C) + T(C)T(C)) = Alt (R(C)) (44.1)

where T(C)T(C) is regarded as a cross section of Skwo(TM?, LinTM).

Proof: Applying Prop.1 of Sect.43, we have
Alt (VeT(C) + T(C)T(C)) = Alt (Vex T(C) + IT'X(C)™ T(C)). (44.2)
Using (33.8) and (34.30), we see that
Alt (VexT(C) +I'Y(C)” T(C)) = Alt (R(C)). (44.3)
The desire result (44.1) follows from (44.2) and (44.3). 1

Remark 1: When C is curvature-free (but not necessary torsion free), Eq. (44.1)
reduces to

Alt (VeT(C) + T(C)T(C)) = 0. (44.4)
If in addition that Alt (VcT(C)) = 0, then

Alt (T(C)T(C)) = 0; (44.5)

that is T(C) satisfies Jacobi identity (cf. Lie Group, Prop.7 of Sect.44 ). 1

Proposition 2: (Second Bianchi idetity) We have

Alt (Vic.p)R(D) + R(D)T(C)) = 0. (44.6)

where R(D)T(C) is regarded as a cross section of Skwa(TM?, Lin(TM, LinB)).

Proof: Applying Prop.1 of Sect.43, we have

Alt (Vie.p) R + R (C)(T4(C)))
— Alt (Vj5s os)R+T%(D)”R,(C) — R,(C)(,)T%(D)).

x
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Applying Prop.5 of Sect.34, we obtain

Alt (Vax o4 R+ T2(D)” Ry (C) — Ry (C)(-,)T5(D))
44.8)
2) (D 2) I¢(D))~ (
= Ale (W2, T%(D) = (V2 ,, T%(D))").
In view of (44.5), we observe that
2) 2) ~
The desired result follows from (44.7), (44.8) and (44.9). 1

Remark 2: When the given linear-space bundle is the tangent bundle B := T M
of M, the Bianchi identities can be found in literatures (see [P]) as

(VcT( )(U,V,W) + (VcT(C))(V,W,U) + (VcT(C))(W,U,V)
( )(T(C )( V),W)+T(C)(T(C)(V,W),U)+T(C)(T(C)(W,U),V)
R(C)(U )+R(C)(V,W,U)+R(C)(W,U,V)
(44.10)
and

(VeR(C))(UV W) + (VcR(C))(VWU) + (VcR(C))(WUV)
+R(C)(T(C)(U,V),W)+R(C)(T(C)(V,W),U)+R(C)(T(C)(W,U),V)
=0
(44.11)
for all vector fields U, V, W € XTM.

Remark 3: Most of the literatures, especially in physics, only deal with the
special case : in the absence of torsion. Under this assumption, the Bianchi
identities becomes

Alt (R(C)) = 0 (44.12)

and

Alt (VeR(C)) = 0. (44.13)
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45. Differential Forms

Let p € and a differentiable W-valued skew p-linear field w be given.
In this section, we apply Prop.1 of Sect.43 with the tensor functor ® := Tr,,,
the trival functor for a linear space W (see Sect.13).

Proposition 1: For every x € M, we have

Alt (V¥w) = Alt (V)w) (45.1)

for all manifold charts x,vy € Ch, M.

Proof: The desire result (45.1) follows from Prop.1 of Sect.43 with (Tr,,), = 0
and T,(AX) = 0 = T,(A)) (see Theorem in Sect.33) for all manifold charts
X,7 € Ch, M.

Definition : The pt"-exterior differential at = € M
d? : X (Skw,(TMP,)) — Skwyy1 (T, MPTL)) (45.2)
1s defined by

x

diw = — At (VYw) forall w € X(Skw,(TM?,) (45.3)
p:

which is valid for all manifold chart x € Ch, M.
The p'"-exterior differential
d? : X°(Skw,(TMP,)) — X (Skwpoq (TMPFL))) (45.4)
1$ defined by
dP(z):=dl forall ze M. (45.5)

xT

Remark : If M be the underline manifold of a flat space £, then Vw = VXw for
all manifold chart x. The definition (45.3) of exterior differential at = becomes

1
dPw = HAlt (Vw). (45.6)
Equation (45.6) can be found in Sect.2.3 of [CH] and in Sect.51 of [B-W]. I

Proposition 2: Let W be a linear space and let w : M — Skw,(TMP, W) be a
differentiable YWW-valued skew p-linear field. For every x € M,we have

1
dLio(v) = (ALt (Venw))v

+ Z (1) () (Tx(C(x))(vi,vj),del(i,j)v)

1<i<j<p+1

(45.7)

for all connection C and all v € T,MPTL,
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Proposition 3: We have

dPtlodP = 0.

(45.7)
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46. Lie gradients, Lie brackets

In this section, we only deal with the tangent bundle of a given C*-manifold
M, where 2 < s €.

We assume that a vector-field h is given and that h is differentiable at x.

Proposition 1: There is exactly one shift, which is called the shift of h at x
and is denoted by >, h € S, TM, such that

B, (>, h) = O,h, (46.1)

where By, is given in (33.6) and O,h € Lin (S, TM, T, M) is the shift-gradient
of h as defined by (41.3). We have

P, (>, h) = h(z) (46.2)

Proof: The injectivity of B, (see Prop. 2 of Sect.15) shows that there is at most
one >, h € S, TM with the property (46.1).
We now choose y € Ch, M and define
> h =1, (@,h) AX) + AXh(z). (46.3)
By (15.6); and (32.23) we have

B, (>, h) = (0;h)(AXB,) + B, (AX h(x))

(46.4)
=,h (1s,7:m — L A(AY)) + B, (AXh(z)).

It follows from (41.4) and (15.6)5 that
O.h (T (A(AY)(5)) ) = —A(AY)(5) h(x)
— -B, (5)(A} h(x)) = (B. (AXh(2)))(5)

holds for all s € S, TM. Hence (46.4) reduces to (46.1). Applying P, to (46.3)
and observing P, I, = 0 and P, AX = 1p_a yields (46.2).

Proposition 2: Let x € Ch, M be given. The shift >, h of h at x satisfies

A(AX)(>,h) = V¥h (46.5)

Proof: The equality follows by operating on (44.3) with A(AYX) and observing
A(AOI, = 1rinT, m and A(AX)AX = 0.1
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For every manifold chart xy € Ch, M, we have
AXh(z) + I,O,hAX = (Y, tlisY) " (hX(z), V,hX). (46.6)
In view of (46.3), we have
> h = (Vip,  tlisY) " (h¥(z), VhX)
for every manifold chart xy € Ch, M.
Remark: By (46.1) and the injectivity of B, we have

> k=0 if and only if O,k=0 (46.7)

Proposition 3: If f : M — s differentiable at x, so is the vector-field fh and
we have

>(fh) = f(z) > h+ 1, (h(z) ® Vi f). (46.8)

Proof: It follows from (15.6); with M := h(z) ® V. f that
B, (I (h(z) ® Vi f)) = (h(2) © V; /) B, = h(z) @ B, V. f.
In view of (46.4) and (41.15), it follows that
B, (>(fh)) =0.(fh) = f(z)O,h + h(z) ® BV, f
=B, (f(z)>h+1, (h(z) ® V. f))

Since B, is injective, (46.8) follows.

Let @ be a functor as described in Sect.13 and let H : M — ®(TM) be
a tensor-field that is differentiable at x. Also, let k be a vector-field that is
differentiable at x.

Definition: The Lie-gradient of H with respect to k at x is defined by
(LiexH), := 0O, H(> k), (46.9)

where O, H is the shift-gradient of H at x as defined by (41.3) and where >, k
is the shift of k at x as determined by (46.1).

Proposition 4: Let f: M — and H be differentiable at x. We have

(Liekf H) "
(Lieka) "

(z) (LiekH)m + (V% f) k(z)) H(z);

(x)(LiekH)m + (Q;(k(x) 2 sz)> H(z), (46.9)

=f
=

where ®;, € Lin(LinT,, Lin®(T,)) is defined as in Prop.1 of Sect.41.
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General Product Rule
Let Hy,Hs be cross sections as given in the General Product Rule of Sect.41,
then we have

(LiekB(Hl, Hz))m = BBE ((LiekHl)m, H2 (:U)) + BBI (Hl (a:), (Lleng)w) .
(46.10)

Remark: We have
(LiexH), = (Vg H)k(z) + & (T, (K)k(z) + Vik)H(z)
for all K € Com,(TM). |

We now assume that two vector-fields h and k, both are differentiable at x,
are given.

Definition: The Lie-bracket of h with k at x is defined by

[k, h] :=B.(>h>k). (46.11)

It follows from (46.1), (46.9) and (46.11) that

[k, h] = (Liexh), (46.12)

Proposition 5: We have
[k,h] =-[h, k] . (46.13)
If f: M — s differentiable at x, then

[fh, k], =f@)[h, k], —((%f)k(z))h(z). (46.14)

Proof: (46.13) follows from the skewness of B,. Substitution of fh for h in
(46.11) and use of (46.8) gives

[fh, k] =f(=)][h, k] —B;(L (h(z)® V;f), > k)
and hence, by (15.6);,
[fh, k], =f@)[h, k], - (h(z) ®V%f)(B > k)
The desired result (46.14) now follows from (46.2).
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Remark: Let r = oo, let h,k € X°° M and let h' and K be the mappings from
C>®(M) to C*°(M) defined by (24.6). One can easily show that the mapping
[h, k]v : C°°(M) — C°°(M) corresponding to [ h, k]]V is given by
[h,k] =h ok —K ol (46.15)
If f e C>®(M), we then have
[fh, k] =f[0 , K ]-K(Hn, (46.16)

which can be derived from (46.14) or directly from (46.15).

Proposition 6: If both h and k are vector-fields that are differentiable at x,
then have

[h, k] = (VXk)h(z)— (V)h) k(). (46.17)

for every manifold chart x € Ch, M where VXk and VXh be defined according
to (23.26). Moreover, we have

(Vkk)h(z) — (Vkh)k(z) = [h, k] + T.(K)(h,k) (46.18)

for all K € Con, TM.

Proof: If we substitute s := >, h and s’ := >, k in (33.6) and (12.5) we obtain
from (46.11) that

[h, k], =-DX(>,h)P, (>, k) + DX (>, k)P, (>, h)

The desired result (46.17) follows now from (46.5) and (46.2).
By (42.3) we have

(Vih)k(z) = (Vh)k(z) + TX(K) (k(z), h(z)).

Interchanging h and k and taking the difference, we obtain (46.18) from (46.17)
and (33.8). 1

Let s € 1..(r — 1) and h, k € X*TM be given. Then the vector-field
[[h , k] is defined by

[h,k](@):=[h,k]  forall zeM (46.19)

It is clear from Proposition 5 that [[h, k]] e X 'TM. Using (23.6), it
follows from (46.17) and the definition (23.35) that

[h, k]* = (Wk¥) hX — (hX) kX, (46.20)
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Proposition 7: (Jacobi identity): Let s € 2..(r — 1) and hy,hy, hz € X*TM
be given, then

[[hi,ho] . h3]+[[ho, h3], by [+ [[hs, hi],ha] =0 (46.21)

Proof: A straightforward but somewhat tedious calculation, using (46.20) and
the Symmetry Theorem for Second Gradients, yields the desired result (46.21).

|
If M is a C* manifold, then X°°TM together with the bilinear mapping
[[ , ] : XTM x XTM — XTM

given in (46.21) is a Lie algebra, as defined in Sect.11.

47. Transport Systems

We assume that » € =~ with » > 2 and a C"-manifold M are given. Let
(B, 7, M) be a C® linear-space bundle, s € 0. .r.

We define the bundle of transfer isomorphisms of B by

TlisB:= | ] Ths,B= | Lis(B.,B,). (47.1)
reEM T, yeM

It is endowed with the natural structure of a C*-fiber bundle over M x M whose
bundle projection 7 : Tlis B — M x M is

7(T) :€ { (z,y) e M x M | T € Lis(B,, By) }. (47.2)

Definition: A subset € of TlisB is called a C*° transport structure for B
if € is a C*-submanifold of Tlis B such that

(T1) forall Ae T, A~ e ¥,
(T2) for all A,B € T such that Cod A = DomB, BA € ¥,
(T3) for all z,y € M, T NLis(B,, By) # { }.

It can be shown that €, := € N Tlis, B is a C*-submanifold of Tlis, B.
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Theorem on Transport Structure and Parallelisms
Let C: M — ConB be a connection of class C*. Define

S ={AeTlisB | ----crvrvv-- b

Then § is a transport structure for B.

Proof:

A cross section F : M x M — % is called a (global) transport system
for B if
F(x,z) = F(y, 2)F(z,y) for all z,y,z € M (47.3)

and
F(z,z) =15, for all = e M. (47.4)

Recall that a cross section T : M — Tlis, B of the bundle Tlis, B, x € M,
with
T(x) =15, (47.5)

is called a transport from x. It follows from (47.3), (47.4) and (47.5) that, for
each r € M, the mapping F(z,-) : M — Tlis, B is a transport from x. Moreover,
we have

F(y,-) = F(z, )F(y,z) forall z,ye M. (47.6)

Conversely, let x € M and a transport F, : M — Tlis, B from z be given. For
each y € M, we obtain a transport F, : M — Tlis,B from y by

F,(2) == F.(2)F.(y)~" forall ze& M. (47.7)
and, a transport system F : M x M — Tlis B by
F(y,z2) := F(2)F.(y)~! forall y,z¢c M. (47.8)
We conclude that, for each © € M, there is one to one correspondent between
the set of all transports from z for B and the set of all transport systems for B.
Every transport system F : M x M — TlisB induces a connection
C: M — ConB by
C(y) == Vi, F(y,-) forall ye M. (47.9)
Let a transport system F : M x M — TlisB for B, a tensor functor ®
and a cross section H : M — ®(B) be given. We say that H is parallel with
respect to F if

H(y) = ®(F(z,y))H(z) forall z,y e M. (47.10)
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Proposition 1: Let C be the connection induced by a transport system F, as
given in (47.9). Let H : O — ®(B) be a cross section of class C'. If H is
parallel with respect to ¥, then VcH = 0. Conversely, if VeH = 0 and if M is
connected then H 1is parallel with respect to F.

Proof: Fix x € M and let T := F(z,:). Let y € M be given and define
H, : Tlis,B — B, in accord with (41.2). Then

ﬁy(T(z)T(y)_l) = ®(T(y)T(2) " HH(z) forall ze M.

Differentiation with respect to z at y gives, using (42.1), (41.3), (47.9), and the
chain rule,

(YeH)(y) = (@,H)C(y) = ®(T(y))V,H, (47.11)

where H : M — ®(B,) is defined by H(z) := ®(T(z)"1)H(z) for all z € M.
Since y € M was arbitrary and since ®(T(y)) is invertible, we conclude from
(47.11) that VeH = 0, if and only if VH = 0. Now if H = &(T)v for
some v € ®(B,), then H is a constant and hence VH = 0. Conversely if M is
connected and VH = 0, then H is a constant and hence H = ®(T)v for some

v e PDB,). |

Remark : Let a connection C, not necessarily induced by a transport system,
be given. Then the condition VcH = 0 does not equivalent to to the condition
that H is parallel with respective to a transport system. ]

Proposition 2: Let T : [0,d] — Tlis, B be a differentiable transfer process from
x, and put p := m, o T : [0,d] — M. For every differentiable cross section

H: M — ®(B), we have
(@pH) (s T) = 9 (s — (T ()T "(s))H(p(s)) ) (47.12)

for all t € [0,d], the derivative (47.12) may be interpreted, roughly, as the rate
of change of H at p(t) relative to the transfer process T.

Let C : M — ConB be a continuous connection and p : [0,d] — M be a
process of class C!, with = p(0). Let T be the parallelism along p for the
connection C. It follows from (35.23), sdT = (C o p)p°®, that

(e )y H)p* (t) = Oy H)(sd: T). (47.13)

This result does not depend on the choice of the process p, and hence does not
depend on the parallelism T along p.
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Proposition 3: Let C : M — ConB be a continuous connection and let the
cross section H : M — ®(B) be differentiable. Then NcH = 0 if and only if,
for every differentiable process p : [0,d] — M,

(OH)op)(sdT) =0 (47.14)

where T s the parallelism along p for C.

Let x € M and a continuous vector field k : M — TM be given. By the
maximum local flow for k at x we mean a mapping

a:IxD—- M

where I is an open interval containing 0,and D containing x, and D is an open
subset of M containing x, such that for every y € D the mapping a(-,y) : I — M
is the maximum integral process (integral curve) of k with the initial condition

y; Le. a(0,y) =y and k(a(t,y)) = (a*(-,))(1).
Let z € M and a continuous vector field k : M — TM be given. It is a
well known theorem in O.D.E. (see Sect.1 of Ch.4, [L]) that there is a maximum

local flow

a:IxD—-M

for k at x. We may define a mapping Ly : I — Tlis, M by
Ly (t) :== Mea(t,-) forall tel.

It is clear that
L ()= |J Lis(T.,T,).
yea(z)> (1)
Since Lk (0) = 1p,, Lk is a transfer process from x. We shall call Ly the Lie
transfer process from z of the vector-field k.

Proposition 4: Let x € M and a vector field k : M — TM be given. Let Ly
be the Lie transfer process from x of k. We have sdoLyx = >, k and

(Lie H) (&) = 00t > ®(Lic(t) ™ H(p(1)). (47.15)

Proof: Define the processes H: I — LisV, and V : I — LisV, by

H(t) : = Vi i)xVeo, (Vx) ™ = Vo (o XL (£) (V) ™
V(t) : = Vo iyx(Dg 4y e k) (Vi (19x) ™
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Taking the gradient of H at 0 and observing Dféz (t) Dok =
(Va, HX) Va, (KX, we have

H' (t) = 0, (s = Vi (5)xVy, (VY )

= (Y, X (Vo (0207 Vo, k) (o, 20 ™) (Vo (X Ve, (Vo) ™)
= (Yo, XD, ) B2 ) (Ve (90) ™) (Vo (X V4 (%) ™)
— (VH)(¢).
This shows that Ly is the only transfer process from z such that sdLyx = (> k) o

o, . Since o, (0) = x, we have sdoLx = >, k. The assertion follows by applying
Prop.2. g

48. Lie Group

Definition: A Lie group is a set G endowed both with the structure of a group
and with the structure of a C*-manifold in such a way that the group-operation
and the group-inversion are analytic mappings.

We use multiplicative notation and terminology for the group ¢ and denote
its unity by u.

For every x € G, we define the left-multiplication le, : G — G by
le,(y) :== zy forall yeg. (48.1)
le, : G — @G, is invertible for all z € G; in fact,
(x—ley): G — Perm G (48.2)
is an injective group-homomorphism, i.e. we have
le, =1g , legy =leyole, , leg-1 =le (48.3)
for all z,y € G. Also, when = € G is given, le, is analytic and we have
V,le, € Lis(T, M, Ty M) C Tlis, G (48.4)
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for all y € G. We define the analytic mapping
G: G — Tlis, g (48.5)

by
G(z) := V,le, for all x€G. (48.6)

Taking the gradient of (48.18)2 at u gives
G(zy) = (Y ley)G(y) for all x,y €G. (48.7)
For every t € T, M, we define the analytic vector field Gt : G — T G by
(Gt)(y) = G(y)t for all yeqg. (48.8)
We have

G(u)=1r,m and (Gt)(u)=t foral teT, M. (48.9)

Proposition 5: For all t,s € T, M we have

[Gt,Gs]=G[Gt, Gs], (48.10)

Proof: Let t € T,M and =z € G be given and choose xy € Ch,G. Since le, is
analytic and invertible and le,(u) = x, we have x o le, € Ch,G. Using the
chain rule and (48.22), we obtain

V(¢ ° le) = (Vi) Gyles = (Vi )Glay)Gy) ™" forall yeG. (48.11)
Using the definitions (48.23) and (23.25), we see that
(G)* " () = V(x o lex) G(y)t = (V) Glay)t
for all y € G and hence
(Gt)X 7 1o = (Gt)X o le,. (48.12)
Using the chain rule again, we find
Vi(Gt)X 7 lee = v (Gt)XG(z) forall teT, (48.13)

Now let s,t € T, M be given and put h := Gt, k := Gs. Using (43.17)
with z replaced by w and x by x o le, we conclude from (48.28) that

[h, k], =%(x = le,) ' ((WKY)h(z) — (V;hY)k(z)).
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Using (48.26) with y := u and observing (48.23), we obtain
[h, k], = G(@) 'Vex ! (GKOh(z) — (GhOk()).

Since = € G was arbitrary, we obtain (48.25) by applying (43.17) again.

Proposition 6: Define
((t,s) — [t,8]) : T, M? - T, M (48.14)

by
[t,s]:=[Gt, Gs],, (48.15)

where G is defined by (48.21). Then (48.21) endows T, M with the structure of|
a Lie-algebra, i.e. it is bilinear, skew, and satisfies the “Jacobi-identity”

[[t1,t2], t5] + [[t2, ts], t1] + [[ts,t1],62] = O (48.16)

for all ti,te,t5 € Ty M. We use the notation LaG := T, M for this Lie-algebra
and call it the Lie-algebra of G.

Proof: It is clear from the definition (48.30) and from (43.13) that (t,s) —
[t,s] is bilinear and skew. The Jacobi-indendity (48.31) follows from Prop. 7 of
Sect. 43, applied to h; := Gt, , i € 3!, and Prop. 5.

For each y € G, define C(y) € Lin(T,M, S, T G) by
C(y) :== V(2 — G(2)G(y) ). (48.17)

Then (48.32) defines, as described in (48.9), a natural connection C : G — Con G
on G. This connection is analytic.

Let a vector fuield h € X'(TG) be given and let the lineon-field Yh
be defined according to (41.3). Then it follows from Prop.2 that Vch = 0 if
h = Gt for some t € T, M, where G is defined by (48.21). Conversely, if
Vch = 0 and if G is connected, then h = Gt for some t € T, M.

Proposition 7: The Lie-algebra-operation of T,,M 1is the opposite of the torsion
T.(C(u)), i.e.

[t,s] = T, (C(u))(t,s) for all t,s e T,. (48.18)

Proof: Let t,s € T, be given. Application of (43.18) to h := Gt, k := Gs,
x = u gives (48.33) if (48.30) is observed and Vch = 0 = Vck, as described in
above, is applied. |

Remark : The curvature field R(C) =0 777
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Proposition 8: Let d € X and p € [0,d] — G, of class C' and with p(0) = u,
be given. Then G o p:[0,d] — Tlis,G is the parallelism along p for C.

Proof: Put T := G o p. Then T(s)T(t)"! = G(p(s))G(p(t))~* for all s,t €
[0,d]. Hence, by (48.32), (35.10), and the chain rule,

sd;T = C(p(t))p(t) for all t €1[0,d],
i.e. sdT = (C c p)p . In view of (35.23) the assertion follows.

An non-constant homomorphism ¢ : — G from the additive group of to G
is called a one-parameter subgroup of G if it is of class C*.

Proposition 9: Let d € * and p € [0,d] — G, of class C' and with p(0) = u,
be given. Then p is geodesic if and only if p = q|j0,q) for some one-parameter
subgroup q of G.

Proof: By Prop. 6 and (35.28), p is geodesic if and only if p(0) # 0 and
G(p(t))p (0) = p(t) for all  t € ]0,d]. (48.19)

Let ¢ be a one-parameter subgroup of G and p = ¢|jo,q. Let ¢t € [0,d[ be
given. Then

le,)p(s) = q(t)q(s) = q(t +s) = p(t + )
for all s € [0,d]N([0,d] —1t)=1[0,d—t[.

Differentiating with respect to s at 0 and using (48.21), we get

G(p(t)p (0) = p (1)

Since t € [0.d[ was arbitrary and since p* is continuous at d, (48.34) follows.
Assume now that p is geodesic, i.e. that (48.34) holds. Let ¢ : I — G be
the (unique) solution of the differential equation

? qeClL,G) , (Gogp(0)=gq (48.20)

whose domain [ is the maximal interval that contains 0 € . Then [ is an
open interval, [0,d] C I, and p = q|[9,q) by the standard uniqueness theorem for
differential equations. Let ¢ € I be given and definew: I — Gandwv: (I—t) — G

by
u(s) == q(t)q(s) = legw (q(s)) for all sel (48.21)

and
v(s) :=q(t + s) for all sel—t (48.22)
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Using the chain rule and (48.24), it follows from (48.36) that
u'(8) = (Vg(s)leg(n))a' (s) = Gla(t)a(s))G(a(s) "' (s)
for all s € I and hence, by (71.23) and (71.24), that
w=(Goup(0) , u0)=q)
On the other hand, it follows (48.35) and (48.36) that
vi(s) = q (t+s) = Gg(t + 5))p(0)
for all s € I —t and hence that

v =(G o v)p(0) , v(0)=q(t)

(48.23)

(48.24)

Comparing (48.38) and (48.39), we see that u and v satisfiy the same dif-
ferential equation and initial condition. Since the domain of ¢ is the maximal
interval containng 0, it is clear that the domains of v and v must both be the
maximal interval containing 0. It follows that I —t = I, which can be valid for
allt € I only if I = . The standard uniqueness theorem for differential equations
shows that u = v and hence, by (48.36) and (48.37), that ¢(t + s) = q(t)q(s)
for all s €. Since t € was arbitrary, it follows that ¢ must be a one-parameter

subgroup of G.
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Chapter 5

Geometric Structures.

We assume in this chapter that numbers r,s €7, with r > 3 and s € 0..r,
a C" manifold M and a C? linear-space bundle B over the manifold M are
given. We also assume that both M and B have constant dimensions, and put
n = dimM and m := dimB — dim M. Then we have n = dim T, M and
m = dim B, for all x € M.

51. Compatible Connections

Let 2 € M be fixed. Let ® be an analytic tensor functor and let E € ®(B,,)
be given.

Notation: We define the mapping

E° : Tlis,. B — ®(B) (51.1)
E°(T) := ®(T)E for all T € Tlis,B. (51.2)

Since ® is analytic, it is clear that E° is differentiable at 15, .

Proposition 1: We have Vi, E® € Lin (S,B, Tz ®(B)) and, for every bundle
chart ¢ € Ch, (B, M),

(Viy, E%)s = AR WP,s + 1.8, (A(A2)s)E (51.3)

for alls € S,.B.

Proof: By using (51.2) and the definition (23.21) of gradient, we obtain the

desired result. ]
. . o | ®(Bz)
Taking the gradient of E°|;. " at 15, we have
(Vlm E° I‘f’(’z))L = (®,(L))E (51.4)

for all L € LinB,.. For the sake of simplicity, we use the following notation

B = Vi, (B°[f ) (51.5)
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Given r € \{0}, we observe from (51.5) that (rE)° = rE° and hence
Null E° = Null (rE)°. (51.6)
It is follows from (51.3) and (51.4) that
P, = B(Viy E°) and (Vi E)L, = LE°,

i.e. the diagram

Lin B, L, S.B 2N T, M

El Vi, El || (51.7)

B(B,) —=5 T.®B) = T, M
commutes. And it also clear from (51.3) that
AS? = (V1 E°)A? € Reong®(B) (51.8)
for all bundle chart ¢ € Ch, (B, M). More generally, we have

(Vis, E°)K € Reong ®(B) for all K € Con,B. (51.9)

In view of (51.9), the mapping Vi, E° induces the following mapping.
Definition: We define the mapping

Jz : Con, B — Reong®(B)

Je(K) := (V1 E°)K for all K € Con,B. (51.10)

Proposition 2: The mapping Jg, defined in (51.10), is flat. Hence, for every
D € Rng Je, J5=({D}) is a flat in Con,B with

dim JZ({D}) =7777.

Let a cross section H : M — ®(B), that is differentiable at x € M, be given.
The gradient of H at z is a tangent connector of ®(B); i.e. V,;H € Rcong,, ®(B).
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Proposition 3: We have
VkH = A((VlBIH(x)O)K)VxH (51.11)

for all K € Con,B and hence VkH = 0 if and only if Ju.,(K) = V,H, i.e.
K eJs, ({VH}).

Proof: The desired result (51.11) follows from (51.8), (41.11), (42.1) and Re-
mark 1 of Sect. 32.

If K € Con,B be such that VkH = 0, then it follows from (51.11) that
A((Vle H(a:)Q)K)VmH = 0. Applyiny Prop.1 of Sect.14, we see that this can
happen if and only if (V1, H(z)°)K = V,H. Since K € Con,B was arbitrary,
the assertion follows. I

Now, let a differentiable cross section H : M — ®(B) be given.

Definition: A connection CM — ConB is called « H-compatible connection
if Vo@yH =0 for all x € M, i.e.

VcH = 0. (51.12)

It clear from Prop.3 that a connection C is H-compatiable if and only if

Ju) (C(z)) = V,H for all = e M. (51.13)

Proposition 4: Let connectors K1, Ky € J5,,({VeH}) be given and determine
L € Lin (T, M, LinB,) such that Ky — Ko = I.L; then we have

H(x)°(Lt) =0 for all te T, M. (51.14)




52. Riemannian and Symplectic Bundles

We apply Sect.51 to the case when ® = Smfy or Skfy (see example (4) of
Sect.13).
Let © € M be fixed and E € ®(B,), ® = Smf, or Skfs, be given. We have

E°(M)=Eo(Mx 15,) + Eo (15, x M), (52.1)

where E° is given in (51.5), for every M € Linl3,.

Proposition 1: If E is invertiable, then E° is surjective; i.e.

Rng E°® = Sym,(B2,) when & = Smf, (52.2)
i.e., B € Sym,(B2,) and

Rng E° = Skwy(B2,) when & = Skf, (52.3)

i.e., E € Skwo(B2,).

Proof: By using (52.1). 1

Proposition 2: If E is invertiable, then the flat mapping Jg defined in (51.10)
18 surjective.

Proof: The surjectivity follows directly from (51.3), (51.4), (51.5) and the sur-
jectivity of E°. ]

In view of Prop.2 we see taht, for every D € Rcong®(B), the preimage
J5({D}) is a flat in Con,B. Let Ki, Ky € J5({D}) be given and determine
L € Lin(T,M,LinB,;) such that Ky — Ky = I, L. Applying (51.3), we have
0 = Jp(Ko)—Jg(K;) = E°(L), that is L € Lin(T, M, Null E°). Since K, K> €
J5({D}) were arbitrary, we conclude that

dim J5({D}) = dim Lin(T, M, NullE®). (52.4)

Definition: A cross section G : M — Smfy(B) is called a Riemannian field
if, for every x € M, G(x) is invertiable when regard as element of Sym(B,., By ).

A cross section S : M — Skfs(B) is called a symplectic field of B if, for
every x € M, S(x) is invertiable when regard as element of Skw(B,, By).

We say that B is a C* Riemannian linear space bundle if it is endowed
with additional structure by the prescription of a C*® Riemannian field.

We say that B is a C*° symplectic linear space bundle if it is endowed
with additional structure by the prescription of a C° symplectic field.
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Remark 1: A symplectic field of B exist if and only if, for every x € M,

m := dim B, is even (see Sect.11). If m is odd, then

Skw(B,, B:) N Lis(B,, BZ) = 0.

1
Proposition 3: If G : M — Smfy(B) is a Riemannian field, then
dim JS,, ({2 G}) = n(?) for all x e M. (52.5)
If S : M — Skfy(B) is a symplectic field, then
1
dim J5,, ({V%S}) = n(m;— ) for all x € M. (52.6)
Proof: It following easily from (52.4), (52.2) and (52.3). I

Remark 2: Let G be a Riemannian field and C : M — ConB be a G-
compatible connection. Let L : M — LisB be a cross section with VoL = 0 be
given. Then, it follows from VoG = 0 and VcL = 0 that Vo (Go (L x L)) = 0.

Hence, the Riemannian field H := G o (L x L) satisfies VcH = 0.




53. Riemannian and Symplectic Manifolds.

Definition: We say that M is a« Riemannian manifold if the tangent bundle
TM is endowed with additional structure by the prescription of a C"~1 Rieman-
nian field.

We say that M is a symplectic manifold if the tangent bundle TM is
endowed with additional structure by the prescription of a C™~' symplectic field.

Let a Riemannian field G : M — Sym™ (TM, TM*) of class C"~! be

given.

Proposition 1: For every x € M, the restriction

T, J50 ({VMG}) — Skwa (T, M?, T, M) (53.1)

IS0 ({%GY)

of the torsion mapping T, is bijective.

Proof: Given z € M. If K;,K5 € Con,(TM, M), then we have T,(K;) =
T, (K,) if and only if K; — Ky = I, L for some L € Sym,((T,M)?, T, M) and
hence

(G(2)L)(t,b,d) = (G(z)L)(b, t,d) (53.2)

for all t,b,d € T, M.

Let K1, Ky € J5,,({V.G}) with T,(K;) = T,(Ks2) be given and deter-
mining L € Liny((T,M)?, T, M) such that K; — Ky = I,L. Applying (52.1),
(51.14) and (53.2), we have

(G(:L‘)L)(t, b, d) = _(G(x)L)“’v d, b) = _(G(x)Lxdv t, b) =
= (G(2)L)(d, b, t) = (G(z)L)(b,d, t) =
— (G()L)(b,t,d) = —(G()L)(t, b, d)

for all t,b,d € T, M. This shown that G(z)L = 0. Since G(z) is invertible, we
observe that L = 0 and hence K; = K5. In other words, the restriction

a5

s mep  Jow ({%GY) = Skwa(To M, Ty M) (53.3)

of the flat mapping T, is injective and hence bijective. Since x € M was
arbitrary, the assertion follows. I



Proposition 2: For every x € M, we have

I5({V%G)) = {K - %ImG(:z;)_l(S (VkG))|K € Cong(TM, M)} (53.4)

where

(S (VkG)) = VG + VG2 — ¥ G~(19),
Moreover, if K1,Ks € Con, (7 M, M) with T,(K;) = T,(Ka), i.e.

K, — K, € {I,}Sym, (T, M?, T, M)),

then we have

1
K, — 51@(@*1 (Vk,G + Vi, G™1 — e, GT3))

1
=K, — 5136(;(95)*1(%@2(; + Vi, G — v, G,

(53.5)

Proof: By (41.8), we have

(O.G)I,G(2) ' VkG)(s, t,u) = VkG(s, t,u) + Vk G(s, u, t),
([0,G)L,G(2) 'V G~ 1) (s, t,u) = VkG(t,s,u) + VkG(u,s,t), (53.6)
([0,G)LG(2) 'V G~ (s, t,u) = VkG(t, u,s) + VK G(u, t,s);

for all s, t,u € T, M. Observing Vk G € Lin (7, M, Sym, (7, M?,)), we see that
(53.4)) follows easily from (53.6). I

The more general version of “the fundamental theorem of Riemannian ge-
ometry” follows immediately from Prop. 1:

Fundamental Theorem of Riemannian Geometry (with torsion):
For every prescribed torsion field L : M — Skwo(TM?2, TM) of class C*,
s € 0..r — 2, there is exactly one G-compatible connection C, i.e. one satisfying

Ve G = 0, such that T(C) = L. C is of class C*.

Remark 1: When L = 0, the corresponding connection is called the Levi-
Civita connection. ]

Remark 2: It follows from Theorem 3 that for every connection C' : M —
Con7TM of class C®, s € 0..r — 2, there is exactly one connection C : M —
Con 7M such that T(C) = T(C’) and VcG = 0. Moreover, in view of Prop. 2,
we have

1
C=C - 51(;*1 (VoG = Vo G™12) 4 Vo, GTI), (53.7)
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Now let a connection C : — ConTM be given. We may define, for each
r € M, a mapping

AS : Con, TM — Symy (T, M? T, M) (53.8)

AS(K) := A(C(z))K + (A(C(2))K)™ for all K € Con,TM. (53.9)

Let a symplectic field S : M — Skw™ (T M, T* M) of class C"~! be given.

Proposition 3: For every x € M, the restriction

AS 15 (%S J5., ({V%S}) — Symy (T, M?, To M) (53.10)

of the mapping AS is bijective.

Proof: Similar to the proof of Prop. 1. ]

Proposition 4: For every connection C and each prescribed symmetric field
L : M — Symy(TM?2 TM) of class C%, s € 0..r — 2, there is exactly one S-
compatible connection K, i.e. one satisfying VS = 0, such that A°(K) = L.
K is of class C°.

Proof: It follows immediately from Prop.3. ]

Notes 53

(1) The proof of the Fundamental Theorem of Riemannian Geometry given
here is modelled on the proof given by Noll in [N1].

(2) In [Sp], Spivak, M. stated: “Perhaps its only defect [of the fundamental
theorem of Riemannian geometry] is the restriction to symmetric connections.”
We show that this restriction is not needed.



54. Identities

Let a C", r > 2, Riemannian manifold M with the Riemannian-field G be

given. Assume that dim M > 2.
For every A, B € X(TM) and a connection C : M — Con(TM), we use

the following notations

(A,B) :==G(A,B) and ViB:=(VcB)A.

Proposition 1: A connection C on a Riemannian manifold M is compatible
with the Riemannian-field G if and only if

A(B, D) = (V4uB, D) + (B, V4D) (54.1)

for all A,B,D € X(TM).
Proof: Taking the covariant gradient of G o (B, D) with respect to C, we obtain

(Vo(G o (B, D)))A = G((VeB)A, D) + G(B, (VeD)A).
+ (VoG)(4A, B, D)

The equation (I.1) holds if and only if VoG = 0. I
For the sake of simplification, we adapt the following notation
(X,Y,Z,T) = (R(X,Y)Z,T) forall X)Y,Z T e X(TM),

where R := R(C) is the curvature field for a given connection C. Also recall

that
R(X,Y,Z) =VyVxZ - VxVyZ+Vixy|Z

for all X|Y,Z € X(TM).

Proposition 2: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

(X,Y,Z,TY) = —(X,Y,T, 2) (54.2)

for all X, Y, Z, T € X(TM).

Proof: To prove (I.2) is equivalent to show
0=(X,Y,Z,2) = (VyVxZ - VxVyZ+VixyZ 7).
Applying (I.1), we have
(VyVxZ,7Z)=Y(VNxZ,Z) — (VxZ,NyZ)
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and
(VxVyZ,72)=X(NyZ,Z) —(NyZ,NVxZ).

Hence
It follows from (I.1) and the symmetry of the Riemannian-field G that

%A(D,D) = (WuD,D) forall A D e X(TM). (54.3)

And hence

(X,Y,2,7) = %Y(X(Z, 7)) — %X(Y(Z, 7)) + %[X, Y|Z,Z)

1 1
Since X,Y, Z € X(TM) were arbitrary, the equation (I1.2) follows. I

Let C be a compatible connection with the Riemannian-field G.

Given z € M. Since R,(C) € Skwy(T,M? Lin T, M), we observe form

Prop. 2 that
(-, -, ) €Skwy(T,M?, Skwo(T,M?2))).

Lemma : Let an inner-product space T , with dim 7 > 2, and a two-dimensional
subspace S of T be given. If both {u,v} and {s,t} are bases for S, then we have

W(u7v7u7 V) _ W(S7t7s7t) (54 4)

(uAVv)(a,v) (s At)(s,t)

for all W € Skwo (72, Skwa(72,)).

Proof: By calculations. ]

Applying the above Lemma, we arrive the following definition.

Definition : Let V C T, M be a two-dimensional subspace of T, M. Let {u,v}
be a basis for S. The sectional curvature of S at x is defined by

{u, v, u,v)) (54.5)

K (S) = (uAv)(a,v)
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which does not depend on the choice of {u,v}.

Remark : The definition of sectional curvature “does not”

require the assuption
of the compatible connection C to be torsion-free.

Proposition 4: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

(XY, Z, WY —(Z,W,X,Y) = V(X,Y,Z,W) (54.6)

for all X,Y, Z, W € X(TM).
Proof:

R(X,Y)Z-W+R(Y,2)X -W+R(ZX)Y - W
TR, Z2)W X +R(ZW)Y - X +RW,Y)Z - X
+R(ZW)X Y +RW,X)Z-Y +R(X,Z)W - Y
+RW,X)Y - Z+RX, Y)W -Z+RY,W)X - Z
=VT(X,Y,2) WH+VTY,2,X) - W+VT(Z,X,Y) W

TVTY,Z,W) - X +VT(ZW,Y) X+VTW,Y,2) X
+VT(Z,W,X)- Y +VT(W,X,2)- Y +VT(X,W,2)-Y
FVT(W,X,Y) Z+VT(X,Y,W)- Z+VT(Y,W,X)-Z
+TT(T(X,Y),2) - W+ T(T(Y,2),X) W+ T(T(Z,X),Y) W
T(T(Y, Z),W)- X + T(T(Z,W),Y)- X + T(T(W,Y),Z) - X
T(T(Z,W),X) Y + T(T(W, X),2)- Y + T(T(X,2),W) Y
T(T(W, X),Y) - Z + T(T(X,Y),W) - Z + T(T(Y,W),X) - Z

Proposition 5: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

tr <R(x)(s, )t — R(z)(t, )s + R(2)(t, s)) —7777 (54.7)

for alls,t € T, M.

Second Proof of Pro. 2:
In view of (I.1) we have, for all X,Y,Z,T € X(TM),

(VyVxZ,T)=Y(VxZT)— (VxZ VyT),
(VxVyZ,T) = X(VyZ,T) — (Vy Z,VxT)
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and
(Vixv2,T) = [X,Y(Z,T) - (Z,VixyT).

Hence

(X,Y,Z2,T) =(VyVxZT) = (VxVyZ,T) + (Vixv)Z,T)
— Y(VxZ,T) — (VxZ,VyT) — X(Vy Z,T) + (Vy 2,V xT)
+[X,Y[(Z,T) = (Z,VixyT)
— Y(X(Z,T)) - Y{(Z,VxT) — X(Y(Z,T)) + X(Z,VyT)
(VX Z,VyT) + (Vy Z,VxT) + [X, Y|Z.T) — (Z,V x| T)
— Y(Z,VxT) + X(Z,VyT)
—(VxZ,NVyT)+ (VyZ,VxT) — <Z,V[X7Y]T>
=—(VyVxT,Z)+ (VxVyT,Z) — <V[X’Y]T, Z)
=—(X,Y,T,2) .

Since X, Y, Z, T € X(TM) was arbitrary, the assertion of Prop. 2 follows.

55. Einstein-tensor field

Let a C" manifold M, with » > 2 and dim M > 2, and a C" connection
C : M — Con(TM) be given. Assume that G : M — Sym,(TM?2,) be a
Riemannian-field compatiable with the connection C.

Let x € M be given and assume that the following condition hold
tr (R(m)(s, )t — R(z)(t,)s + R(z)(t, s)) —0, (55.1)
i.e. we have
tr (R(x)(s,-)t) — tr (R(z)(t,-)s) + tr (R(z)(t,s)) = 0.
Since R(z)(t,s) is skew-symmetric with respect to G, we obtain that

tr (R(x)(s,)t) = tr (R(z)(t,-)s) for all s,t €T, M.

Definition : The Ricci-tensor field Ric: M — Sym,(TM?2,) is defined by
Ric(z)(s,t) := tr (R(x)(s,-) t) (55.2)
for all x € M and all s,t € T, M.
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Definition : The Einstein-tensor field Ein: M — Sym,(TM?)) is defined
by
1
Ein(x) := Ric(z) — §tr (G™(x)Ric(z)) G(x) (55.3)

for all z € M. (The factor 1/2 is determined by the assumption dim T, M = 4!)
It follows from the 2nd Bianchi Identity (this condition should be weaken)

that
dive Ein = 0. (55.4)

Remark: The matter tensor field Mat : M — Sym,(TM?)) satisfying
Ein(x) = k Mat(x) (55.5)
where € is the universal gravitational constant. It follows from (Ein.4)

and (Ein 5) that
dive Mat = 0 (55.6)

(balance of world-momentum). I
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