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Chapter 1

Preliminaries

11. Multilinearity

Let (Vi | i ∈ I ) be a family of linear spaces, we define (see (04.24) of [FDS]),
for each j ∈ I and each v ∈×i∈I Vi, the mapping (v.j) : Vj →×i∈I Vi by the
rule

((v.j)(u))i :=

vi if i ∈ I\{j}

u if i = j

 for all u ∈ Vj . (11.1)

Definition : Let the family (Vi | i ∈ I ) andW be linear spaces. We say that the
mapping M :×i∈I Vi →W is multilinear if, for every v ∈×i∈I Vi and every
j ∈ I the mapping M◦ (v.j) : Vj →W is linear, so that M◦ (v.j) ∈ Lin(Vj ,W).
The set of all multilinear mappings from ×i∈I Vi to W is denoted by

LinI(×i∈I Vi , W ). (11.2)

Let linear spaces V and W and a set I be given.
Let Perm I be the permutation group, which consists of all invertible map-

pings from I to itself. For every permutation σ ∈ Perm I we define a mapping
Tσ : VI → VI by

Tσ(v) = v ◦ σ for all v ∈ VI , (11.3)

that is (Tσ(v))i := vσ(i) for all i ∈ I. In view of v ◦ (σ ◦ ρ) = (v ◦ σ) ◦ ρ, we
have Tσ◦ρ = Tρ ◦ Tσ for all σ, ρ ∈ Perm I . It is not hard to see that, for every
multilinear mapping M : VI → W and every permutation σ, the composition
M◦Tσ is again a multilinear mapping from VI toW, i.e. M◦Tσ ∈ LinI(VI , W ).

Definition : A multilinear mapping M : VI → W is said to be (completely)
symmetric if

M ◦ Tσ = M for all σ ∈ Perm I ,

and is said to be (completely) skew if

M ◦ Tσ = sgn (σ) M for all σ ∈ Perm I .

The set of all (completely) symmetric multilinear mappings and the set of
all (completely) skew multilinear mappings from VI to W will be denoted by
SymI(VI , W ) and by SkewI(VI , W ); respectively.
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Both SymI(VI , W ) and SkewI(VI , W ) are subspaces of the linear space
LinI(VI , W ) with dimensions

dim SymI(VI , W ) =
(

dim V + #I − 1
#I

)
dimW (11.4)

and

dim SkewI(VI , W ) =
(

dim V
#I

)
dimW. (11.5)

For every k ∈ , we write Link(Vk,W), Symk(Vk,W) and Skewk(Vk,W) for
Link](Vk]

,W), Symk](Vk]
,W) and Skewk](Vk]

,W); respectively.
In applicatins, we often use the following identifications

Link(Vk,W) ∼= Link−1(Vk−1, Lin (V,W))
∼= Lin(V, Link−1(Vk−1,W))

and inclusions

Symk(Vk,W) ⊂ Symk−1(Vk−1,Lin (V,W)),

Skewk(Vk,W) ⊂ Skewk−1(Vk−1,Lin (V,W)).

In particular, we shall use Sym2(V2, ) ∼= Sym (V,V∗) := Sym (V, Lin (V, ))
and Skew2(V2, ) ∼= Skew (V,V∗) := Skew (V, Lin (V, )). It can be shown that
Skew (V,V∗) has invertiable mapping if and only if dim V is even. (See Prop.3
of Sect.87, [FDS].)

Given a number k ∈ and a multilinear mapping A ∈ Link(Vk,W), the
mapping

∑
σ∈Perm k](sgnσ)A ◦ Tσ : Vk → W is a completely skew multilinear

mapping. Moreover, it can be easily shown that

1
k!

∑
σ∈Perm k]

(sgnσ) W ◦ Tσ = W

for all skew multilinear mapping W ∈ Skewk(Vk,W).

Definition : Given a number k ∈ , we define the alternating assignment
Alt : Link(Vk,W)→ Skewk(Vk,W) by

Alt A :=
1
k!

∑
σ∈Perm k]

(sgnσ)A ◦ Tσ (11.6)

for all linear spaces V and W and all A ∈ Link(Vk,W).

Given p ∈ . We define, for each i ∈ (p+1)], a mapping deli : Vp+1 → Vp by

(deli(v))j :=

 vj if 1 ≤ i ≤ j − 1

vi+1 if j ≤ i ≤ p

 for all v ∈ Vp+1. (11.7)
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Intuitively, deli(v) is obtained from v by deleting the i-th term.
When the alternating assignment Alt restricted to the subspace

Lin (V, Skewp(Vp,W)) of Lin (V, Linp(Vp,W)) ∼= Linp+1(Vp+1,W), we have

(p+ 1) (AltA)v =
∑

i∈(p+1)]

(−1)i−1A(vi,deliv) (11.8)

for all v ∈ Vp+1 and all A ∈ Lin (V, Skewp(Vp,W)). Similarly, when the
alternating assignment Alt restricted to the subspace Skewp(Vp,Lin(V,W)) of
Lin (V, Linp(Vp,W)) ∼= Linp+1(Vp+1,W), we have

(p+ 1) (AltB)v =
∑

i∈(p+1)]

(−1)p+1−iB(deliv,vi) (11.9)

for all v ∈ Vp+1 and all B ∈ Skewp(Vp,Lin(V,W)).

Definition: An algebra is a linear space V together with a bilinear mapping
B ∈ Lin2(V2,V). An algebra V is called a Lie Alegebra if the bilinear mapping
B is skew-symmetric, i.e. B ∈ Skew2(V2,V), and satisfies Jacobi indetity

B(B(v1,v2),v3) + B(B(v2,v3),v1) + B(B(v3,v1),v2) = 0 (11.10)

for all v1,v2,v3 ∈ V.

By using the inclusion Skew2(V2,V) ⊂ Lin(V, Lin(V,V)) and (11.9), we see
taht (11.10) can rewriten as

Alt (B ◦B) = 0 (11.11)

where (B ◦B)(v1,v2,v3) := B(B(v1,v2),v3) for all v1,v2,v3 ∈ V.

Remark 1: In the literature the alternating assignment given in (11.6) is of-
ten called “skew-symmetric operator” ([B-W]), “complete antisymmetrization”
([F-C]). The symmetric assignment, “symmetric operator” or “complete sym-
metrization” Sym : Link(Vk,W)→ Symk(Vk,W) is given by

Sym M :=
1
k!

∑
σ∈Perm k]

M ◦ Tσ (11.12)

for all linear spaces V and W and all M ∈ Link(Vk,W).

Remark 2: Both assignments given in (11.6) and (11.12) are “natural linear
assignments” from a functor to another functor (see (13.16) of Sect.13). More
precisely, the alternating assignment is a natural linear assgnment from the
functor Lnk to the functor Skk and the symmetric assignment is a natural linear
assgnment from the functor Lnk to the functor Smk (see Sect. 13).
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12. Isocategories, isofunctors and
Natural Assignments

An isocategory* ‡ is given by the specification of a class OBJ whose mem-
bers are called objects, a class ISO whose members are called ISOmorphisms,

(i) a rule that associates with each φ ∈ ISO a pair (Domφ,Codφ)
of objects, called the domain and codomain of φ,

(ii) a rule that associates with each A ∈ OBJ a member of ISO
denoted by 1A and called the identity of A,

(iii) a rule that associates with each pair (φ, ψ) in ISO such that
Codφ = Domψ a member of ISO denoted by ψ ◦ φ and called
the composite of φ and ψ, with Dom (ψ ◦ φ) = Domφ and
Cod (ψ ◦ φ) = Codψ.

(iv) a rule that associates with each φ ∈ ISO a member of ISO
denoted by φ← and called the inverse of φ.

subject to the following three axioms:

(I1) φ ◦ 1Dom φ = φ = 1Cod φ ◦ φ for all φ ∈ ISO,

(I2) χ ◦ (ψ ◦ φ) = (χ ◦ ψ) ◦ φ for all φ , ψ , χ ∈ ISO such that
Codφ = Domψ and Codψ = Domχ.

(I3) φ← ◦ φ = 1Dom φ and φ ◦ φ← = 1Cod φ for all φ ∈ ISO.

Given φ ∈ ISO, one writes φ : A −→ B or A φ−→ B to indicate that
Domφ = A and Codφ = B.

There is one to one correspondence between an object A ∈ OBJ and the
corresponding identity 1A ∈ ISO. For this reason, we will usually name an
isocategory by giving the name of its class of ISOmorphisms.

Let isocategories ISO and ISO′ with object-classes OBJ and OBJ ′ be
given. We can then form the product-isocategory ISO × ISO′ whose object-
class OBJ ×OBJ ′ consists of pairs (A,A′) with A ∈ OBJ , A′ ∈ OBJ ′ and
ISOmorphism-class ISO× ISO′ consists of pairs (φ, φ′) with φ ∈ ISO, φ′ ∈ ISO′

and the following

(a) For every (φ, φ′) ∈ ISO × ISO′, Dom (φ, φ′) := (Domφ,Domφ′)
and Cod (φ, φ′) := (Codφ,Codφ′).

* A category, introduced by Eilenberg and MacLane, is defined by (i), (ii) and (iii) with the

axioms (I1) and (I2). Roughly speaking, an isocategory is a special category whose “morphisms”

are called ISO-morphisms.
‡

Since isocategories are widely used in differential geometry, we introduced them directly instead

of making them as a special category.
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(b) Composition in ISO × ISO′ is defined by termwise composition,
i.e. by (ψ,ψ′) ◦ (φ, φ′) := (ψ ◦ φ , ψ′ ◦ φ′ ) for all φ, ψ ∈ ISO and
φ′, ψ′ ∈ ISO′ such that Dom (ψ,ψ′) = Cod (φ, φ′).

(c) The identity of a given pair (A,A′) ∈ OBJ × OBJ ′ is defined to
be 1(A,A′) = (1A, 1A′).

The product of an arbitary family of isocategories can be defined in a similar
manner. In particular, if a isocategory ISO and an index set I are given, one can
form the I-power-isocategory ISOI of ISO; its ISOmorphism-class consists of
all families in ISO indexed on I. In the case when I is of the form I := n], we
write ISOn := ISOn]

for short. For example, we write ISO2 := ISO × ISO. We
identify ISO1 with ISO and ISOm+n with ISOm × ISOn for all m,n ∈ in the
obvious manner. The isocategory ISO0 is the trival one whose only object is ∅
and whose only ISOmorphism is 1∅.

A functor Φ is given by the specification of:

(i) a pair (Dom Φ,CodΦ) of categories, called the domain-category
and codomain-category of Φ,

(ii) a rule that associates with every φ ∈ Dom Φ a member of CodΦ
denoted by Φ(φ),

subject to the following conditions:

(F1) We have Cod Φ(φ) = Dom Φ(ψ) and Φ(ψ ◦ φ) = Φ(ψ) ◦ Φ(φ)
for all φ, ψ ∈ Dom Φ such that Codφ = Domψ.

(F2) For every identity 1A in Dom Φ, where A belongs to the object-
class of Dom Φ, Φ(1A) is an identity in CodΦ.

An isofunctor is a functor whose domain-category and codomain-category are
isocategories. In this book we only deal with isofunctors.

Let isocategories ISO and ISO′ with object-classes OBJ and OBJ ′ be given.
We say that Φ is an isofunctor from ISO to ISO′ and we write ISO Φ−→ ISO′

or Φ : ISO −→ ISO′ to indicate that ISO = Dom Φ and ISO′ = CodΦ. By (F2),
we can associate with each A ∈ OBJ exactly one object in OBJ ′, denoted by
Φ(A), such that

Φ(1A) = 1Φ(A). (12.1)

It easily follows from (I3), (F1) and (F2) that every isofunctor Φ satisfies

Φ(φ←) =
(
Φ(φ)

)← for all φ ∈ Dom Φ. (12.2)

One can construct new isofunctors from given isofunctors in the same way as
new mappings are constructed from given mappings. (See, for example, Sect. 03
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and 04, [FDS].) Thus, if Φ and Ψ are isofunctors such that Cod Φ = Dom Ψ, one
can define the composite isofunctor Ψ ◦ Φ : Dom Φ→ CodΨ by

(Ψ ◦ Φ)(φ) := Ψ(Φ(φ)) for all φ ∈ Dom Φ (12.3)

Also, given isofunctors Φ and Ψ, one can define the product-isofunctor

Φ×Ψ : Dom Φ×Dom Ψ −→ CodΦ× CodΨ

of Φ and Ψ by
(Φ×Ψ)(φ, ψ) := (Φ(φ),Ψ(ψ)) (12.4)

for all φ ∈ Dom Φ and all ψ ∈ Dom Ψ.
Product-isofunctors of arbitrary families of isofunctors are defined in a sim-

ilar way. In particular, if a isofunctor Φ and an index set I are given, we define
the I-power-isofunctor Φ×I : (Dom Φ)I → (CodΦ)I of Φ by

Φ×I(φi | i ∈ I ) = (Φ(φi) | i ∈ I ) (12.5)

for all families (φi | i ∈ I ) in Dom Φ. We write Φ×n := Φ×n]
when n ∈ .

We now assume that an isocategory ISO with object-class OBJ is given.
The identity-isofunctor Id : ISO→ ISO of ISO is defined by

Id(φ) = φ for all φ ∈ ISO. (12.6)

We then have
Id(A) = A for all A ∈ OBJ . (12.7)

If I is an index set, then the identity-isofunctor of ISOI is Id×I . In particular,
the identity-isofunctor of ISO× ISO is Id× Id.

Given an object C ∈ OBJ . The trivial-isofunctor TrC : ISO→ ISO for C
is defined by

TrC(φ) = 1C for all φ ∈ ISO. (12.8)

We then have
TrC(A) = C for all A ∈ OBJ . (12.9)

One often needs to consider a variety of “accounting isofunctors” whose
domain and codomain isocategories are obtained from ISO by product formation.
For example, the switch-isofunctor Sw : ISO2 → ISO2 is defined by

Sw(φ, ψ) := (ψ, φ) for all φ, ψ ∈ ISO. (12.10)

Given any index set I, the equalization-isofunctor EqI : ISO → ISOI is
defined by

Eq I(φ) := (φ | i ∈ I ) for all φ ∈ ISO. (12.11)
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We write Eqn := Eqn] when n ∈ .

Let a index set I and a family (Φi | i ∈ I) of isofunctors, with Dom Φi =
ISO for all i ∈ I, be given. We then identify the family (Φi | i ∈ I) with the
termwise-formation isofunctor

(Φi | i ∈ I) : ISO→×
i∈I

CodΦi

defined by
(Φi | i ∈ I) :=×

i∈I
Φi ◦ EqI ,

so that
(Φi | i ∈ I)(φ) =×

i∈I
Φi(φ), for all φ ∈ ISO. (12.12)

In particular, if I = 2], we then identify the pair (Φ1,Φ2) with the pair-
formation isofunctor (Φ1,Φ2) : ISO→ CodΦ1 × CodΦ2.

Let isofunctors Φ and Ψ, both from ISO to ISO′, be given. A natural
assignment α form Φ to Ψ is a rule that associates with each object F of ISO
a mapping

αF : Φ(F)→ Ψ(F),

such that
Ψ(χ) ◦ αDom χ

= αCod χ
◦ Φ(χ) for all χ ∈ ISO; (12.13)

i.e. the diagram

Φ(Domχ)
αDom χ−−→ Ψ(Domχ)

Φ(χ)

y yΨ(χ)

Φ(Codχ) −−→
αCod χ

Ψ(Codχ)

is commutative. We write α : Φ −→ Ψ to indicate that Φ is the domain
isofunctor, denoted by Dmfα, and Ψ is the codomain isofunctor, denoted
by Cdfα.

One can construct new natural assignments from given ones in the same
way as new mappings from given ones. Let natural assignments α : Φ→ Ψ
and β : Ψ→ Θ be given. We can define the composite assignment
β ◦ α : Φ→ Θ, by assigning to each object F of Dom Φ = DomΨ the map-
ping (β ◦ α)F := βF ◦ αF . If α, β are natural assignment, one can define the
product-assignment α × β by assigning to each pair (F ,G) of objects the
mapping (α× β)(F,G) := αF × βG .

Given a natural assignment α : Φ → Ψ and a isofunctor Θ such that
CodΘ = Dom Φ = Dom Ψ, one can define the composite assignment
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α ◦Θ : Φ ◦Θ→ Ψ ◦Θ by assigning to each object F of Dom Φ = Dom Ψ the
mapping (α ◦Θ)F := αΘ(F) .

13. Tensor Functors

We say that an isocategory ISO is concrete if ISO consists of mappings,
the object-class OBJ consists of sets, and if domain and codomain, composi-
tion, identity and inverse have the meanning they are usually given for sets and
mappings. (See, e.g. Sect. 01 – 04 of [FDS]).

Examples of concrete isocategory

The following are some concrete isocategories to be used in this book:

(A) The category FIS whose object-class FS consists of all finite dimen-
sional flat spaces over and whose ISOmorphism-class FIS consists of all flat
isomorphism from one such space onto another or itself.

(B) Fix a field and we consider the concrete isocategory whose object-class
LS consists of all finite dimensional linear spaces over and whose ISOmorphism-
class LIS consists of all linear isomorphism from one such space onto another or
itself.

(C) Given s ∈ , the category DIFs whose object-class DF consists of all
Cs manifolds and whose ISOmorphism-class DIFs consists of all diffeomorphism
from one such manifold onto another or itself.

From now on, in this section, we will deal only with LIS and the categories
obtained from it by product formation, such as LISm × LISn when m,n ∈ . We
use the term tensor functor of degree n ∈ for functor from LISn to LIS.
(Under this definition, composition of tensor functors is somewhat strange: the
second one of those functors must be of degree 1!!!!!!!!!!!!!)

Examples of tensor functor

Here is a list of important tensor functors used in linear algebra and differential
geometry:

(1) The product-space functor Pr : LIS2 → LIS. It is defined by

Pr(A,B) := A×B for all (A,B) ∈ LIS2. (13.1)

We have Pr(V,W) := V ×W (the product-space of V and W) for all V,W ∈ LS .
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(2) Given k ∈ , the k-lin-map-functor Link : LISk×LIS→ LIS. It assigns
to each list (Vi | i ∈ k] ) in LS and each W ∈ LS the linear space

Link((Vi | i ∈ k] ),W) := Link

(
×
i∈k]
Vi , W

)
(13.2)

of all k-multilinear mappings from ×i∈k] Vi to W, and it assigns to every list
(Ai | i ∈ k] ) in LIS and each B ∈ LIS the linear mapping

Link((Ai | i ∈ k]) , B) (13.3)

from Link

(×i∈k] DomAi,DomB
)

to Link

(×i∈k] CodAi,CodB
)

defined by

Link((Ai | i ∈ k] ),B)T := BT ◦ ×
i∈k]

A−1
i (13.4)

for all T ∈ Lin
(×i∈k] DomAi,DomB

)
.

When k = 1, Lin1 : LIS × LIS → LIS is called the lin-map-functor and
abreviated by Lin := Lin1.

(3) Given k ∈ , the k-multilin-functor Lnk : LIS2 → LIS. It is defined by

Lnk := Link ◦ (Eqk × Id). (13.5)

We have
Lnk(A,B)T := BT ◦ (A−1)×k (13.6)

for all A,B ∈ LIS and all T ∈ Link((DomA)k,DomB). and

Lnk(V,W) := Link(Vk,W) (13.7)

for all V,W ∈ LS
There are two very important “subfunctors” (see [E-M]), Smk and Skk, given

in following. The symmetric-k-multilin-functor Smk : LIS2 → LIS assigns to
every pair of linear spaces (V,W) ∈ LS 2 the linear sapce

Smk(V,W) := Symk(Vk,W) (13.8)

of all symmetric k-multilinear mappings from Vk to W. It is clear that

Smk(A,B)T := BT ◦ (A−1)×k (13.9)

for all A,B ∈ LIS and all T ∈ Symk((DomA)k,DomB). The skew-k-multilin-
functor Skk : LIS2 → LIS is defined in the same manner as Smk, except that
Symk(Vk,W) in (13.8) is replaced by the linear space Skewk(Vk,W) of all skew
k-multilinear mappings from Vk to W.
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(4) Given n ∈ , the k-linform-functor Lnfk, the k-symform-functor
Smfk, the k-skewform-functor Skfk, all from LIS to LIS. They are defined by

Lnfk := Lnk ◦ (Id,Tr) , Smfk := Smk ◦ (Id,Tr) , Skfk := Skk ◦ (Id,Tr). (13.10)

Given V ∈ LS , we have
Lnfk(V) := Link(Vk, ), (13.11)

the space of all k-multilinear forms on Vk. We have

Lnfk(A)ω := ω ◦ (A−1)×k for all ω ∈ Link((DomA)k, ) (13.12)

and all A ∈ LIS. The formulas (13.11) and (13.12) remain valid if Lin is replaced
by Sym or Skew and Lnf by Smf or Skf correspondingly.

When k = 1, we have Lnf1 = Smf1 = Skf1 which is called the duality-
functor and denoted by Dl : LIS→ LIS.

(5) The lineon-functor Ln : LIS→ LIS. It is defined by

Ln := Lin ◦ Eq2. (13.13)

We have
Ln(V) := Lin(V,V) for all V ∈ LS (13.14)

and

Ln(A)T := ATA−1 for all A ∈ LIS and T ∈ Ln(DomA). (13.15)

It is clear that Lin1 = Ln1, however, Ln1 6= Ln! Notation?

Remark : In much of the literature (see [K-N], Sect. 2 of Ch.I or [M-T-W],
§3.2) the use of the term “tensor” is limited to tensor functors of the form
Tr

s := Lin ◦ (Lnfs,Lnfr) : LIS→ LIS with r, s ∈ , or to tensor functors that are
naturally equivalent to one of this form. Given V ∈ LS a member of the linear
space Tr

s(V) is called a “tensor of contravariant order r and covariant order s.”

Let a family of tensor functors (Φi | i ∈ k]) and a tensor functor Ψ with
Dom×i∈k] Φk = LISk = Dom Ψ be given. We say that a natural assignment
β :×i∈k] Φk → Ψ is a k-linear assignment if, for every F ∈ LSk, the mapping

βF : ×
i∈k]

Φi(Fi)→ Ψ(F) (13.16)

is k-linear.

The following are examples for bilinear natural assignments.
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(6) Given k ∈ , the alternating assgnment Alt : Lnk → Skk it assigns
each pair (V,W) ∈ LS 2 the mapping

Alt(V,W)A :=
∑

σ∈Perm k]

(sgnσ)A ◦ Tσ (13.17)

where Perm k] is the permutation group of k] and Tσ is defined as in (11.3), for
all A ∈ Link(Vk,W).

(7) The tensor product tpr : Id× Id → Lin ◦ (Dl× Id) ◦ Sw assigns each
pair (V,W) ∈ LS 2 the mapping

tpr(V,W) : V ×W → Lin(W∗,V) (13.18)

defined by

tpr(V,W)(v,w) := v ⊗w for all v ∈ V and w ∈ W, (13.19)

where v⊗w is the tensor product defined according to Def. 1 of Sect. 25, [FDS],
with the identification W ∼=W∗∗.

We use v ⊗ w ∈ Lin(W∗,V) but others use v ⊗ w ∈ Lin(V∗,W) (see e.g.
[B-W]). Our definition of ⊗ bring up the switch functor Sw here!!!!!!!!!!!!!!!!!!!!

The wedge product wpr : Id× Id→ Lin ◦ (Dl× Id) ◦ Sw is defined by

wpr(V,W)(v,w) := v ∧w for all v ∈ V and w ∈ W, (13.20)

where v∧w is the wedge product defined according to (12.9) of Sect. 12, [FDS],
Vol.2, with the identification W ∼=W∗∗.

We have wpr = 1
2 Alt ◦ tpr. Need more development!!!!!!!!!!!!!!!!!!!

We now assume that the field relative to which LS and LIS are defined in
above is the field of real number. Given V,W ∈ LS , the set

Lis(V,W) :=
{
A ∈ LIS

∣∣ DomA = V,CodA =W
}

(13.21)

is then an open subset of the linear space Lin(V,W). (See, for example, the
Differentiation Theorem for Inversion Mappings in Sect.68 of [FDS].).

Let a tensor functor Φ be given. For every pair of objects (V,W) of Dom Φ,
we define the mapping

Φ(V,W) : Lis(V,W)→ Lis(Φ(V),Φ(W)) (13.22)

by
Φ(V,W)(A) := Φ(A) for all A ∈ Lis(V,W). (13.23)

11



Indeed, we can view (13.22) as a bilinear assignment from Lin = Ln1 to
Lin ◦ (Φ× Φ). The one to be used in (13.27)

Φ(V,V) : Lis(V)→ Lis(Φ(V))

is a linear assignment from Ln to Ln◦Φ and hence whose gradient is also a linear
assignment from Ln to Ln ◦ Φ!!!!!!!!!!!!!!!!

We say that the tensor functor Φ is analytic if Φ(V,W) is an analytic map-
ping for every pair of objects (V,W) of Dom Φ. We say that a natural assignment
α : Φ→ Ψ is an analytic assignment if the mapping αF : Φ(F) → Ψ(F) is an
analytic mapping for every object F of Dom Φ. All the tensor functors listed
in above are in fact analytic. (The fact that they are of class C∞ can easily be
inferred from the results of Ch.6 of [FDS]. Proofs that they are analytic can be
inferred, for example, from the results that will be presented in Ch.2 of Vol.2 of
[FDS].)

Theorem : Let an analytic tensor functor Φ be given and associate with each
V ∈ Dom Φ the mapping

Φ
•

V : Ln(V)→ Ln(Φ(V)) (13.24)

defined by
Φ
•

V := ∇1VΦ(V,V). (13.25)

(The gradient-notation used here is explained in [FDS], Sect.63.) Then Φ
•

is a
linear assignment from Ln to Ln ◦ Φ. We call Φ

•
the derivative of Φ.

Proof: Let a pair of objects (V,W) of DomΦ and A ∈ Lis(V,W) be given. It
follows from (13.23), from axiom (F1), and from (12.2) that

Φ(W,W)(ALA−1) = Φ(A)Φ(V,V)(L)Φ(A)−1 (13.26)

for all L ∈ Lis(V,V). By (13.15) we may write (13.26) as(
Φ(W,W) ◦ Ln(A)

)
(L) =

(
Ln(Φ(A)) ◦ Φ(V,V)

)
(L) (13.27)

for all L ∈ Lis(V,V). Taking the gradient of (13.27) with respect to L at L := 1V
yields

Φ
•

W ◦ Ln(A) = (Ln ◦ Φ)(A) ◦ Φ
•

V . (13.28)

In view of (12.13) it follows that Φ
•

is a natural assignment from Ln to Ln ◦Φ.
The linearity of Φ

•
follows from the definition of gradient.

We now list the derivatives of a few analytic tensor functors. The formulas
given are valid for every V ∈ LS .

12



(6) Ln
•

V : Ln(V)→ Ln(Ln(V)) is given by

(Ln
•

VL)M = LM−ML for all L,M ∈ Ln(V) (13.29)

(This formula is an easy consequence of (13.15) and, [FDS] (68.9).).

(7) Let k ∈ be given. In order to describe

(Lnfk)
•

V : Ln(V)→ Ln(Link(Vk, )), (13.30)

we define, for every L ∈ Ln(V) and every j ∈ k], Dj(L) ∈ (Ln(V))k by

(Dj(L))i :=

 L if i = j

1V if i 6= j

 for all i ∈ k]. (13.31)

We then have

((Lnfk)
•

VL)ω = −
∑
j∈k]

ω ◦Dj(L) for all ω ∈ Link(Vk, ) (13.32)

and all L ∈ Ln(V). The formula (13.32) remains valid if Lnf is replaced by Smf
or Skf and Lin by Sym or Skew, correspondingly.

The General Chain Rule for gradients (see [FDS], Sect.63) and the definition
(13.25) immediately lead to the following

Chain Rule for Analytic Tensor Functors
Let Φ and Ψ be analytic tensor functors. Then the composite functor Ψ ◦Φ

is also an analytic tensor functor and we have

(Ψ ◦ Φ)
•

= (Ψ
•
◦ Φ) ◦ Φ

•
, (13.33)

where the composite assignments on the right are explained in the end of Sect.12.

For example, (13.33) shows that, for each V ∈ LS ,

(Ln ◦ Ln)
•

V : Ln(V)→ Ln(Ln(Ln(V)))

is given by
(Ln ◦ Ln)

•

V = Ln
•

Ln(V)Ln
•

V . (13.34)

In view of (13.29.) above, (13.34) gives((
(Ln ◦ Ln)

•

VL
)
K

)
M =

(
(Ln

•

VL)K−K(Ln
•

VL)
)
M

= L(KM)− (KM)L−K(LM−ML)
(13.35)
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for all V ∈ LS , all K ∈ Ln(Ln(V)), and all L,M ∈ Ln(V).

If Φ and Ψ are analytic tensor functors so is Pr ◦ (Φ,Ψ) and we have

(Pr ◦ (Φ,Ψ))
•

V = (Φ
•

VL)× 1Ψ(V) + 1Ψ(V) × (Φ
•

VL) (13.36)

for all V ∈ LS and all L ∈ Ln(V).

Let α be an analytic assignment of degree n ∈ . If we associate with each
V ∈ LS the mapping (∇α)V := ∇(αV), the gradient of the mapping αV , then
∇α is again an analytic assignment of degree n and we have Dmf∇α = Dmfα

and Cdf∇α = Lin ◦ (Dmfα,Cdfα). We call ∇α the gradient of α.

Let tensor functors Φ1, Φ2, Ψ, all of degree n ∈ but not necessarily analytic,
be given. Each bilinear assignment β : Pr ◦ (Φ1,Φ2) → Ψ is then analytic and
its gradient ∇β : Pr ◦ (Φ1,Φ2)→ Lin ◦ (Pr ◦ (Φ1,Φ2),Ψ) is given by

(
(∇β)V(v1,v2)

)
(u1,u2) = βV(v1,u2) + βV(u1,v2) (13.37)

for all V ∈ LS , all v1,u1 ∈ Φ1(V), and all v2,u2 ∈ Φ2(V).

If α is an analytic assignment of degree n ∈ and if Φ is any isofunctor from
LISk to LISn with k ∈ , then α ◦Φ is an analytic assignment of degree k and we
have ∇(α ◦ Φ) = (∇α) ◦ Φ.

14



14. Short Exact Sequences

Let a pair (I,P) of mappings be given such that Cod I = DomP. We often
write

U I−→ V P−→ W or W P←− V I←− U (14.1)

to indicate that U = Dom I, V = Cod I = DomP and CodP =W. If U , V and
W are linear spaces and if I is injective linear mapping, P is surjective linear
mapping with

Rng I = NullP,

we say that (I,P), or (14.1), is a short exact sequence *. In the literature, a
short exact sequence is often expressed as

0 −→ U I−→ V P−→ W −→ 0 .

Let a short exact sequence U I−→ V P−→ W be given.

Notation: The set of all linear right-inverses of P is denoted by

Riv(P) :=
{
K ∈ Lin (W,V) PK = 1W

}
, (14.2)

and the set of all linear left-inverses of I is denoted by

Liv(I) :=
{
D ∈ Lin (V,U) DI = 1U

}
. (14.3)

Proposition 1: There is a bijection Λ : Riv(P) → Liv(I) such that, for every
K ∈ Riv(P)

U ←−
Λ(K)

V ←−
K

W (14.4)

is again a short exact sequence. We have

KP + IΛ(K) = 1V for all K ∈ Riv(P). (14.5)

Proof: It is easily seen that (K 7→ Rng K) is a bijection from Riv(P) to the
set of all supplements of NullP = Rng I in V. Also, (D 7→ NullD) is a bijection
from Liv(I) to the set of all supplements of Rng I = NullP in V. The mapping
Λ is the composite of the first of these bijections with the inverse of the second
one.

* The term short exact sequence comes from the more general concept of an “exact sequence”

which is not needed here.
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Let K ∈ Riv (P) be given. Both KP and IΛ(K) are idempotents with
Rng KP = Rng K and Rng IΛ(K) = Rng I. Since Rng K and Rng I are supple-
mentary in V, it follows that

KP + IΛ(K) = 1V . (14.6)

Since K ∈ Riv (P) was arbitrary, the assertion follows.

Proposition 2: Riv(P) is a flat in Lin(W,V) whose direction space is{
IL L ∈ Lin(W,U)

}
,

Liv(I) is a flat in Lin (V,U) whose direction space is{
− LP L ∈ Lin(W,U)

}
.

Proof: Given K,K′ ∈ Riv(P), we have 1W = PK = PK′ and hence
P (K−K′) = 0. It follows that Rng (K − K′) ⊂ NullP = Rng I and hence
K −K′ = IL for some L ∈ Lin(W,U). On the other hand, given K ∈ Riv(P)
and L ∈ Lin(W,U), we have P(IL) = 0 and hence 1W = PK = P(K + IL),
which implies K + IL ∈ Riv(P). These facts show that Riv(P) is a flat in
Lin(W,V) with direction space

{
IL

∣∣ L ∈ Lin(W,U)
}
.

Similar arguments show that Liv(I) is a flat in Lin (V,U) with direction
space

{
− LP

∣∣ L ∈ Lin(W,U)
}
.

Proposition 3: Let K and K′ in Riv(P) be given and determine L ∈ Lin(W,U)
such that K−K′ = IL. Then

Λ(K)−Λ(K′) = −LP. (14.7)

Proof: It follows from (14.5) that KP + IΛ(K) = 1V = K′P + IΛ(K′) and
hence

I(Λ(K)−Λ(K′)) = −(K−K′)P.

Since K−K′ = IL and I is injective, we obtain Λ(K)−Λ(K′) = −LP.

It follows from the injectivity of I and from the surjectivity of P that
both the direction space {I}Lin(W,U) of Riv(P) and the direction space
Lin(W,U){P} of Liv(I) are naturally isomorphic to Lin(W,U). Hence we may
and will consider Lin(W,U) to be the external translation space (see Conventions
and Notations) of both Riv(P) and Liv(I). We have

dim Riv(P) = (dimW)(dim U) = dim Liv(I). (14.8)
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Proposition 4: The mapping Λ : Riv(P)→ Liv(I), as described in Prop. 1, is
a flat isomorphism whose gradient ∇Λ ∈ Lin(Lin(W,U)) is −1Lin(W,U), so that

∇Λ(L) = −L for all L ∈ Lin(W,U). (14.9)

Proof: It follows from Prop. 2 and the identification Lin(W,U){P} ∼= Lin(W,U)
that Λ : Riv(P)→ Liv(I) is a flat isomorphism with ∇Λ = −1Lin(W,U).

Notation: Let K ∈ Riv(P) be given. We define the mapping

ΓK : Riv(P)→ Lin (W,U)

by
ΓK(K′) := −Λ(K)K′ for all K′ ∈ Riv(P). (14.10)

Proposition 5: For every K ∈ Riv(P), the mapping ΓK : Riv(P)→ Lin (W,U)
is a flat isomorphism whose gradient ∇ΓK ∈ Lin(Lin(W,U)) is −1Lin(W,U); i.e.

∇ΓK(L) = −L for all L ∈ Lin(W,U).

Proof: Let K1,K2 ∈ Riv(P) be given; then we determine L ∈ Lin(W,U) such
that K1 −K2 = IL. It follows from (14.10) and Λ(K)I = 1U that

ΓK(K1)− ΓK(K2) = −Λ(K)(K1 −K2) = −Λ(K)(IL) = −L.

Since K1,K2 ∈ Riv(P) were arbitrary, the assertion follows.

Proposition 6: We have

K−K′ = IΓK(K′)

Λ(K)−Λ(K′) = −ΓK(K′)P
(14.11)

and hence ΓK′
(K) = −ΓK(K′) for all K,K′ ∈ Riv(P). Moreover,

ΓK1(K3)− ΓK2(K3) = ΓK1(K2) (14.12)

for all K1,K2,K3 ∈ Riv(P).

Proof: In view of (14.5) and (14.10), we have

K−K′ = (KP− 1V)K′ = −(IΛ(K))K′ = IΓK(K′)
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for all K′,K ∈ Riv(P). The second equation (14.11)2 follows from (14.11)1 and
Prop. 2 with L replaced by ΓK(K′).

We observe from (14.11) that

IΓK1(K2) = K1 −K2 = (K1 −K3)− (K2 −K3)

= I(ΓK1(K3)− ΓK2(K3))

for all K1,K2,K3 ∈ Riv(P). Since I is injective, (14.12) follows.

Remark: We consider Lin(W,U) to be the external translation space of Riv(P).
Given K ∈ Riv(P), in view of (14.11)1, we have

ΓK(K′) = K−K′ for all K′ ∈ Riv(P).

Roughly speaking, the flat isomorphism ΓK : Riv(P) → Lin(W,U) identify
Riv(P) with Lin(W,U) by choosing K as the “zero” (or “orgin”).

15. Brackets and Twists

We assume now that linear spaces V, W and Z and a short exact sequence

Lin(W,Z) I−→ V P−→ W (15.1)

are given. Recall from Prop. 1 of Sec. 14 that to every linear right-inverse K of
P there corresponds exactly one linear left-inverse Λ(K) of I such that

Lin(W,Z) ←−
Λ(K)

V ←−
K

W (15.2)

is again a short exact sequence. In view of the identification

Lin
(
W,Lin (W,Z)

) ∼= Lin2 (W2,Z) (15.3)

we may identify the external translation space Lin
(
W,Lin (W,Z)

)
of Riv(P)

with Lin2 (W2,Z).

Assumption : From now on, we assume that in this section, a flat F in Riv(P)
with direction space {I}Sym2 (W2,Z) is given. Here Sym2 (W2,Z) is regarded
as a subspace of Lin2 (W2,Z) ∼= Lin

(
W,Lin (W,Z)

)
.

Proposition 1: For every K1,K2 ∈ F ,

(Λ(K1)v)(Pv′)− (Λ(K1)v′)(Pv) = (Λ(K2)v)(Pv′)− (Λ(K2)v′)(Pv) (15.4)

holds for all v,v′ ∈ V.

18



Proof: Let K1,K2 ∈ F be given. Then we determine L ∈ Sym2 (W2,Z) such
that K1 −K2 = IL . It follows from Prop.3 of Sect.14 that

(Λ(K1)v)(Pv′)− (Λ(K2)v)(Pv′) = −L(Pv,Pv′)

holds for all v,v′ ∈ V. By interchanging v and v′ and observing that L is
symmetric, we conclude that (15.4) follows.

Definition: In view of Prop. 1, the F-bracket BF ∈ Skw2 (V2,Z) can be
defined such that

BF (v,v′) := (Λ(K)v)(Pv′)− (Λ(K)v′)(Pv) for all v,v′ ∈ V (15.5)

is valid for all K ∈ F . Using the identification (15.3) we also have

BF ∈ Lin
(
V,Lin (V,Z)

)
.

Proposition 2: The F-bracket BF ∈ Lin
(
V,Lin (V,Z)

)
satisfies

BF (IM) = MP for all M ∈ Lin(W,Z),
(BFv)K = Λ(K)v for all K ∈ F and all v ∈ V.

(15.6)

If dimZ 6= 0, then BF is injective; i.e. Null BF = {0}.

Proof: The equations (15.6)1 and (15.6)2 follow from Definition (15.5) together
with Λ(K) I = 1Lin(W,Z) and PK = 1W , respectively.

Let v ∈ NullBF be given, so that BF v = 0 and hence

0 =
(
BFv

)
IM = BF (v, IM) = −

(
BF (IM)

)
v

for all M ∈ Lin(W,Z). Using (15.6)1, it follows that −MPv = 0 for all
M ∈ Lin(W,Z), which can happen, when dimZ 6= 0, only if Pv = 0 and hence
v ∈ NullP = Rng I. Thus we may choose M′ ∈ Lin(W,Z) such that v = IM′

and hence BF (IM′) = 0. Using (15.6)1 again, it follows that M′P = 0. Since
P is surjective , we conclude that M′ = 0 and hence v = 0. Since v ∈ NullBF
was arbitrary, it follows that NullBF = {0}.

Definition: The F-twist

TF : Riv(P)→ Skw2 (W2,Z) (15.7)

is defined by

TF (K) := −BF ◦ (K×K) for all K ∈ Riv(P), (15.8)
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where BF is the F-bracket defined by (15.5).

Proposition 3: For every H ∈ F , we have

TF = ΓH − ΓH ˜ (15.9)

where ˜ denotes the value-wise switch, so that ΓH ˜(K)(s, t) = ΓH(K)(t, s) for
all K ∈ Riv(P) and all s, t ∈ W.

Proof: Let K ∈ Riv(P) and s, t ∈ W be given. By (15.8) and (15.5), we see
that for every H ∈ F we have

TF (K)(s, t) = −BF (Ks,Kt)
= −Λ(H)(Ks)P(Kt) + Λ(H)(Kt)P(Ks).

(15.10)

We conclude from PK = 1W , (15.10) and (14.10) that

TF (K)(s, t) = ΓH(K)(s, t)− ΓH(K)̃ (s, t).

Since s, t ∈ W and K ∈ Riv(P) were arbitrary, (15.9) follows.

Remark: It is clear from (15.9) and (11.6) that

TF = 2 Alt ◦ ΓH for all H ∈ F .

The numerical factor 2 is conventional which reduces numerical factors in cal-
culations.

Proposition 4: The F-torsion TF is a surjective flat mapping whose gradient

∇TF ∈ Lin
(
Lin2 (W2,Z) , Skw2 (W2,Z)

)
is given by

(∇TF )L = L˜− L (15.11)

for all L ∈ Lin2 (W2,Z).

Proof: Let H ∈ F be given. It follows from (15.8) and (15.5)

TF
(
H− 1

2IL
)

= L for all L ∈ Skw2 (W2,Z)

and hence TF is surjective.
Prop. 3 together with Prop. 4 in Sec. 14 shows that the F-torsion TF is a

flat mapping whose gradient is given by (15.11).

In view of definitions (15.8), (15.5) and (15.11), we have TF<({0}) = F .
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Definition: We say that K ∈ Riv(P) is F-twist-free (or F-symmetric) if
TF (K) = 0, i.e. if K ∈ F .

F is a flat in Riv(P) with the (external) direction space Sym2 (W2,Z) and
hence

dim TF<({0}) = dim Sym2 (W2,Z) =
n(n+ 1)

2
m, (15.12)

where n := dimW and m := dimZ. The mapping

SF :=
(
1Riv(P) + 1

2ITF
) ∣∣∣TF<({0})

(15.13)

is the projection of Riv(P) onto T<
F ({0}) with Null∇SF = Skw2 (W2,Z). If

K ∈ Riv(P), we call

SF (K) = K +
1
2
I
(
TF (K)

)
the F-symmetric part of K.
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Chapter 2

Manifolds and Bundles

21. Charts, Atlases and Manifolds

Let a set M and r ∈˜be given. A chart χ for M is defined to be a bijection
whose domain is included in M and whose codomain is an open subset of a
specified flat space, denote by Pagχ and called the page of χ. The translation
space of Pagχ is denoted by

Vχ := Pagχ− Pagχ. (21.1)

Let f be a mapping whose domain is a subset of M and whose codomain
is an open subset D of a specified flat space. We say that f is Cr-related to a
given chart χ for M if

(R1) χ>(Dom χ ∩Dom f) is an open subset of Pagχ,

(R2) f χ← : χ>(Dom χ ∩Dom f) → D is of class Cr.

We say that two charts χ and γ for M are Cr-compatible if γ is Cr-related to
χ and χ is Cr-related to γ.

Pitfall: In general, Cr-compatibility is not an equivalence relation.

A class A of charts for M is called a Cr-atlas of M if
(A1) Any two charts in A are Cr-compatible,

(A2) The domain of the charts in A cover M, i.e.

M =
⋃
{Domχ | χ ∈ A}. (21.2)

It is clear that a Cr-atlas is also a Cs-atlas for every s ∈ 0. .r.

Proposition 1: Let A be a Cr-atlas for M and let χ be a chart that is Cr-
compatible with all charts in A. If f is a mapping that is Cr-related to every
chart in A then it is also Cr-related to χ .

Proof: Let x ∈ Dom χ ∩Dom f be given. By (A2) we may may choose α ∈ A
such that x ∈ Dom α. We put

G := Dom χ ∩Dom α ∩Dom f. (21.3)

Since α is injective we have

α>(G) = α>(Dom χ ∩Dom α) ∩ α>(Dom f ∩Dom α).
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Since χ and f are both Cr-related to α, it follows from (R1) that both
α>(Dom χ ∩Dom α) and α>(Dom f ∩ Dom α) are open subsets of Pagα and
hence that α>(G) is also open in Pagα. Since α χ← is continuous by (R2),
it follows that χ>(G) = (α χ←)<(α>(G)) is an open neighborhood of χ(x) in
Pagχ. Using (0.1) and (0.2) it is easily seen that

(f χ←)
χ>(G) = (f α←)

α>(G) ◦ (α χ←)
α>(G)

χ>(G) .

Since both f α← and α χ← are of class Cr by (R2), it follows from the chain
rule that the restriction of f α← to a neighborhood χ>(G) of χ(x) in Pagχ is
of class Cr. Since x ∈ Dom χ ∩Dom f was arbitrary, it follows that the domain
χ>(Dom χ ∩Dom f) of f χ← is open in Pagχ and that f χ← is of class Cr,
i.e. that f is Cr-related to χ.

We say that a Cr-atlas A for M is Cr-saturated if every chart for M that
is Cr-compatible with all charts in A already belongs to A. The following is an
immediate consequence of Prop. 1.

Proposition 2: Let A be a Cr-atlas for M. Then there is exactly one saturated
Cr-atlas A that includes A. In fact, A consists of all charts that are Cr-
compatible with all charts in A .

Definition: Let r ∈ ˜ be given. A Cr-manifold is a set M endowed with
structure by the prescription of a saturated Cr-atlas for M, which is called the
chart-class of M and is denoted by ChrM, or if no confusion is likely, simply
by ChM .

In view of Prop. 2, the structure of a Cr-manifold on M is uniquely deter-
mined by specifying a Cr-atlas included in ChM. Of course, two different such
atlases may determine one and the same Cr-structure.

Let M be a Cr-manifold with chart-class ChrM. Then, for every
s ∈ 0. .r, M has also the natural structure of a Cs-manifold, determined by
ChrM regarded as a Cs-atlas. Of course, the chart-class ChsM of the Cs-
manifold structure includes ChrM, but we have ChrM ChsM if s < r.

Examples of manifold

Example 1: Let D be an open subset of a flat space. Then the singleton {1D} is
a Cω-atlas of D. It determines on D a natural Cω-structure and hence a natural
Cr-structure for every r ∈ .

Example 2: (Product manifold) Let M and N be manifolds of class Cr,
then the product M×N has the natural structure of a Cr manifold.
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We now assume that a Cr-manifold M with chart-class ChM is given. We
use the notation

ChxM :=
{
χ ∈ ChM x ∈ Domχ

}
. (21.4)

It is easily seen that the spaces Pagχ and Vχ, χ ∈ ChxM, all have the same
dimension. This dimension is called the dimension of M at x, and is denoted
by dimxM.

The Cr-manifoldM is endowed with a natural topology, namely the coarsest
topology that renders all χ ∈ ChM continuous. A subset P of M is open if
and only if, for each χ ∈ ChM, the image χ>(P ∩Domχ) is an open subset of
Pagχ. Given x ∈ M, one can construct a neighborhood-basis Bx of x in M
in the following manner: Choose a chart χ ∈ ChxM and a neighborhood-basis
Nχ(x) of χ(x) in Pagχ. Then put

Bx :=
{
χ<(N ∩ Codχ) N ∈ Nχ(x)

}
. (21.5)

Pitfall: The natural topology of M need not be separating.

Let P be an open subset of M. Then P has the natural structure of a
Cr-manifold whose chart-class ChP is

ChP :=
{
χ ∈ ChM Domχ ⊂ P

}
. (21.6)

The natural topology of P as a Cr-manifold concides with the topology of P
induced by the topology of M.

Let f be a mapping whose domain is an open subset of M and whose
codomain is an open subset D of a specified flat space E with translation space
V := E − E . We say that f is of class Cs, with s ∈ 0. .r, if it is Cs-related to
every chart χ ∈ ChM, i.e. if f χ← is of class Cs for all charts χ ∈ ChM.
(Since Dom f is open, Dom f χ← = χ>(Domχ∩Dom f) is automatically open
in Pagχ when χ ∈ ChM.) It follows from Prop. 1 that f is of class Cs if f χ←

is of class Cs for every chart χ in some Cr-atlas included in ChM. If f is of
class Cs with s ≥ 1 and if χ ∈ ChM, we define the gradient

∇χf : Dom χ ∩Dom f → Lin(Vχ,V)

of f in the chart χ by

(∇χf)(x) := ∇χ(x)(f χ←) for all x ∈ Dom χ ∩Dom f. (21.7)

More generally, for every s ∈ 1. .r, the gradient of order s

∇(s)
χ f : Dom χ ∩Dom f → Syms((Vχ)s,V)
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of f in the chart χ defined by

(∇(s)
χ f)(x) := ∇(s)

χ(x)(f χ←) for all x ∈ Dom χ ∩Dom f. (21.8)

The following transformation rules are easy concequences of the rules of calculus.

Proposition 3: Let f be a mapping of class C1, x ∈ Dom f and χ, γ ∈ ChxM.
Then

(∇γf)(x) = (∇χf)(x)(∇γχ)(x). (21.9)

If f is also of class C2, then

(∇(2)
γ f)(x) = (∇(2)

χ f)(x) ◦ (∇γχ(x)×∇γχ(x)) + (∇χf)(x)∇(2)
γ χ(x). (21.10)

In the case when f := γ the formulas (21.7) and (21.8) reduce to

(∇γγ)(x) = 1Vγ and (∇(2)
γ γ)(x) = 0.

Hence Prop. 3 has the following consequence:

Proposition 4: Let x ∈ M and χ , γ ∈ ChxM be given. If r ≥ 1 , then
(∇χγ)(x) ∈ Lin (Vχ,Vγ ) is invertible and

(∇χγ)(x)−1 = (∇γχ)(x). (21.11)

If r ≥ 2, we also have

(∇(2)
γ χ)(x) = −(∇γχ)(x)

(
(∇(2)

χ γ)(x) ◦ (∇γχ(x)×∇γχ(x))
)
. (21.12)

If the manifold M is itself the underlying manifold of an open subset of a
flat space (see Example 1 above), then a mapping f is of class Cs as described
above if and only if it is of class Cs in the ordinary sence (see Notations).

Let f be a mapping whose domain is a neighborhood of a given point x ∈M
and whose codomain is an open subset of a specified flat space. We say that f is
differentiable at x if f χ← is differentiable at χ(x) for some, and hence all,
χ ∈ ChxM. If this is the case, (21.7) remains meaningful for the given x ∈ M
and the transformation formula (21.9) remains valid. The concept of “s times
differentiable at x” when s ∈ 0. .r is defined in a similar way.

More generally, let Cr-manifolds M and M′ be given. Let g be a mapping
whose domain and codomain are open subsets of M and M′, respectively. We
say that g is of class Cs with s ∈ 0. .r if χ′ g χ← is of class Cs in the
ordinary sense for all χ ∈ ChM and all χ′ ∈ ChM′.

4



Definition: Let M be a Cr-manifold and let P be a subset of M. We say that
P is a submanifold of M if for each point x ∈ P there is a chart χ ∈ ChxM
such that χ>(P ∩Domχ) is an open subset of a flat Fχ of Pagχ.

Let P be a Cr submanifold of the manifold M. We left it the readers to
show that P has the natural structure of a Cr manifold. The natural topology
of P as a Cr-manifold concides with the topology of P induced by the topology
of M, i.e. P a topological subspace of M.

Let f : S → M be a Cs mapping from a manifold S to another manifold
M. The mapping f is called a Cs immersion at x ∈ S if there exists an
open neighborhood Nx of x (in S) such that the restriction f |Nx

is injective
and f>(Nx) is a submanifold of M. We say that f is an immersion if it is
an immersion at every y ∈ S. If f is an immersion, the domain S called an
immersed manifold of M. However, being an immersion is a “local property”
and hence the range Rng f := f>(S) of f may not be a submanifold of M. For
example (see [L]):
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.........
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....................................................................................................................................................................................................................................
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...........
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........
.......
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............................................................................

........
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........

........

........

........

........

.....................
Figue11.1

An injective immersion f from manifold A to manifold B is an imbedding
if the range Rng f := f>(A) is a submanifold of B. The domain of an imbedding
is called an imbedded manifold of its codomain manifold. It is clear that for
every submanifold P of a given manifoldM the inclusion 1P⊂M is an imbedding.

Remark: Let A and B be topological spaces and f : A → B be an injection.
We say that f is an imbedding if the topology of A is induced by f from the
topology of B.

More details on submanifolds
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22. Bundles

We assume that r ∈ ˜ with r ≥ 2 and a Cr-manifold M are given. Let a
number s ∈ 0. .r be given and let τ : B → M be a surjective mapping from a
given set B to the manifold M.

Let a concrete isocategory ISO with object class OBJ be given with the
following properties:

(i) Each set in OBJ has the natural structure of a Cs-manifold.

(ii) Every isomorphism in ISO is a Cs-diffeomorphism.

The most inportant special cases are (1) the isocategory of LIS consisting of
all linear isomorphisms, whose object class LS consist of all (finite dimensional)
linear spaces and (2) the isocategory of FIS consisting of all flat isomorphisms,
whose object class FS consist of all flat spaces. The object sets in LS and FS
have the natural structure of Cω-manifolds and the isomorphisms in LIS and
FIS are Cω-diffeomorphisms.

Definition: An ISO-bundle chart for B (for τ) is a bijection

φ : τ<(Oφ) → Oφ × Vφ,

where Oφ is an open subset of M and Vφ is a set in OBJ such that the diagram

τ<(Oφ)
φ−−→ Oφ × Vφ

............................................................................................................. .........
..

τ
∣∣Oφ

τ<(Oφ)

yev1

Oφ

. (22.1)

is commutative, i.e. ev1 ◦ φ = τ
∣∣Oφ

τ<(Oφ)
.

Notation: For every y ∈ M, we denote By := τ<({y}) and for every
ISO-bundle chart φ we use the following notations

φ
⌋
y

:= ev2 ◦ φ ◦
(
1By⊂τ<(Oφ)

)
: By → Vφ (22.2)

for all y ∈ Oφ, i.e. we have the following commutative diagram

Vφ

.........................
.........................

.........................
.........................

.........................
.........................

.........................
.....................
...........

φcy
xev2

By ↪−−→ τ<(Oφ)
φ−−→ Oφ × Vφ

.
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Put (22.1) and (22.2) together, we have the following commutative diagram

Vφ

.........................
.........................

.........................
.........................

.........................
.........................

.........................
.....................
...........

φcy
xev2

By ↪−−→ τ<(Oφ)
φ−−→ Oφ × Vφ

............................................................................................................. .........
..

τ
∣∣Oφ

τ<(Oφ)

yev1

Oφ

.

Let φ and ψ be ISO-bundle charts for B. We say that φ and ψ are Cs-
compatible if

ψ φ← : (Oφ ∩ Oψ)× Vφ → (Oφ ∩ Oψ)× Vψ (22.3)

is a Cs-diffeomophism such that, for every y ∈ Oφ ∩ Oψ, the mapping

ψ
⌋
y
◦ φ

⌋←
y

: Vφ → Vψ (22.4)

belongs to ISO.
A class A of ISO-bundle charts for B is called a Cs ISO-bundle atlas for

B if

(BA1) every two ISO-bundle charts in A are Cs-compatiable,

(BA2) for every x ∈ M there is a bundle chart φ ∈ A with x ∈ Oφ; i.e.
we have

M =
⋃
φ∈A

Oφ .

Proposition 1: Let A be a ISO-bundle atlas for B and let φ be a ISO-bundle
chart that is Cs-compatible with all ISO-bundle charts in A. If ψ is a ISO-
bundle chart that is Cs-compatible with every ISO-bundle chart in A then it is
also Cs-compatible with φ.

Proof: Let x ∈ Oφ ∩ Oψ be given. By (BA2), we may choose a ISO-bundle
chart θ ∈ A such that x ∈ Oθ. Put O := Oφ ∩ Oψ ∩ Oθ. Since both φ and ψ
are Cs-compatible with θ, we see that the restriction

ψ φ←
∣∣∣
φ(τ<{O})

= (ψ θ←)
∣∣∣
θ(τ<{O})

◦ (θ φ←)
∣∣∣θ(τ<{O})

φ(τ<{O})

on φ(τ<{O}) is a Cs-diffeomorphism and the induced mapping

ψ
⌋
x
◦ φ

⌋←
x

= (ψ
⌋
x
◦ θ

⌋←
x

) ◦ (θ
⌋
x
◦ φ

⌋←
x

)
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is a ISO-isomorphism. Since x ∈ Oφ ∩ Oψ was arbitrary, we conclude that ψ
and φ are Cs-compatible.

We say that a ISO-bundle atlas A of B is Cs-saturated if every ISO-bundle
chart for B that is Cs-compatible with all ISO-bundle charts in A already belongs
to A. The following is an immediate consequence of Prop. 1.

Proposition 2: Let A be a Cs ISO-bundle atlas for B. Then there is exactly
one Cs-saturated ISO-bundle atlas A that includes A. In fact, A consists of all
ISO-bundle charts that are Cs-compatible with all ISO-bundle charts in B .

Let A be a saturated ISO-atlas for B and let φ be a ISO-bundle chart in A.
On each fibre Bx, x ∈ Oφ, we can transport the ISO-structure of Vφ by means
of φ

⌋
x

: Bx → Vφ. The result is independent of the choice of φ, since every pair
of bundle charts φ and ψ in A are compatible and hence ψ

⌋
x
◦ φ

⌋←
x

: Vφ → Vψ
is a ISO-isomorphism.

Definition: A Cs ISO-bundle over M is a set B and a mapping τ : B → M
endowed with structure by the prescription of a saturated Cs ISO-bundle atlas
for B, which is called the bundle structure for B and is denoted by Chs(B,M),
or if no confusion is likely, simply by Ch(B,M). We denote the ISO-bundle by
(B, τ,M) or simply by B.

The mapping τ is called the bundle-projection. For every x ∈ M,
Bx := τ<({x}) is called the fiber over x and the inclusion mapping of Bx in
B is called the bundle inclusion at x. Right inverses of τ are called cross
sections of B. We also use the following notation

Chx(B,M) :=
{
φ ∈ Ch(B,M)

∣∣ x ∈ Oφ }
. (22.5)

As explained above, for every x ∈ M, the fiber Bx is naturally endowed
with the structure of a ISO-set in such a way that φ

⌋
x

: Bx → Vφ is in ISO (is an
isomorphism) for all φ ∈ Chx(B,M). Thus the dimension of Bx can be obtained
from all φ ∈ Chx(B,M).

Locally (relative to M), the manifold structure of the bundle manifold
B is completely determined by the manifold structure of the base manifold
M and the manifold structures of Vφ for a single φ ∈ Ch(B,M). Every bundle
chart φ in Ch(B,M) transports the manifold structure from Oφ×Vφ to τ<(Oφ),
and hence a manifold chart can be easily obtained from φ.

Let b ∈ B be given and put x := τ(b). The dimension of B at b can be
obtained from the codomain of each bundle chart φ ∈ Chx(B,M). We have

dim bB = m+ n,
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where dim xM = m and dim bBx = n.

Let ISO-bundles (B′, τ ′,M′) and (B, τ,M) be given. We say that
(B′, τ ′,M′) is a ISO-subbundle of (B, τ,M) provided B′ is a submanifold of
B, M′ is a submanifold of M and τ ′ = τ

∣∣M′

B′
such that, for each bundle chart

ϕ ∈ Ch(B′,M′), we have ϕ = φ
∣∣Codϕ

Domϕ
for some bundle chart φ ∈ Ch(B,M).

It is easily seen that for every open subset P of M,
(
τ<(P) , τ

∣∣P
τ<(P)

, P
)

is an open subbundle of (B, τ,M).

Definition: A cross section on O of B, where O is an open submanifold of
M, is a mapping s : O → B such that τ ◦ s = 1O⊂M. For every p ∈ 0. .s, we
denote the collection of all Cp cross sections of B by SecpB.

If ISO is the category DIFs that consists of all Cs-diffeomorphisms between
Cs manifolds, we call B a Cs-bundle. If ISO = FIS, we call B a flat-space
bundle. If ISO = LIS, we call B a linear-space bundle.

Proposition 3: Let D be an open subset of a flat space E and let V, W be linear
spaces. Let F : D → Lin(V,W) be given. If f : D × V → W is defined by

f(x,v) := F (x)v for all (x,v) ∈ D × V (22.6)

then f is of class Cp, p ∈ , if and only if F is of class Cp.

Proof: The assertion follows from the Partial Gradient Theorem [FDS].

If B is a linear-space bundle, then it follows from (22.3), (22.4) and Prop. 3
that for every pair of bundle charts φ, ψ ∈ Ch(B,M), the mapping

ψ � φ : Oφ ∩ Oψ → Lin(Vφ,Vψ)

defined by
(ψ � φ)(x) := ψ

⌋
x
◦ φ

⌋−1

x
for all x ∈ Oφ ∩ Oψ (22.7)

is of class Cs.

Before closing this section, we give two examples of constructing a new
bundle from given ones. We omit the details.

Examples :

(1) Trivial bundles : M×G, where G ∈ OBJ . The fiber Bx = {x}×G at
x ∈M is G tagged with x.
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(2) Fiber-product bundles : Let two bundles (A, α,M) and (B, β,M)
over the same base manifold M be given. Put

A×M B :=
⋃
x∈M

Ax × Bx

α×M β := α ◦ ev1 = β ◦ ev2

;

A×M B ev2−−−→ B

ev1

y yβ
A −−−→

α
M

. (22.8)

The bundle (A ×M B , α ×M β ,M ) is called the fiber-product bundle of
(A, α,M) and (B, β,M). The bundle projection α×Mβ : A×M B →M is given
by

α×Mβ(v) :∈
{
y

∣∣v ∈ Ay × By}. (22.9)

Let bundle charts φ ∈ Ch(A,M) and ψ ∈ Ch(B,M) be given. The mapping

φ×Mψ : (τ1×Mτ2)<(Oφ ∩ Oψ) → (Oφ ∩ Oψ)× (Vφ × Vψ) (22.10)

given by

φ×Mψ(v) =
(
y , (φcy × ψcy)v

)
for all v ∈ A×M B (22.11)

is a bundle chart for (A×M B , φ×M ψ ,M ).

10



23. The tangent bundle

Let r ∈ ×̃, a Cr-manifold M, and a point x ∈M be given.

Definition: The tangent space of M at x is defined to be

TxM :=
{

t ∈ ×
α∈ChxM

Vα (23.2) holds
}
, (23.1)

where the condition (23.2) is given by

tγ = ∇χγ(x) tχ for all χ, γ ∈ ChxM. (23.2)

TxM is endowed with the natural structure of a linear space as shown below and
dim TxM = dimxM.

For every χ ∈ ChxM, define the evaluation mapping evχ : TxM→ Vχ by

evχ(t) := tχ for all t ∈ TxM.

It follows from (21.10) that the evaluation mapping evχ is invertible and that its
inverse ev←χ : Vχ → TxM is given by

(ev←χ )(u) =
(
∇χα(x)u

∣∣ α ∈ ChxM
)

for all u ∈ Vχ.

Hence we have
evχ ◦ ev←γ = ∇γχ(x) ∈ Lis (Vγ ,Vχ) (23.3)

for all γ, χ ∈ ChxM. It follows from that the linear-space structure on TxM
obtained from that of Vχ by evχ does not depend on the choice of χ ∈ ChxM and
hence is intrinsic to TxM. We consider TxM to be endowed with this structure.

Let f be a mapping whose domain D is a neighborhood of x in M and
whose codomain is an open subset of a flat space with translation space V. It
follows from (23.3) and (21.7) that

∇χf(x) ◦ evχ ∈ Lin(TxM,V)

is the same for all χ ∈ ChxM. Hence we may define the gradient of f at x by

∇xf := ∇χf(x) ◦ evχ ∈ Lin(TxM,V) (23.4)

for all χ ∈ ChxM. In particular, if we put f := χ we get ∇xχ = evχ and hence

(∇xχ) t = tχ for all χ ∈ ChxM. (23.5)

Also, if f is given as above, we have

∇xf = ∇χf(x)∇xχ for all χ ∈ ChxM. (23.6)
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Let P be an open neighborhood of x in M. By (21.6) we have ChxP ⊂
ChxM and the mapping

(t 7→ t|ChxP
) : TxM→ TxP

is a natural bijection; we use it to identify

TxP ∼= TxM. (23.7)

Definition: The tangent bundle TM of M is defined to be the union of all
the tangent spaces of M :

TM :=
⋃
x∈M

TxM. (23.8)

It is endowed with the natural structure of a Cr−1-linear-space bundle as shown
below.

In view of the identifications (23.7) we may regard TP as a subset of TM
when P is an open subset of M.

Let D be an open subset of a flat space E with translation space V := E −E .
Then the singleton {1D} is a Cω-atlas of D. It determines on D a natural Cω-
manifold structure and hence a natural Cr-manifold structure for every r ∈ .
Given x ∈ D, the linear isomorphism ev1D : TxD → V will be used for the
identification

TxD ∼= {x} × V. (23.9)

Let f be a mapping whose domain is an open neighborhood of x and whose
codomain is an open subset of a flat space E ′ with translation space V ′. If f
is differentiable at x ∈ D then the gradient ∇xf in the ordinary sense of (23.4)
belongs to Lin({x} × V,V ′) when the identification (23.9) is used. No confusion
is likely because we have

∇xf(x,v) = ∇xf v for all v ∈ V (23.10)

when ∇xf is used with both meanings.
If D is the underlying manifold of an open subset of a flat space, then (23.9)

gives rise to the idetification
TD ∼= D × V. (23.11)

Note that the family (TxM|x ∈M ) is disjoint. The bundle projection
pt : TM→M of the tangent bundle is given by

pt(t) :∈
{
x ∈M t ∈ TxM

}
. (23.12)
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Every manifold chart χ ∈ ChM induces a bundle chart for TM as shown
in the following. We define the tangent-bundle chart

tgtχ : pt<(Dom χ) → Dom χ× Vχ (23.13)

by
tgtχ(t) = ( z , (∇zχ) t ) where z := pt(t). (23.14)

It is easily seen that tgtχ is invertible and that

tgt←χ (z,u) = (∇zχ)−1u (23.15)

for all z ∈ Domχ and all u ∈ Vχ. Let χ, γ ∈ ChM be given. It follows from
(21.7) and (23.6) that

∇χ(z)(γ χ←) = (∇χγ)(z) = (∇zγ)(∇zχ)−1 (23.16)

for all z ∈ Dom γ ∩ Dom χ. Hence, by (23.14) and (23.15) with χ replaced by
γ, we have

(tgtγ tgt←χ )(z,u) =
(
z , ∇χ(z)(γ χ←)u ) (23.17)

for all z ∈ Dom γ ∩Domχ and all u ∈ Vχ. It is clear that tgtγ tgt←χ is of class
Cr−1. Since χ, γ ∈ ChM were arbitrary, it follows from (23.17) that{

tgtα α ∈ ChM
}

is a Cr−1 bundle-atlas of TM. We consider TM has being endowed with the
Cr−1 linear space bundle structure determined by this atlas.

It is also easily seen that { (α×1Vα) ◦ tgtα α ∈ ChM} is a Cr−1 manifold-
atlas of TM. If χ ∈ ChM then the page of the manifold chart (χ× 1Vχ) ◦ tgtχ
is

Pag ((χ× 1Vχ) ◦ tgtχ) = Pag χ× Vχ (23.18)

and we have
V(χ×1Vχ )◦tgtχ

= (Vχ)2 (23.19)

and hence
dim t TM = 2 dim pt(t)M for all t ∈ TM. (23.20)

It is easily seen that the bundle projection pt : TM→M defined by (23.12)
is of class Cr−1.

Let r ∈ and Cr-manifolds M and M′ be given. Let g be a mapping whose
domain and codomain are open subsets of M and M′, respectively. We say that
g is of class Cs with s ∈ 0. .r if χ′ g χ← is of class Cs in the ordinary sense
for all χ ∈ ChM and all χ′ ∈ ChM′. This is the case if and only if χ′ g is
of class Cs in the sense of Sect.21 for all χ′ ∈ ChM′. Also, g is of class Cs if
χ′ g χ← is of class Cs for all χ in some atlas included in ChM and for all
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χ′ in some atlas included in ChM′. The notion of differentiablity of g is defined
in a similar way.

Assume that g is differentiable at x ∈M. It follows from (23.16) that

∇xg := (∇g(x)χ′)−1∇χ(x)(χ′ g χ←)∇xχ (23.21)

does not depend on the choice of χ ∈ ChxM and χ′ ∈ Chg(x)M′. We call

∇xg ∈ Lin ( TxM , Tg(x)M′ ) (23.22)

the gradient of g at x. Appropriate versions of the chain rule apply to gradients
in this sense. If M′ is an open subset of a flat space E ′ with translation space
V ′, then the gradient ∇xg in the sense of (23.22) is related to the gradient ∇xg
in the sense of (23.4) by

(∇xg)t = ( g(x) , (∇xg)t ) for all t ∈ TxM (23.23)

when the identification Tg(x)M′ ∼= {g(x)} × V ′ is used.

Definition: A mapping h : M→ TM is called a vector-field on M if it is a
right-inverse of pt, i.e. if

h(x) ∈ TxM for all x ∈M. (23.24)

If h and k are vector-fields, then h + k is the vector-field defined by value-
wise addition, i.e. by (h + k)(x) := h(x) + k(x) for all x ∈M. If h is a vector-
field and f a real-valued function on M (often called a “scalar-field”), then f h
is defined by value-wise sacalar multiplication, i.e. by (f h)(x) := f(x)h(x) for
all x ∈M.

The set of all real-valued functions of class Cs, s ∈ 0. .(r − 1), on M will
be denoted by Cs(M). The set of all vector-fields of class Cs, s ∈ 0. .(r− 1), on
M will be denoted by Xs(TM). Using value-wise addition and mutiplication,
Cs(M) acquires the natural structure of a commutative algebra over . The
constants form a subalgebra of Cs(M) that is isomorphic to . Using value-
wise addition and mutiplication, Xs(TM) acquires the natural structure of a
Cs(M)-module.

Let h : M→ TM be a vector-field and χ ∈ ChM. Define hχ : Domχ→ Vχ
by

hχ(y) := (∇yχ)h(y) foa all y ∈ Domχ. (23.25)

Given x ∈ Domχ, we define

∇–χx h := (∇xχ)−1∇xhχ ∈ LinTxM. (23.26)
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It is easily seen from (∇xχ)−1∇xhχ = (∇xχ)−1
(
∇χhχ(x)

)
∇xχ that ∇–χx h is simply

the ordinary gradient of hχ in the chart χ, transported from LinVχ to Lin TxM
by ∇xχ.

A continuous mapping p : J →M from some genuine interval J ∈ into the
manifold M will be called a process. If p is differentiable at a given t ∈ J , then

∂tp := (∇p(x)χ)−1∂t(χ p) (23.27)

does not depend on the choice of χ ∈ Chp(t)M. We call ∂tp ∈ Tp(t)M the
derivative of p at t. If p is differentiable, we define the derivative (-process)
p. : J → TM by

p.(t) := ∂t p for all t ∈ J. (23.28)

24. Tensor Bundles

We now assume that a number s ∈˜and a Cs linear-space bundle (B, τ,M)
are given.

With each analytic tensor functor Φ one can construct what is called the
associated Φ-bundle of B

Φ(B) :=
⋃
y∈M

Φ(By). (24.1)

It has the natural structure of a Cs linear-space bundle over M. For every open
subset P of M, we also use the following notation

Φ(τ<(P)) :=
⋃
y∈P

Φ(By). (24.2)

We define the bundle projection τΦ : Φ(B) →M of the bundle Φ(B) by

τΦ(v) :∈
{
y ∈M v ∈ Φ(By)

}
. (24.3)

For every bundle chart φ : τ<(Oφ) → Oφ × Vφ, we have

φ(v) =
(
y , φcy(t)

)
where y := τ(t)

We define the mapping

Φ(φ) : Φ(π<(Oφ)) → Oφ ×Φ(Vφ) (24.4)
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by
(Φ(φ))(v) := ( y , Φ(φcy)v ) when y := τΦ(v). (24.5)

It follows from the analyticity of the mapping (L 7→ Φ(L)) that{
Φ(φ) φ ∈ Ch(B,M) }

is a Cs-bundle-atlas of Φ(B). It determines the Cs linear-space bundle structure
of (Φ(B), τΦ,M).

The bundle projection τΦ : Φ(B) → M defined by (24.3) is easily seen to
be of class Cs.

Notation: For every p ∈ 0. .s, we denote the collection of all Cp cross sections
of Φ(B) by Xp(Φ(B)). The collection of all differentiable cross sections of Φ(B)
is denoted by X(Φ(B)).

In the special case B = TM, we call Φ(TM) the tansor bundle of M of
type Φ. A cross section of the tensor bundle Φ(TM) is called a tensor-field
of type Φ. When Φ := Dl is the duality functor (see Sect.13), we call Dl (TM)
the cotangent bundle of M which will be denoted by T∗M.

Remark: Let M be a C∞-manifold. With every h ∈ X∞(TM) we can then
associate a mapping h

∇
: C∞(M) → C∞(M) defined by

h
∇

(f) := (∇f)h for all f ∈ C∞(M) (24.6)

where the gradient ∇f of f is the covector field of class C∞ given by
∇f(x) := ∇xf for all x ∈ Dom f . It is clear that h

∇
is -linear. By using the

product rule ∇fg = f∇g + g∇f , we have

h
∇

(fg) = fh
∇

(g) + gh
∇

(f) for all f, g ∈ C∞(M). (24.7)

This shows that h
∇

is a derivation of the module C∞(M). One can prove that
every derivation of C∞(M) can be obtained in this manner. (The proof is fairly
difficult.)

Let a cross section section H : M→ Φ(B) be given. For every bundle chart
φ ∈ Chx(B,M) we define the mapping

Hφ : Oφ → Φ(Vφ)

by
Hφ(y) := Φ(φ

⌋
y
)H(y), for all y ∈ Oφ. (24.8)

Given x ∈ Oφ, we define

∇–φxH := Φ(φ
⌋−1

x
)∇xHφ ∈ Lin (TxM,Φ(Bx)). (24.9)
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When Φ = Id and B = TM, we have ∇– tgtχ
x h = ∇–χx h for all χ ∈ ChM and all

x ∈ Domχ.

One defines value-wise addition of cross sections of Φ(B) and value-wise
scalar multiplication of a real function on M and a cross section of Φ(B) in the
obvious manner. XpΦ(B) has the natural structure of a Cp(M)-module, where
Cp(M) is the ring of all real-valued functions of class Cp on M.

Let (L1, τ1,M) and (L2, τ2,M) be linear-space bundles over M and let
L1×ML2 be the fiber product bundle of L1 and L2. For every tensor bifunctor
Υ, it follows form (24.5) that for each bundle chart φ1 ∈ Ch(L1,M) and each
buhdle chart φ2 ∈ Ch(L2,M)

Υ(φ1×Mφ2)(v) =
(
y , Υ(ϕcy × φcy)v

)
(24.10)

where y := (τ1×Mτ2)Υ(v) (see 24.3).

Let a cross section H : M→ Υ(L1×ML2) be given. For each bundle chart
φ1 ∈ Ch(L1,M) and each buhdle chart φ2 ∈ Ch(L2,M), we define the mapping

Hφ1,φ2 : Oφ → Υ(Vφ1 × Vφ2)

by
Hφ1,φ2(y) := Φ(φ

⌋
y
)H(y), for all y ∈ Oφ1 ∩ Oφ2 . (24.11)

Given x ∈ Oφ1 ∩ Oφ2 , we define

∇–φ1,φ2
x H := Υ(φ1

⌋−1

x
× φ2

⌋−1

x
)∇xHφ1,φ2 (24.12)

which is in Lin (TxM,Υ(L1x × L2x)).
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Chapter 3

Connections

31. Tangent Connectors

We assume that r ∈ ˜ with r ≥ 2 and a Cr-manifold M are given. Let a
number s ∈ 1. .r and a Cs bundle (B, τ,M) be given. We assume that both M
and B have constant dimensions, and we put

n := dimM and m := dimB − dimM. (31.1)

Then m = dim Bx for all x ∈M.

Recall that for every bundle chart φ ∈ Ch(B,M), we have ev1◦φ(v) = τ(v)
and

φ(v) =
(
z , ev2(φ(v))

)
where z := τ(v) (31.2)

for all v ∈ Domφ. Moreover, if φ, ψ ∈ Ch(B,M), it follows easily from (31.2)
with φ replaced by ψ that

(ψ φ←)(z,u) =
(
z , ev2((ψ φ←)(z,u))

)
(31.3)

for all z ∈ Oφ ∩ Oψ and all u ∈ Vφ.

Now let b ∈ B be fixed and put x := τ(b). Let inx : Bx → B be the
inclusion mapping

inx := 1Bx⊂B. (31.4)

Consider the following diagram

Bx
inx−−→ B τ−−→ M,

the composite τ ◦ inx is the constant mapping with value x. Taking the gradient
of (τ ◦ inx) at b, we get (∇bτ)(∇binx) = 0 and hence Rng∇binx ⊂ Null∇bτ .
Indeed, we have Rng∇binx = Null∇bτ as to be shown in Prop.1.

Notation: We define the projection mapping Pb at b by

Pb := ∇bτ ∈ Lin (TbB,TxM) (31.5)

and the injection mapping Ib at b by

Ib := ∇binx ∈ Lin (TbBx,TbB). (31.6)
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Proposition 1: The projection mapping Pb is surjective, the injection mapping
Ib is injective, and we have

NullPb = Rng Ib (31.7)

i.e.
TbBx

Ib−→ TbB
Pb−→ TxM (31.8)

is a short exact sequence.

Proof: Choose a bundle chart φ ∈ Chx(B,M). It follows from (31.2) that

(φ ◦ inx)(d) =
(
x , φ

⌋
x
(d)

)
for all d ∈ Bx.

Using the chain rule and (31.6), we obtain

((∇bφ) Ib)m =
(
0,∇bφ

⌋
x
m

)
for all m ∈ TbBx . (31.9)

Since both ∇b φ and ∇bφ
⌋
x

are invertible, it follows that Null Ib = {0} and

Rng Ib = (∇bφ)<({0} × TvVφ) where v := ev2(φ(b)). (31.10)

On the other hand, it follows from (31.2) that

(τ ◦ φ←)(z,u) = z for all z ∈ Oφ

and all u ∈ Vφ. Using the chain rule and (31.5) we conclude that

Pb(∇bφ)−1(t,w) = t for all t ∈ TxM (31.11)

and all w ∈ TvVφ. Since ∇bφ is invertible, it follows that Rng Pb = TxM and

NullPb = ((∇bφ)−1)>({0} × TvVφ) where v := ev2(φ(b)). (31.12)

Since ((∇bφ)−1)> = (∇bφ)<, comparison of (31.10) with (31.12) shows that
(31.7) holds.

Definition: A linear right-inverse of the projection-mapping Pb will be called a
right tangent-connector at b, a linear left-inverse of the injection-mapping
Ib will be called a left tangent-connector at b. The sets

RconbB := Riv(Pb)
LconbB := Liv(Ib)

(31.13)

of allright tangent-connectors at b and all left tangent-connectors at b will
be called the right tangent-connector space at b and the left tangent-
connector space at b, respectively.
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The right tangent connector space RconbB is a flat in Lin(TxM,TbB) with
direction space {

IbL
∣∣ L ∈ Lin (TxM,TbBx)

}
, (31.14)

and the left tangent connector space LconbB is a flat in Lin (TbB,TbBx) with
direction space {

− LPb

∣∣ L ∈ Lin (TxM,TbBx)
}
. (31.15)

Using the identifications

Lin (TxM,TbBx){Pb} ∼= Lin (TxM,TbBx) ∼= {Ib}Lin (TxM,TbB),

we consider Lin (TxM,TbBx) as the external translation space of both RconbB
and LconbB. Since dim Lin (TxM,TbBx) = nm, we have

dim RconbB = nm = dim LconbB. (31.16)

By Prop. 1 of Sect. 14, there is a flat isomorphism

Λ : RconbB → LconbB

which assigns to every K ∈ RconbB an element Λ(K) ∈ LconbB such that

{0} ←− TbBx ←−
Λ(K)

TbB ←−
K

TxM ←− {0} (31.17)

is again a short exact sequence. We have

KPb + IbΛ(K) = 1TbB. (31.18)

Proposition 2: For each bundle chart φ ∈ Chx(B,M), let Aφ
b in

Lin (TxM,TbB) be defined by

Aφ
b t := (∇bφ)−1(t,0) for all t ∈ TxM . (31.19)

Then Aφ
b is a linear right-inverse of Pb; i.e. Aφ

b ∈ RconbB.

Proof : If we substitute w := 0 in (31.11) and use (31.19), we obtain

Pb(Aφ
bt) = t for all t ∈ TxM

which shows that Aφ
b is a linear right-inverse of Pb.
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Proposition 3: If φ, ψ ∈ Chx(B,M), then Aψ
b and Aφ

b differ by

Aφ
b −Aψ

b = Ib Γφ,ψb

Λ(Aφ
b)−Λ(Aψ

b) = −Γφ,ψb Pb

(31.20)

where
Γφ,ψb := (∇bψ

⌋
x
)−1

(
ev2 ◦ ∇x

(
(ψ φ←)(·, φ

⌋
x
b)

))
(31.21)

which belongs to Lin (TxM,TbBx).

Proof : It follows from (31.2) that

φ(b) = (x, φ
⌋
x
b). (31.22)

Using (31.3) and (31.22), we obtain

∇φ(b)(ψ φ←)(t,0) =
(
t , ev2

(
∇x

(
(ψ φ←)(·, φ

⌋
x
b)

)
t
))

(31.23)

for all t ∈ TxM.
In view of (23.16), with x replaced by b, γ by ψ, and χ by φ, we have

∇φ(b)(ψ φ←) = (∇bψ)(∇bφ)−1.

If we substitute this formula into (31.23) and use (31.19) and (31.21), we obtain

(∇bψ)(Aφ
bt) =

(
t , ∇bψ

⌋
x
Γφ,ψb t

)
for all t ∈ TxM. Using (31.19) with ψ replaced by φ, we conclude that

Aφ
bt = Aψ

bt + (∇bψ)−1
(

0 , ∇bψ
⌋
x
Γφ,ψb t

)
for all t ∈ TxM. The desired result (31.20)1 now follows from (31.9), with φ

replaced by ψ and m := Γφ,ψb t. Equation (31.20)2 follows from (31.20)1 and
Prop. 3 of Sect.14.

Notation: Let φ ∈ Chx(B,M) be given. The mapping

Γφb : RconbB → Lin (TxM,TbBx)

is defined by Γφb := ΓAφ
b in terms of (14.10); i.e. by

Γφb (K) := −Λ(Aφ
b)K for all K ∈ RconbB. (31.24)
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If φ ∈ Chx(B,M), we have, by Prop. 6 of Sect. 14,

Aφ
b −K = Ib Γφb (K)

Λ(Aφ
b)−Λ(K) = −Γφb (K)Pb

(31.25)

for all K ∈ RconbB. Moreover; if φ, ψ ∈ Chx(B,M), then (31.20) and (31.24)
give

Γφb (K)− Γψb (K) = Γφ,ψb for all K ∈ RconbB, (31.26)

where Γφ,ψb is defined by (31.21). It follows from (31.26) and Γψb
(
Aψ

b

)
= 0 that

Γφ,ψb = Γφb
(
Aψ

b

)
for all φ, ψ ∈ Chx(B,M).

Convention : Assume that B is a flat-space bundle. Let b ∈ B be given and
put x := τ(b). The fiber Bx has the structure of a flat space; the translation
space of Bx is denoted by Ux. We may and will use the identification as described
in (23.9) and (23.10); i.e. we identify TbBx with Ux. Then (31.8) becomes

Ux
Ib−→ TbB

Pb−→ TxM. (31.27)

In particular, if B is a linear-space bundle, we have Ux = Bx and (31.27) becomes

Bx
Ib−→ TbB

Pb−→ TxM. (31.28)

Remark 1: For every bundle chart φ in Chx(B,M), we have

Pb = ev1 ◦ ∇bφ, Aφ
b = (∇bφ)−1 ◦ ins1,

Ib = (∇bφ)−1 ◦ ins2 ◦ ∇bφ
⌋
x
, Λ(Aφ

b) = (∇bφ
⌋
x
)−1(ev2 ◦ ∇bφ),

(31.29)

where evi and insi, i ∈ 2
]
, are evaluations and insertions, respectively.

Proof: Let φ ∈ Chx(B,M) be given. Using (31.9), (31.19) and also observing
Aφ

bPb + IbΛ(Aφ
b) = 1TbB, we have

∇bφ = ∇bφ
(
Aφ

bPb + IbΛ(Aφ
b)

)
=

(
Pb , (∇bφ)

⌋
x
Λ(Aφ

b)
)
. (31.30)

The desired result (31.29) follows from (31.9), (31.19) and (31.30).

If in addition φ
⌋
x

= 1Bx , then we have

Ib = (∇bφ)−1 ◦ ins2 and Λ(Aφ
b) = (ev2 ◦ ∇bφ).
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Remark 2: For every cross section s : M → B, we have τ ◦ s = 1M. If s is
differentiable at x ∈M, then the gradient of 1M = τ ◦ s at x gives

1TxM = ∇x(τ ◦ s) = (∇s(x)τ)(∇xs) = Ps(x)∇xs. (31.31)

We see that ∇xs is a right tangent connector at s(x); i.e. ∇xs ∈ Rcons(x)(B).

Remark 3: Let B be a linear space bundle and let x ∈ M be given. Denote
the zero of the linear space Bx by 0x. It follows from (31.21) that Γφ,ψ0x

= 0 and
then from (31.20) that Aφ

0x
= Aψ

0x
for all φ, ψ ∈ Chx(B,M). This shows that{

Aφ
0x

∣∣ φ ∈ Chx(B,M)
}

is a singleton and hence

{
Aφ

0x

∣∣ φ ∈ Chx(B,M)
}

Rcon0xB.

Remark 4: For every b ∈ B, we define the vertical space VbB of B at b by

VbB := NullPb = Rng Ib ⊂ TbB . (31.32)

Since Ib is injective, VbB is isomorphic with TbBτ(b). The sequence

VbB ↪−−→ TbB
Pb−−→ Tτ(b)M (31.33)

is a short exact sequence. For every right tangent connector K ∈ RconbB, the
range of K

HK
b B := RngK ⊂ TbB (31.34)

is called the horizontal space of B at b relative to K. It is easily seen that
VbB and HK

b B are supplementary in TbB.

Notes 31

(1) The convention that we made in this section was first introduced by
Noll, in 1974, on the tangent bundle TM (see [N3]). This convention plays a
central role in our development.

(2) The short exact sequence (31.33) can be found in [Sa].
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32. Transfer Isomorphisms, Shift Spaces

We assume that r ∈ ˜ with r ≥ 2 and a Cr-manifold M are given. Let a
number s ∈ 1. .r be given and let B be a Cs linear-space bundle over M. We
assume that bothM and B have constant dimensions, and put n := dimM and
m := dimB − dimM. Then

m = dim Bx for all x ∈M. (32.1)

Now let x ∈M be fixed. We define the bundle of transfer isomorphisms
of B from x by

TlisxB :=
⋃
y∈M

Lis(Bx,By). (32.2)

It is endowed with the natural structure of a Cs-fiber bundle as shown below.
The corresponding bundle projection πx : TlisxB →M is given by

πx(T) :∈
{
y ∈M T ∈ Lis(Bx,By)

}
(32.3)

and the bundle inclusion ιx : LisBx → Tlisx B at x is

ιx := 1LisBx⊂TlisxB. (32.4)

For every bundle chart φ ∈ Chx(B,M), we define

tlisφx : Tlisx(Oφ)→ Oφ × Lis(Bx,Vφ) (32.5)

by
tlisφx(T) :=

(
z , φ

⌋
z
T

)
, where z := πx(T). (32.6)

It is easily seen that tlisφx is invertible and that

tlisφx
←

(z,L) = (φ
⌋
z
)−1L (32.7)

for all z ∈ Oφ and all L ∈ Lis(Bx,Vφ). Moreover, if ψ, φ ∈ Chx(B,M), it follows
easily from (32.7) and (32.6) with φ replaced by ψ that(

tlisψx tlisφx
←)

(z,L) =
(
z , (ψ � φ)(z)L

)
(32.8)

for all z ∈ Oψ ∩ Oφ and all L ∈ Lis(Bx,Vφ) (See (22.7) for the definition of
ψ � φ). It is clear that tlisψx tlisφx

←
is of class Cs. Since ψ, φ ∈ Chx(B,M)

were arbitrary, it follows that
{

tlisαx α ∈ Chx(B,M)
}

is a Cs-bundle atlas
of TlisxB. We consider

(
TlisxB , πx,M

)
as being endowed with the Cs fiber

bundle structure overM determined by this atlas.
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Remark : We may view TlisxB as a Tranx-bundle, where Tranx is the iso-
category whose objects are of the form Lis(Bx,V) with V ∈ LS and whose
isomorphisms are of the form

(T 7→ LT) : Lis(Bx,DomL)→ Lis(Bx,CodL)

with L ∈ LIS.

It is easily seen that the mappings πx and ιx defined by (32.3) and (32.4)
are of class Cs.

We now apply the results of Sect.31 by replacing the ISO-bundle B there
by the bundle TlisxB and b ∈ B there by 1Bx ∈ TlisxB.

Definition: The shift-space SxB of B at x ∈M is defined to be

SxB := T1Bx
TlisxB. (32.9)

We define the projection mapping of SxB by

Px := P1Bx
= ∇1Bx

πx ∈ Lin (SxB,TxM) (32.10)

and the injection mapping of SxB by

Ix := I1Bx = ∇1Bx
ιx ∈ Lin (LinBx,SxB) (32.11)

in terms of (31.5) and (31.6); respectively, where πx and ιx are defined by (32.3)
and (32.4).

It is clear from (32.5) that

dim (TlisxB) = dim (SxB) = n+m2. (32.12)

Proposition 1: The projection mapping Px is surjective, the injection mapping
Ix is injective, and we have

NullPx = Rng Ix (32.13)

i.e.
LinBx

Ix−→ SxB
Px−→ TxM (32.14)

is a short exact sequence.

Definition: A linear right-inverse of the projection-mapping Px will be called a
right shift-connector (or simply right connector) at x, a linear left-inverse
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of the injection-mapping Ix will be called a left shift-connector (or simply left
connector) at x. The sets

RconxB := Rcon1Bx
TlisxB

LconxB := Lcon1Bx
TlisxB

(32.15)

of all right connectors at x and all left connector at x will be called the right
connector space at x and the left connector space at x, respectively.

The right connector space RconxB is a flat in Lin(TxM,SxB) with direction
space {

IxL
∣∣ L ∈ Lin (TxM,LinBx)

}
, (32.16)

and the left connector space LconxB is a flat in Lin (SxB,LinBx) with di-
rection space {

− LPx
∣∣ L ∈ Lin (TxM,LinBx)

}
. (32.17)

Using the identifications

Lin (TxM,LinBx){Px} ∼= Lin (TxM,LinBx) ∼= {Ix}Lin (TxM,LinBx),

we consider Lin (TxM,LinBx) as the external translation space of both RconxB
and LconxB. Since dim Lin (TxM,LinBx) = nm2, we have

dim RconxB = nm2 = dim LconxB. (32.18)

The flat isomorphism

Λ : RconxB → LconxB

assigns to every K ∈ RconxB an element Λ(K) ∈ LconxB such that

LinBx ←−
Λ(K)

SxB ←−
K

TxM (32.19)

is again a short exact sequence. We have

KPx + IxΛ(K) = 1SxB for all K ∈ RconxB. (32.20)

Convention : Since there is one-to-one correspondence between right connec-
tors and left connectors, we shall only deal with one kind of connectors, say right
connectors. If we say “connector”, we mean a right connector. The notation

ConxB := RconxB

is also used.

9



Proposition 2: For each φ ∈ Chx(B,M), let Aφ
x ∈ Lin (TxM,SxB) be defined

by Aφ
x := Ctlisφx

1Bx
in terms of (31.19); i.e.

Aφ
x t := (∇1Bx

tlisφx)
−1(t,0) for all t ∈ TxM . (32.21)

Then Aφ
x is a linear right-inverse of Px, i.e. Aφ

x ∈ ConxB.

Let φ ∈ Chx(B,M) be given. We have the following short exact sequence

LinBx ←−
Λ(Aφ

x)
SxB ←−

Aφ
x

TxM (32.22)

and
Aφ
xPx + IxΛ(Aφ

x) = 1SxB. (32.23)

Proposition 3: If ψ, φ ∈ Chx(B,M) are given, then

Aφ
x −Aψ

x = Ix Γφ,ψx

Λ(Aφ
x)−Λ(Aψ

x ) = −Γφ,ψx Px
(32.24)

where Γφ,ψx := Γtlisφx ,tlis
ψ
x

1Bx
in terms of (31.21) is of the form

Γφ,ψx := (ψ
⌋
x
)−1

(
∇x(ψ � φ)

)
◦ (1TxB × φ

⌋
x
) (32.25)

which belongs to Lin (Tx,LinBx). Here, the notation (22.7) is used.

Proof : Applying Prop. 3 in Sect. 32 with φ replaced by tlisφx and ψ replaced
by tlisψx together with (32.6) and (32.8), we obtain the desired result (32.25).

Notation: Let φ ∈ Chx(B,M) be given. We define the mapping

Γφx : ConxB → Lin (TxM,LinBx)

by Γφx := ΓAφ
x = Γtlisφx

1Bx
in terms of (14.10) and (31.24); i.e.

Γφx (K) = −Λ(Aφ
x)K for all K ∈ ConxB. (32.26)

If φ ∈ Chx(B,M), then (31.25) reduces to

Aφ
x −K = Ix Γφx (K)

Λ(Aφ
x)−Λ(K) = −Γφx (K)Px

(32.27)
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for all K ∈ ConxB. Moreover; if ψ, φ ∈ Chx(B,M), then

Γφx (K)− Γψx (K) = Γφ,ψx for all K ∈ ConxB, (32.28)

where Γφ,ψx is defined by (32.25). It follows from (32.28) that Γψ,φx = −Γφ,ψx and
from Γψx

(
Aψ
x

)
= 0 that Γφx

(
Aψ
x

)
= Γφ,ψx for all bundle charts ψ, φ ∈ Chx(B,M).

For every cross section H : O → TlisxB of the bundle TlisxB, the mapping
T :M→ TlisxB defined by

T(y) := H(y)H−1(x) for all y ∈M (32.29)

is a cross section of the bundle TlisxB with T(x) = 1Bx .

Definition: A cross section T : O → TlisxB of the bundle TlisxB such that
T(x) = 1Bx is called a transport from x.

For every bundle chart φ ∈ Ch(B,M), we see that(
y 7→ (φ

⌋
y
)−1φ

⌋
x

)
: Oφ → TlisxB

is a transport from x which is of class Cs.

Remark 1: For every K ∈ ConxB, there is a bundle chart φ ∈ Chx(B,M) with
φ
⌋
x

= 1Bx such that
K = ∇x(φ

⌋
)−1 = Aφ

x. (32.30)

Proof: Let K ∈ ConxB be given. It is not hard to construct a transport
T : O → TlisxB from x such that (Ask Prof. Noll!!!!!!!!!!!!!!!!!!!!!)

K = ∇xT. (32.31)

There is a bundle chart φ : τ<(O)→ O×Bx induced from T by

φ(v) := ( y , T−1(y)v) where y := τ(v) (32.32)

for all v ∈ τ<(O). It is easily seen that (φ
⌋
)−1 = T. The first part of (32.30)

follows from (32.31). In view of (31.29) we have

Λ(Aφ
x)

(
∇x(φ

⌋
)−1

)
=

(
ev2 ◦ ∇1Bx

tlisφx
)
∇x(φ

⌋
)−1

= ev2 ◦ ∇x
(
y 7→ tlisφx((φ

⌋
y
)−1)

)
.

(32.33)

Using (32.6) and ovbserving φ
⌋
y
∈ Lin (By,Bx), we have

tlisφx((φ
⌋
y
)−1) = ( y , φ

⌋
y
(φ

⌋
y
)−1) = ( y , 1Bx). (32.34)

Taking the gradient of (32.34) at x, we observe that

∇x
(
y 7→ tlisφx((φ

⌋
y
)−1)

)
= (1TxM,0). (32.35)

It follows from (32.33) and (32.35) that

Λ(Aφ
x)

(
∇x(φ

⌋
)−1

)
= 0.

This can happen only when ∇x(φ
⌋
)−1 = Aφ

x.
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33. Torsion

Let r ∈ ,̃ with r ≥ 2, and a Cr-manifoldM be given. For every x ∈M, we
have; as described in Sect. 32 with B := TM,

TlisxTM :=
⋃
y∈M

Lis(TxM,TyM). (33.1)

We also have the following short exact sequence

LinTxM
Ix−→ SxTM

Px−→ TxM. (33.2)

The short exact sequence (33.2) is of the form (15.1) and hence all of the
results in Sect.15 can be used here.

For every manifold chart χ ∈ ChM, the tangent mapping tgtχ; as defined in
(22.13), is a bundle chart of the tangent bundle TM such that ev2 ◦ tgtχ = ∇χ.
Note that not every tangent bundle chart φ ∈ Ch(TM,M) can be obtained from
the gradient of a manifold chart. To avoid complicated notations, we replace
all the superscript of φ = tgtχ by superscript of χ; i.e. we use the following
notation

Aχ
x := A

tgtχ
x , Γχx := Γ

tgtχ
x and Γχ,γx := Γ

tgtχ,tgtγ
x (33.3)

for all manifold charts χ, γ ∈ ChM. Given χ, γ ∈ ChM. It is easily seen from
(32.25) and (23.16) that

Γχ,γx :=
(
(∇xγ)−1∇(2)

χ γ(x)) ◦ (∇xχ×∇xχ). (33.4)

It follows from the Theorem on Symmetry of Second Gradients (see
Sect.612, [FDS]) that Γχ,γx belongs to the subspace Sym2(TxM2,TxM) of
Lin2(TxM2,TxM) ∼= Lin(TxM,LinTxM).

Proposition 1: There is exactly one flat F in ConxTM with direction
space {Ix}Sym2(TxM2,TxM) which contains Aχ

x for every manifold chart
χ ∈ ChxM, so that

F = Aχ
x + {Ix}Sym2(TxM2,TxM) for all χ ∈ ChxM. (33.5)

Definition: The shift-bracket Bx ∈ Skw2 (SxTM2,TxM) of SxTM is de-
fined by

Bx := BF (33.6)

where BF is defined as in (15.5).

Definition: The torsion-mapping Tx : ConxTM → Skw2 (TxM2,TxM) of
ConxTM is defined by

Tx := TF (33.7)
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where TF is defined as in (15.8).

It follows from Prop.3 of Sect.15 that, for every manifold chart χ ∈ ChxM,
we have

Tx = Γχx − Γχx ˜ (33.8)

where ˜ denotes the value-wise switch, so that Γχx ˜(K)(s, t) = Γχx (K)(t, s) for
all K ∈ ConxM and all s, t ∈ TxM.

The torsion-mapping Tx is a surjective flat mapping with T<
x ({0}) = F

whose gradient

∇Tx ∈ Lin
(

Lin2 (TxM2,TxM) , Skw2 (TxM2,TxM)
)

(33.9)

is given by
(∇Tx)L = L˜− L (33.10)

for all L ∈ Lin2 (TxM2,TxM).

Definition: We say that a connector K ∈ ConxTM is torsion-free (or
symmetric) if Tx(K) = 0, i.e. K ∈ F . The flat of all symmetric connec-
tors will be denoted by SconxM := T<

x ({0}).

The mapping

Sx := (1ConxTM +
1
2
IxTx)

∣∣SconxM (33.11)

is the projection of ConxTM onto SconxM with

Null∇Sx = Skw2 (TxM2,TxM).

If K ∈ ConxTM, we call Sx(K) = K + 1
2Ix

(
Tx(K)

)
the symmetric part of

K.

Theorem : A connector K ∈ ConxTM is symmetric if and only if K = Aχ
x

for some χ ∈ ChxM. Thus SconxM = {Aχ
x |χ ∈ ChxM}.

Proof: Let K ∈ ConxM be given. If K = Aχ
x for some χ ∈ ChxM, then

Γχx (K) = 0 and hence Tx(K) = 0 by (33.8).
Assume now that Tx(K) = 0. We choose γ ∈ ChxM and put

L := ∇xγ Γγx (K) ◦
(
(∇xγ)−1 × (∇xγ)−1

)
. (33.12)

It follows from (33.8) that L is symmetric, i.e. that L ∈ Sym2(V2
γ ,Vγ). We now

define the mapping α : Dom γ → Vγ by

α(z) := γ(z) +
1
2
L

(
γ(z)− γ(x) , γ(z)− γ(x)

)
for all z ∈ Dom γ .
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Take the gradient at x, we have ∇xα = ∇xγ i.e. that is (∇xα)(∇xγ)−1 = 1Vγ . It
follows from the Local Inversion Theorem that there exist an open subset N of
Domα such that χ := α|α>(N)

N
is a bijection of class Cr. It is easily seen that

χ ∈ ChxM and that
∇(2)
γ χ(x) = L

Using (33.12), (32.25) and ∇xχ = ∇xγ, we conclude that

Γγx (K) = (∇xχ)−1∇(2)
γ χ ◦

(
∇xγ ×∇xγ

)
= Γγ,χx .

Hence, by (32.24) and (32.27), we have

Aγ
x −Aχ

x = IxΓγ,χx = IxΓγx (K) = Aγ
x −K ,

which gives K = Aχ
x .

34. Connections, Curvature

From now on, in this chapter, we assume a linear-space bundle (B, τ,M)
of class Cs, s ≥ 2, is given. We also assume that both M and B have constant
dimensions, and put n := dimM and m := dimB − dimM. Then we have, as
in (32.1),

m = dim Bx for all x ∈M. (34.1)

Definition: The connector bundle ConB of B is defined to be the union of
all the right-connector spaces

ConB :=
⋃
x∈M

ConxB . (34.2)

It is endowed with the structure of a Cs−1-flat space bundle over M as shown
below.

If P is an open subset of M and x ∈ P, we can identify ConxA ∼= ConxB,
where A := τ<(P), in the same way as was done for the tangent space. Hence
we may regard ConA as a subset of ConB.

Note that the family (ConxB |x ∈ M ) is disjoint. The bundle projection
ρ : ConB →M is given by

ρ(K) :∈
{
y ∈M K ∈ ConxB

}
, (34.3)

and, for every x ∈M, the bundle inclusion inx : ConxB → ConB at x is

inx := 1ConxB⊂ConB . (34.4)
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For every (χ, φ) ∈ ChM× Ch(B,M) we define

con(χ,φ) : Con(Domφ)→ (Domχ ∩ Oφ)× Lin(Vχ,LinVφ) (34.5)

by
con(χ,φ)(H) :=

(
z , φ

⌋
z
Λ(Aφ

z )(H) (∇zχ−1 × φ
⌋−1

z
)

)
where z := ρ(H)

(34.6)

for all H ∈ Con(Domφ). It is easily seen that con(χ,φ) is invertible and

con(χ,φ)←(z,L) = Aφ
z + Izφ

⌋−1

z
L (∇zχ× φ

⌋
z
) (34.7)

for all z ∈ (Domχ∩Oφ) and all L ∈ Lin(Vχ,LinVφ). Let (χ, φ), (γ, ψ) ∈ ChM×
Ch(B,M) be given. We easily deduce from (34.7) and (34.6), with (χ, φ) replaced
by (γ, ψ) and Λ(Aψ

z )(Aφ
z ) = −Γψ,φz = Γφ,ψz , that(

con(γ,ψ) con(χ,φ)←)
(z,L)

=
(
z , ψ

⌋
z
Γφ,ψz (∇zγ−1 × ψ

⌋−1

z
) + κ(z)L

(
∇zλ× κ(z)−1

))
where λ := γ χ← and κ := ψ � φ (see (22.7))

(34.8)

for all z ∈ (Domχ∩Oφ)∩ (Domγ ∩Oψ) and L ∈ Lin(Vχ,LinVφ). It is clear that
con(γ,ψ) con(χ,φ)← is of class Cs−1. Since (γ, ψ), (χ, φ) ∈ ChM× Ch(B,M)
were arbitrary, it follows that

{
con(α,φ)

∣∣ (α, φ) ∈ ChM×Ch(B,M)
}

is a Cs−1-
bundle atlas of ConB; it determines the natural structure of a Cs−1 flat-space
bundle over M.

The mappings ρ and inx defined by (34.3) and (34.4) are easily seen to be
of class Cs−1.

Definition: Let O be an open subset of M. A cross section on O of the con-
nector bundle ConB

A : O → ConB (34.9)

is called a connection on O for the bundle B. A connection on M for the
bundle B is simply called a connection for the bundle B. For every bundle chart
φ in Ch(B,M), the connection Aφ on Oφ is defined by

Aφ(x) := Aφ
x for all x ∈ Oφ, (34.10)

where Aφ
x is given by (32.21).

Definition: The tangent-space of ConB at K is denoted by

TKConB. (34.11)
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We define the projection mapping of TKConB by

PK := ∇Kρ ∈ Lin (TKConB,TxM) (34.12)

and the injection mapping of TKConB by

IK := ∇Kinx ∈ Lin
(
Lin(TxM,LinBx),TKConB

)
(34.13)

where ρ and inx are defined by (34.3) and (34.4).

It is clear from (34.5) that

dim (ConB) = dim (TKConB) = n+ nm2. (34.14)

Proposition 1: The projection mapping PK is surjective, the injection mapping
IK is injective, and we have

NullPK = Rng IK (34.15)

i.e.
Lin(TxM,LinBx)

IK−−→ TKConB PK−−→ TxM (34.16)

is a short exact sequence.

The short exact sequence (34.16) is of the form (15.1) and hence all of the
results in Sect.15 can be used here.

Proposition 2: For each (χ, φ) ∈ ChxM× Chx(B,M), let

A(χ,φ)
K ∈ Lin (TxM,TKConB)

be defined by A(χ,φ)
K := Acon(χ,φ)

K in terms of the notation (32.21); i.e.

A(χ,φ)
K :=

(
∇Kcon(χ,φ)

)−1 ◦ ins1. (34.17)

Then A(χ,φ)
K is a linear right-inverse of PK; i.e. PKA(χ,φ)

K = 1TxM.
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Proposition 3: If (γ, ψ), (χ, φ) ∈ ChxM× Chx(B,M), with Aφ
x = K = Aψ

x ,
then

A(χ,φ)
K −A(γ,ψ)

K = IK Γ(χ,φ),(γ,ψ)
K

Λ(A(χ,φ)
K )−Λ(A(γ,ψ)

K ) = −Γ(χ,φ),(γ,ψ)
K PK

(34.18)

where Γ(χ,φ),(γ,ψ)
K := Γcon(χ,φ),con(γ,ψ)

K in terms of the notation (32.25) is given by

Γ(χ,φ),(γ,ψ)
K (t, t′) = (ψ

⌋
x
)−1

(
∇(2)
γ(x)(ψ � φ)(∇xγ t,∇xγ t′)

)
φ
⌋
x

(34.19)

for all t, t′ ∈ TxM. We have Γ(χ,φ),(γ,ψ)
K ∈ Sym2(TxM2,LinBx). Here, the

notation (22.7) is used.

Proof: Let (γ, ψ), (χ, φ) ∈ ChxM×Chx(B,M), with Aφ
x = K = Aψ

x , be given.
Then, we have ∇x(ψ � φ) = Λ(Aφ

x)(K) = 0. It follows from (34.6) that

con(χ,φ)
⌋
x
(K) = 0. (34.20)

Using (34.8), (34.20) and (33.25), we obtain(
con(γ,ψ) con(χ,φ)←)

(z, con(χ,φ)
⌋
x
(K))

=
(
z , ∇z(ψ � φ)

(
∇zγ−1 × (φ

⌋
z
◦ ψ

⌋−1

z
)
))
.

(34.21)

Taking the gradient of (34.21) with respect to z at x and observing∇x(ψ�φ) = 0,
we have

ev2
(
∇x

(
(con(γ,ψ) con(χ,φ)←)

(
·, con(χ,φ)

⌋
x
(K)

))
t
)

=
((
∇(2)
γ(x)(ψ � φ)

)
∇xγ t

)
(1Vγ × (φ

⌋
x
◦ ψ

⌋−1

x
))

(34.22)

for all t ∈ TxM. Using (34.22), (34.6) with (χ, φ) replaced by (γ, ψ) and
applying Prop. 3 in Sect. 32 with φ replaced by con(χ,φ) and ψ replaced by
con(γ,ψ), we obtain the desired result (34.19).

If φ, ψ ∈ Chx(B,M), with Aφ
x = K = Aψ

x , we have Γφ,ψx = 0 by (33.25).
It follows from (21.9) that the right hand side of (34.19) does not depend on
the manifold charts χ, γ ∈ ChxM. In particular, when ψ = φ we have A(χ,φ)

K =
A(γ,φ)

K for all manifold charts χ, γ ∈ ChxM.
By using the definition of the gradient

∇xAφ = (∇Kconχ,φ)−1∇χ(x)

(
conχ,φ Aφ χ←

)
∇xχ

and (34.6), we can easily seen that for every bundle chart φ ∈ Chx(B,M) with
Aφ
x = K

∇xAφ = A(χ,φ)
K for all χ ∈ ChxM. (34.23)
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for all bundle charts φ ∈ Chx(B,M) with Aφ
x = K.

Proof: The assertion follows from (34.23) together with (34.18) and (34.19).

Definition: The bracket BK ∈ Skw2 (TKConB2,TxM) of TKConB is defined
by

BK := BFK
(34.25)

where BFK
is defined as in (15.5).

Definition: Let A : M → ConB be a connection which is differentiable at x.
The curvature of A at x, denoted by

Rx(A) ∈ Skw2

(
TxM2,LinBx

)
, (34.26)

is defined by
Rx(A) := TFA(x)(∇xA) (34.27)

where TFA(x) is defined as in (15.8).
If A is

differentiable, then the mapping R(A) : M → Skw2( TanM2 , LinB ) defined
by

R(A)(x) := Rx(A) for all x ∈M

is called the curvature field of the connection A.

A fomula for the curvature field R(A) in terms of covariant gradients will
be given in Prop. 5. If the connection A is of class Cp, with p ∈ 1..s − 1, then
∇A is of class Cp−1, and so is the curvature field R(A).

More generally, if φ, ψ ∈ Chx(B,M), without assuming that Aφ
x = K = Aψ

x ,
then Eq. (34.19) must be replaced by

Γ(χ,φ),(γ,ψ)
K (t, t′)

= −Γφ,ψx (t)Γφx (K)(t′) + Γφx (K)(t′)Γφ,ψx (t) + Γφx (K)Γχ,γx (t, t′)

− Γφ,ψx (t′)Γφ,ψx (t) + (ψ
⌋
x
)−1

(
∇(2)
γ (ψ � φ)

)
(x)(∇xγ t,∇xγ t′)φ

⌋
x

(34.28)

for all t, t′ ∈ TxM. If one of those two bundle charts, say φ, satisfies Aφ
x = K,

then it follows from (34.28), Γφx (K) = 0 and −Γφ,ψx = Γψx (K) that

Γ(χ,φ),(γ,ψ)
K (t, t′)

= −Γψx (K)t′Γψx (K)t + (ψ
⌋
x
)−1

(
∇(2)
γ (ψ � φ)

)
(x)(∇xγ t,∇xγ t′)φ

⌋
x

(34.29)

for all t, t′ ∈ TxM.
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Proposition 5: Let A : M → ConB be a connection that is differentiable at
x ∈M. The curvature of A at x is given by(

Rx(A)
)
(s, t) = (∇– γ,ψx Γψ(A))(s, t)− (∇– γ,ψx Γψ(A))(t, s)

+
(
Γψx (A(x))sΓψx (A(x))t− Γψx (A(x))tΓψx (A(x))s

) (34.30)

for all (γ, ψ) ∈ ChxM× Chx(B,M) and all s, t ∈ TxM.

Proof: Let a bundle chart (γ, ψ) ∈ ChxM× Chx(B,M) be given. It follows
from (42.6) and Λ(Aψ

z )(A(z)) = −Γψz (A(z)) that

con(γ,ψ) ◦A(z) =
(
z ,−ψ

⌋
z
Γψz (A(z)) (∇zγ−1 × ψ

⌋−1

z
)

)
(34.31)

In view of (32.29), we have

Λ(A(γ,ψ)
A(x) )(∇xA) = con(γ,ψ)

⌋−1

x

(
ev2 ◦ ∇A(x)

(
con(γ,ψ)

))(
∇xA

)
= con(γ,ψ)

⌋−1

x
ev2 ◦

(
∇x

(
con(γ,ψ) ◦A

))
= ∇x

(
z 7→ −ψ

⌋−1

x
ψ

⌋
z
Γψz (A(z))(∇zγ−1∇xγ × ψ

⌋−1

z
ψ

⌋
x
)
)

(34.32)
By using

Aγ
x = ∇x(z 7→ ∇zγ−1∇xγ) , Aψ

x = ∇x(z → ψ
⌋−1

z
ψ

⌋
x
)

and (42.38), we observe that

Λ(A(γ,ψ)
A(x) )(∇xA) = ∇x

(
z 7→ −ψ

⌋−1

x
ψ

⌋
z
Γψz (A(z))(∇zγ−1∇xγ × ψ

⌋−1

z
ψ

⌋
x
)
)

= −
(

xΓψ(A)
)
(Aγ

x,A
ψ
x )

= −∇– γ,ψx Γψ(A).

Together with (42.27) and (42.29), we prove (34.12).

Remark : When the linear-space bundle B is the tangent bundle TM, we have(
Rx(A)

)
(s, t) = (∇–χx Γχ(A))(s, t)− (∇–χx Γχ(A))(t, s)

+
(
Γχx (A(x))sΓχx (A(x))t− Γχx (A(x))tΓχx (A(x))s

) (34.33)

for all manifold chart χ ∈ ChxM and all s, t ∈ TxM.

If a transport T :M→ TlisxM from x is differentiable at y, we define the
connector-gradient, ∇cy T ∈ Lin (Ty,Sy), of T at y by

∇cy T := ∇y
(
z 7→ T(z)T(y)−1

)
. (34.34)
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Theorem : A connection A : M → ConB is curvature-free if and only if,
locally A agrees with Aφ for some bundle chart φ ∈ Ch(B,M). In other word,
for every x ∈ M, there is an open neighbourhood Nx of x and a transport
T : Nx → TlisxM from x such that ∇c T = A

∣∣
Nx

Proof: Ask Prof. Noll!!!!!!!!!!!!!!!!!

35. Parallelisms, Geodesics

Let a connector K ∈ ConB be given and put x := ρ(K).
We now apply the results of Sect. 32 by replacing the ISO-bundle there by

the flat-space bundle ConB and b ∈ B there by K.

Definition: The shift bundle SB of (B, τ,M) is defined to be the union of all
the shift spaces of B :

SB :=
⋃
y∈M

SyB. (35.1)

It is endowed with the structure of a Cr−2-manifold.

We defined the mapping σ : SB →M by

σ(s) :∈
{
y ∈M s ∈ SyB

}
, (35.2)

and every y ∈M the mapping iny : SyB → SB by

iny := 1SyB⊂SB . (35.3)

We define the projection P : SB → TM by

P(s) := Pσ(s)s for all s ∈ SB (35.4)

and the injection I : LinB → SB by

I(L) := IτLn(L) L for all L ∈ LinB (35.5)

where Ln is the lineon functor (see Sect.13) and

LinB := Ln(B) =
⋃
y∈M

LinBy. (35.6)

We have
pt(P(s)) = σ(s) for all s ∈ SB (35.7)
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and

σ(IL) = τLn(L) for all L ∈ LinB. (35.8)

It is easily seen that P and I are of class Cr−2.

We now fix x ∈M and consider the bundle TlisxB of transfer-isomorphism
from x as defined by (32.2). A mapping of the type

T : [0, d]→ TlisxB with T(0) = 1Bx , (35.9)

where d ∈×, will be called a transfer-process of B from x. If T is differentiable
at a given t ∈ [0, d], we defined the shift-derivative sdtT ∈ Sπx(T(t))B at t of
T by

sdtT := ∂t
(
s 7→ T(s)T(t)−1

)
. (35.10)

We have

σ (sdtT) = πx (T(t)) , (35.11)

when πx is defined by (32.3). If T is differentiable, we define the shift-
derivative (-process) sdT : [0, d]→ SB by

(sdT) (t) := sdtT for all t ∈ [0, d] . (35.12)

If T is of class Cs, s ∈ 1..(r − 2), then sdT is of class Cs−1.

Proposition 1: Let T : [0, d] → TlisxB be a transfer-process of B from x and
put

p := πx ◦T = σ ◦ (sdT) : [0, d]→M. (35.13)

Then p is differentiable and

P ◦ (sdT) = p. . (35.14)

Proof: Let t ∈ [0, d] be given and put y := p(t). Then T(s)T(t)−1 ∈ TlisyB and

πy
(
T(s)T(t)−1

)
= πx (T(s)) = p(s)

for all s ∈ [0, d]. Differentiation with respect to s at t, using (35.10), (32.10),
and the chain rule, gives Py(sdtT) = p.(t). Since t ∈ [0, d] was arbitrary, (35.14)
follows.
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Proposition 2: Let T be a differentiable transfer-process from x and let p be de-
fined as in Prop. 1. Assume, moreover, that φ ∈ Chx(B,M) is a chart such that
Rng p ⊂ Oφ. If we define H : [0, d]→ LisBx and V : [0, d]→ LinBx by

H(t) := (φ
⌋
y
)T(t) (35.15)

and
V(t) := φ

⌋
y

(
Λ(Aφ

y )(sdtT)
)
(φ

⌋
y
)−1 (35.16)

when y := p(t) and t ∈ [0, d ], then

H
.
= VH , H(0) = 1Bx . (35.17)

Proof: Let t ∈ [0, d] be given and put y := p(t). Using (32.6) with x replaced
by y and T by T(s)T(t)−1, we obtain from (35.15) that

tlisφy (T(s)T(t)−1) =
(
p(s) , φ

⌋
y
H(s)H(t)−1(φ

⌋
y
)−1

)
for all s ∈ [0, d].

In view of (31.30) with φ replaced by tlisφy and (35.10) we conclude that(
∇1Ty tlisφy

)
(sdtT) =

(
p.(t) , φ

⌋
y
(H

.
H−1)(t)(φ

⌋
y
)−1

)
.

Comparing this result with (31.29) and (35.16), and using the injectivity of
∇1Tx tlisφy , we obtain (H.H−1)(t) = V(t). Since t ∈ [0, d] was arbitrtary, (35.17)1
follows. Since both φ

⌋
x

= 1Bx and T(0) = 1Bx , (35.17)2 is a direct consequence
of (35.15).

Theorem on Shift-Processes: Let U : [0, d]→ SB, with d ∈×, be a continu-
ous shift-process of B such that p := σ ◦U is differentiable and

P ◦U = p. : [0, d]→ TanM . (35.18)

Then there exists exactly one transfer-process T : [0, d] → TlisxB of B from
x := p(0), of class C1, such that sdT = U.

Proof: Assume first that φ ∈ Ch(B,M) can be chosen such that Rng p ⊂
Domχ. Define V : [0, d]→ LinVφ by

V(t) := (φ
⌋
y
)

(
Λ(Aφ

y )U(t)
)

(φ
⌋
y
)−1 when y := p(t). (35.19)

Since U is continuous, so is V. Let H : [0, d]→ LinVφ be the unique solution of
the initial value problem

? H , H
.
= V H , H(0) = 1Vφ . (35.20)
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This solution is of class C1.
Now, if T is a process that satisfies the conditions, then V, as defined by

(35.19), coincides with V, as defined by (35.16). Therefore, by Prop. 2, we have
H = H and hence T must be given by

T(t) = (φ
⌋
p(t)

)−1H(t)φ
⌋
x

for all t ∈ [0, d]. (35.21)

On the other hand, if we define T by (35.21) and then H and V by (35.15) and
(35.16), we have πx ◦ T = p, H = H, and V = V. Thus, using (31.30) with φ
replaced by tlisφy and (35.19), we conclude that(

∇1By tlisφy
)
(sdtT) =

(
∇1By tlisφy

)
(U(t)) when y := p(t)

for all t ∈ [0, d]. Since ∇1By tlisφy is injective for all y ∈ M, we conclude that
U = sdT.

There need not be a single bundle chart φ ∈ Ch(B,M) such that Rng p ⊂
Domχ. However, since Rng p is a compact subset ofM, we can find a finite set
F ⊂ ChM such that

Rng p ⊂
⋃
χ∈F

Domχ.

We can then determine a strictly isotone list
(
ai | i ∈ (m + 1)

[ )
in such that

a0 = 0, am = d and such that, for each i ∈ m[
, p

>
([ai, ai+1]) is included in a

single chart belonging to F. By applying the result already proved, for each
i ∈ m[

, to the case when U is replaced by(
t 7→ U(ai + t)

)
: [ 0 , ai+1 − ai]→ SB,

one easily sees that the assertion of the theorem is valid in general.

We assume now that a continuous connection C is prescribed.
Let d ∈ × and a process p : [0, d] → M of class C1 be given and put

x := p(0). We define the shift process U : [0, d]→ SB by

U(t) := C
(
p(t)

)
p.(t) for all t ∈ [0, d]. (35.22)

Clearly, U is continuous and, since PyC(y) = 1Ty for all y ∈M, (35.18) is valid.
Hence, by the Theorem on Shift Processes there is a unique transfer process
T : [0, d]→ TlisxB of class C1 such that

sdT = (C ◦ p)p. . (35.23)

This process is called the parallelism along p for the connection C.

Let H : [0, d ] → Φ(B) be a process on Φ(B) and put p := τ ◦H. We say
that H is a parallel process for C if H(0) 6= 0 and if

H(t) = Φ(T(t))H(0) for all t ∈ [0, d ] (35.24)
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where T is the parallelism along p for C.
Let H : [0, d ] → Φ(B) be a process on Φ(B) and let T be the parallelism

along p := τΦ ◦H for the connection C. Given φ ∈ Chx(B,M) that satisfies
Rng p ⊂ Oφ. Define

(
Hφc)• : [0, d ]→ τ<(Rngp) and

(
HT

)• : [0, d ]→ τ<(Rngp)
by (

Hφc)•(t) := ∂t
(
s 7→ Φ(φ

⌋−1

p(t)
φ
⌋
p(s)

)H(s)
)

(
HT

)•(t) := ∂t
(
s 7→ Φ(T(t)T−1(s))H(s)

) (35.25)

for all t ∈ [0, d ].

Proposition 3: A process H : [0, d]→ Φ(B) is parallel with respect to C if and
only if H is of class C1 and satisfies the differential equation

0 =
(
HT

)• =
(
Hφc)• + Φ

•( (
Γφ(C) ◦ p

)
p•

)
H. (35.26)

We assume now that the linear space bundle B is the tangent bundle TM
and that a continuous connection C :M→ ConTM for TM is prescribed.

We say that p : [0, d]→M is a geodesic process for C if p•(0) 6= 0 and if

T(t)p•(0) = p•(t) for all t ∈ [0, d], (35.28)

where T is the parallelism along p for C, i.e. p• is parallel with respect to the
parallelism T.

Let p : [0, d ] →M be a process of class C1 such that p•(0) 6= 0 and given
χ ∈ ChM that satisfies Rng p ⊂ Domχ. Define p : [0, d ]→ Codχ by p := χ ◦ p
and Γ : Codχ→ Lin2 (V2

χ,Vχ) by

Γ(z) := ∇yχΓχy (C(y)) ◦ (∇yχ−1 ×∇yχ−1) when y := χ←(z), (35.29)

where Γχy is defined by (33.3).

Proposition 4: The process p is a geodedic process if and only if p is of class
C2 and satisfies the differential equation

p •• +
(
Γ ◦ p

)
(p •, p •) = 0 . (35.30)

Geodesic Deviations: Study the derivative of (35.26)???
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36. Holonomy

Let a continuous connection C :M→ ConB be given. For every C1 process
p : [0, dp] → M there is exactly one parallelism Tp : [0, dp] → TlisxB from
x := p(0) along p for the connection C. The reverse process p− : [0, dp]→M
of p : [0, dp]→M is given by

p−(t) := p(dp − t) for all t ∈ [0, dp].

Proposition 1: Let p− : [0, dp] → M be the reverse process of a C1 process
p : [0, dp]→M. We have

Tp−(t) = Tp(dp − t)T−1
p (dp) for all t ∈ [0, dp]. (36.1)

Let C1 processes p : [0, dp]→M and , q : [0, dq]→M with q(0) = p(dp) be
given. We define the continuation process q ∗ p : [0, dp + dq] →M of p with
q by

(q ∗ p)(t) :=


p(t) t ∈ [0, dp],

q(t− dp) t ∈ [dp, dp + dq].
(36.2)

If in addition that q
•
(0) = p

•
(dp), then the continuation process q ∗ p is of class

C1 and

Tq∗p(t) =


Tp(t) t ∈ [0, dp],

Tq(t− dp)Tp(dp) t ∈ [dp, dp + dq].
(36.3)

Definition: For every pair of C1 processes p : [0, dp]→M and , q : [0, dq]→M
with q(0) = p(dp) be given. We define the piecewise parallelism (along q ∗ p)

Tq∗p : [0, dp + dq]→ TlisxB where x := p(0)

by

Tq∗p(t) :=


Tp(t) t ∈ [0, dp],

Tq(t− dp)Tp(dp) t ∈ [dp, dp + dq].
(36.4)

In view of (36.1), if q := p− we have Tp−(t− dp)Tp(dp) = Tp(2dp − t) and
hence

T−p∗p(t) :=


Tp(t) t ∈ [0, dp],

Tp(2dp − t) t ∈ [dp, 2dp].
(36.5)
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In particular, Tp−∗p(2dp) = T−p∗p(0) = 1Bx .

Let O be an open neighboorhood of x ∈M and let L(O, x) be the set of all
piecewise C1 loops p : [0, dp] → M at x with Rngp ⊂ O. It is easily seen that
(L(O, x), ∗) is a group. We also use the following notation

H(O, x) := {Tp(dp) | p ∈ L(O, x)}. (36.6)

Proposition 3: For every q, p ∈ L(O, x), we have

Tq∗p(dp + dq) = Tq(dq)Tp(dp). (36.7)

Hence H(O, x) is a subgroup of LisBx, which is called the holonomy group on
O of the connection C at x.

Let T : M → TlisxM be a transport from x ∈ M of class C1. For every
differentiable process λ : [0, 1] → M, we see that T ◦ λ : [0, 1] → TlisxM is a
transfer process from x and

sdT = ((∇c T) ◦ λ)λ
•
.

Hence T◦λ is the parallelism along λ for the connection ∇c T. For every t ∈ [0, 1],
(T ◦ λ)(t) = T(λ(t)) depends on, of course, only on the point y := λ(t), not on
the process λ. When λ is closed, beginning and ending at λ(0) = x = λ(1), then

(T ◦ λ)(1) = T(x) = 1Bx .

The following theorem is a immediated consequence of the above discussion and
the Theorem of Sect.34.

Theorem : A continuous connection C : M → ConB is curvature-free; i.e.
R(C) = 0 if and only if locally the holonomy groups are H(O, x) = {1Bx} for
some open subset set O of M and all x ∈M.

Question ?: Does there exist a connection C such that H(O, x) = LisBx for
some x?
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Chapter 4

Gradients.
In this chapter, we assume a linear-space bundle (B, τ,M) of class Cs, s ≥ 2,

is given. We also assume that bothM and B have constant dimensions, and put
n := dimM and m := dimB−dimM. Then we have, as in (32.1), m = dim Bx

for all x ∈M.

41. Shift Gradients
Let x ∈M be fixed.
Let Φ be an analytic tensor functor and let H : M → Φ(B) be a cross

section of Φ(B) that is differentiable at x. We define the mapping

Ĥ : TlisxB → Φ(Bx) (41.1)

by
Ĥ(T) := Φ(T)−1H(πx(T)) for all T ∈ TlisxB, (41.2)

where πx is defined by (32.3). Since Φ is analytic, it is clear that Ĥ is differen-
tiable at 1Bx

.

Difinition: The shift-gradient of H at x is the linear mapping

xH ∈ Lin
(
SxB,Φ(Bx)

)
defined by

xH := ∇1Bx
Ĥ, (41.3)

where Ĥ is given by (41.2).

For every bundle chart φ ∈ Chx(B,M), the spaces Rng Ix and Rng Aφ
x

are supplymentary in SxB. Hence, for every s ∈ SxB there is exactly one pair
(M, t) ∈ LinBx × TxM such that s = IxM + Aφ

xt and thus

( xH)s = ( xH)IxM + ( xH)Aφ
xt.

Proposition 1: We have

( xH)IxM = −(Φ
•

xM)H(x) for all M ∈ LinBx, (41.4)

where Φ
•

x ∈ Lin (LinBx,LinΦ(Bx)) is defined to be the gradient of the mapping
(L 7→ Φ(L)) : LisBx → Lis (Φ(Bx)) at 1Bx

.
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Proof: In view of (32.4) and (41.2) we have Ĥ ◦ ιx : LisBx → Φ(Bx) and

(Ĥ ◦ ιx)(L) = Φ(L)−1H(x) for all L ∈ LisBx.

Taking the gradient of (Ĥx ◦ ιx) at 1Bx
and using (32.11) and (41.3), we obtain

the desired result (41.4).

Example 1: Let B∗ := Dl (B), where Dl is the duality functor.
Let h be a cross section of B, let ω be a cross section of B∗, let L be a cross

section of LinB, let G be a cross section of Lin (B,B∗) ∼= Lin2(B2, ) and
let T be a cross section of Lin (B,LinB) ∼= Lin2(B2,B). Assume that all of

these cross sections are differentiable at x. Then

( xh)IxM = −Mh(x); (41.5)

( xω)IxM = ω(x)M; (41.6)

( xL)IxM = L(x)M−ML(x); (41.7)

( xG)IxM = G(x) ◦ (M× 1Bx
) + G(x) ◦ (1Bx

×M) (41.8)

and

( xT)IxM = T(x) ◦ (M× 1Bx
) + T(x) ◦ (1Bx

×M)−MT(x) (41.9)

for all M ∈ LinBx.

Let a bundle chart φ ∈ Chx(B,M) be given. We define the mapping

Hφ : Oφ → Φ(Vφ)

by
Hφ(y) := Φ(φ

⌋
y
)H(y), for all y ∈ Oφ. (41.10)

Proposition 2: We have

( xH)Aφ
x = ∇–φ

x H = Λ
(
AΦ(φ)

H(x)

)
∇xH (41.11)

where Φ(φ) is defined by (24.5), ∇–φ
x H is described in (24.9) and AΦ(φ)

H(x) is defined
in terms of (31.19).

Proof: Let y ∈ Oφ be given. Substituting T := (φ
⌋

y
)−1φ

⌋
x

in (41.2) gives

Ĥ((φ
⌋

y
)−1φ

⌋
x
) = Φ((φ

⌋
y
)−1φ

⌋
x
)−1H(y)

= Φ(φ
⌋

x
)−1Φ(φ

⌋
y
)H(y) = Φ(φ

⌋
x
)−1Hφ(y).
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Since tlisφ
x

←
(y, φ

⌋
x
) = (φ

⌋
y
)−1φ

⌋
x

by (32.7), we obtain

(Ĥ ◦ tlisφ
x

←
)(y, φ

⌋
x
) = Φ(φ

⌋
x
)−1Hφ(y) for all y ∈ Oφ.

Taking the gradient with respect to y at x and observing (51.2) gives

(∇1Bx
Ĥ)(∇1Bx

tlisφ
x)−1(t,0) = Φ(φ

⌋
x
)−1(∇xHφ) t

for all t ∈ TxM. In view of definition (32.19) and (24.9) we obtain the first
equality of the desired result (41.11).

It follows from (41.2), (41.3) and (31.29) with φ replaced by Φ(φ) that

( xH)Aφ
x = (∇1Bx

Ĥ)∇x(φ
⌋−1

φ
⌋

x
)

= ∇x

(
y 7→ Φ(φ

⌋−1

x
φ
⌋

y
)H(y)

)
=

(
Φ(φ)

)⌋−1

x

(
ev2 ◦ ∇H(x)Φ(φ)

)
∇xH

= Λ
(
AΦ(φ)

H(x)

)
∇xH.

Since φ ∈ Chx(B,M) was arbitrary, the second part of (41.11) follows.

The results of Props. 1 and 2 give the following commutative diagram

LinBx
Ix−−→ SxB

Aφ
x←−− TxM

−
(
Φ
•
x

)˜H(x)

y (1)
..........................................................................................................

..
...........

xH (2)

∥∥∥∥∥
Φ(Bx) ←−−

Λ
(
A

Φ(φ)
H(x)

) TH(x)Φ(B) ←−−
∇xH

TxM

. (41.12)

Prop. 1 and Prop. 2 are illustrated by (1) and (2) in the diagram, respectively.

Let tensor functors Φ1, Φ2 and Ψ and a natural bilinear assignment
B : (Φ1,Φ2)→ Ψ be given. Also, let H1 : M → Φ1(B) be a cross section
of Φ1(B) and let H2 : M → Φ2(B) be a cross section of Φ2(B). Then the
mapping B(H1,H2) :M→ Ψ defined by

B(H1,H2)(x) := BBx
(H1(x),H2(x)) for all x ∈M (41.13)

is a cross section of Ψ(B).

General Product Rule
If H1 and H2 are differentiable at x, then B(H1,H2) is also differentiable

at x and we have(
xB(H1,H2)

)
s = BBx

(
( xH1)s,H2(x)

)
+ BBx

(
H1(x), ( xH2)s

)
(41.14)

for all s ∈ SxB.
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Proof: Put H := B(H1,H2) in (41.2), we have

Ĥ(T) = BBx

(
Φ1(T−1)H1(πx(T)),Φ2(T−1)H2(πx(T))

)
= BBx

(
Ĥ1(T), Ĥ2(T)

)
for all T ∈ TlisxB. Since B is bilinear, the desired result (41.14) follows from
(41.3) together with the General Product Rule in flat spaces [FDS].

Example 2:
Let f be a scalar field, and let h : M → B be a cross section of B and

H : M → LinB be a cross section of LinB that are differentiable at x. Then
fH and Hh defined value-wise are also differentiable at x, and we have

( xfH)s = (( xf)s)H(x) + f(x) ( xH)s (41.15)

and
x(Hh)s = (( xH)s)h(x) + H(x)( xh)s (41.16)

for all s ∈ SxB.

Example 3:
Let ω :M→ Skwp(B p, ) be a skew-p-form field and τ :M→ Skwq(B q, ) a

skew-q-form field that are differentiable at x. Then ω ∧ τ is a skew-(p + q)-form
field which is also differentiable at x and we have

( x(ω ∧ τ ))s = ( xω)s ∧ τ + ω ∧ ( xτ )s (41.17)

for all s ∈ SxB.

Let L, and L′ be linear-space bundles overM. For every x ∈M, we denote
the fiber product bundle (see Sect.22) of (TlisxL, πx,M) and (TlisxL′, π′x,M)
by (

TlisxL×M TlisxL′ , πx×M π′x , M
)
. (41.18)

Taking the gradient of the mapping

πx×M π′x : TlisxL×M TlisxL′ −−→ M (41.19)

at 1Lx × 1L′x , we have

Px×TxMP′x : SxL×TxM SxL′ −−→ TxM (41.20)

where Px = ∇1Lx
πx and P′x = ∇1L′x

π′x. It follows from

πx×M π′x = πx ◦ ev1 = π′x ◦ ev2
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that
(Px×TxMP′x)(s, s′) = Pxs = P′x(s′) (41.21)

for all (s, s′) ∈ SxL×TxMSxL′.
Let Υ be a tensor bifunctor and let H be a cross section of Υ(L×ML′)

which is differentiable at x. We define a mapping

Ĥ : TlisxL×M TlisxL′ → Υ(Lx × L′x) (41.22)

by
Ĥ

(
T×T′

)
:= Υ(T×T′)−1 H(y)

where y := πx(T) = π′x(T′)
(41.23)

for all T × T′ ∈ TlisxL×M TlisxL′. The shift-gradient of H at x is the linear
mapping

xH : SxL×TxMSxL′ → Υ(Lx × L′x) (41.24)

defined in (41.3); i.e.
xH = ∇1Px

Ĥ, (41.25)

where 1Px
:= 1Lx

× 1L′x . We also use the following notations

Ix := ∇1Lx
inx and I′x := ∇1L′x

in′x

where inx := 1Lx⊂L and in′x := 1L′x⊂L′ are inclusion mappings.

Proposition 3: We have

( xH)(IxM, I′xM
′) = −Υ

•

x(M×M′)H(x) (41.26)

for all M ∈ LinLx and all M′ ∈ LinL′x, where Υ
•

x is the gradient of the mapping(
L× L′ 7→ Υ(L× L′)

)
at 1Lx

× 1L′x .

Example 4:
Let Φ be a analytic tensor functor and let L := TM and L′ := B. If

L : M → Lin (TM,Φ(B)) and T : M → Lin2 (TM2,Φ(B)) are cross sections
that are differentiable at x, we have

xL : SxTM×TxMSxB → Lin (TxM,Φ(Bx))

xT : SxTM×TxMSxB → Lin2 (TxM2,Φ(Bx))

and

( xL)(IxM, I′xM
′) = L(x)M−Φ

•

x(M′)L(x)

( xT)(IxM, I′xM
′) = T(x)M + T(x)˜M−Φ

•

x(M′)T(x)
(41.27)
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for all M ∈ LinTxM and M′ ∈ LinBx.

Proposition 4: We have

( xH)(Aθ
x,Aφ

x) = ∇–φ1,φ2
x H, (41.28)

where ∇–φ1,φ2
x H is described in (24.12), for all bundle charts θ ∈ Chx(L,M) and

φ ∈ Chx(L′,M).

42. Covariant Gradients

Let x ∈M and a connector K ∈ Con xB be given.
Let Φ be a tensor functor and H :M→ Φ(B) be a cross section of Φ(B)

that is differentiable at x.

Definition : We define the covariant gradient of H relative to K by

∇–KH := ( xH)K ∈ Lin
(
TxM,Φ(Bx)

)
, (42.1)

where xH is the shift-gradient of H at x as defined by (41.3).

Given a bundle chart φ ∈ Chx(B,M). It follows from (41.11) and (42.1)
that

∇–Aφ
x
H = ∇–φ

x H.

If f :M→ is a scalar field differentiable at x, then we have xf = ∇xf Px

and hence
∇–Kf = ∇xf for all K ∈ Con xB. (42.2)

Proposition 1: For every bundle chart φ ∈ Chx(B,M) we have

(∇–KH)t = (∇–φ
x H)t + Φ

•

x

(
Γφ
x (K)t

)
H(x) for all t ∈ TxM, (42.3)

where Φ
•

x ∈ Lin (LinBx,LinΦ(Bx)) is defined as in Prop. 1 of Sect.41.

Proof: By (32.27), we have

( xH)Kt = ( xH)Aφ
xt + xH(K−Aφ

x)t

= ( xH)Aφ
xt− xH

(
IxΓφ

x (K)t
)

for all t ∈ TxM. Using (32.4), we obtain

( xH)Kt = ( xH)Aφ
xt + Φ

•

x

(
Γφ
x (K)t

)
H(x).
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The result (42.3) follows from the definition (42.1).

Example 1:
Let h be a cross section of B, let ω be a cross section of B∗, let L be a cross

section of LinB, let G be a cross section of Lin (B,B∗) ∼= Lin2(B2, ), and
let T be a cross section of Lin (B,LinB) ∼= Lin2(B2,B). If these cross

sections are differentiable at x, we have

(∇–Kh)t = (∇–φ
x h)t + Γφ

x (K)(t,h(x)); (42.4)

(∇–Kω)t = (∇–φ
x ω)t− ω(x)Γφ

x (K)t; (42.5)

(∇–KL)t = (∇–φ
x L)t− L(x)

(
Γφ
x (K)t

)
+

(
Γφ
x (K)t

)
L(x); (42.6)

∇–KG(t,b) = (∇–φ
x G)(t,b)−

(
G(x)b

)(
Γφ
x (K)t

)
−G(x)

(
Γφ
x (K)(t,b)

)
(42.7)

and

∇–KT(t,b) = (∇–φ
x T)(t,b)−

(
T(x)b

)(
Γφ
x (K)t

)
−T(x)

(
Γφ
x (K)(t,b)

)
+

(
Γφ
x (K)t

)(
T(x)b

) (42.8)

for all t ∈ TxM and all b ∈ Bx.

General Product Rule
Let H1,H2 be cross sections as given in the General Product Rule of

Sect. 41, then we have

∇–KB(H1,H2)t = BBx

(
(∇–KH1)t,H2(x)

)
+ BBx

(
H1(x), (∇–KH2)t

)
(42.9)

for all t ∈ TxM.

Proof: Substituting s := Kt in (41.14) and observing (42.1), we obtain (42.9).

The formulas (41.15), (41.16) and (41.17) remain valid if the shift gradient
x there is replaced by the covariant gradient ∇–K and s ∈ SxB by t ∈ TxM.

Let L and L′ be linear-space bundles over M. Let Υ be a tensor bifunc-
tor and let H : M → Υ(L×ML′) be a cross section of Υ(L×ML′) which is
differentiable at x. Let a pair of connectors (K,K′) ∈ Con xL × Con xL′ be
given.

Definition: The covariant-gradient of H at x relative to (K,K′) is defined
by

∇–(K,K′)H := ( xH)(K,K′) (42.10)

which is in Lin
(
TxM,Υ(Lx × L′x)

)
.
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Proposition 2: For every (K,K′) ∈ Con xL × Con xL′ and all bundle charts
φ ∈ Chx(L,M) and φ′ ∈ Chx(L′,M) we have

(∇–(K,K′)H)t = (∇–φ,φ′

x H)t + Υ
•

x

(
Γφ
x (K)t× Γφ′

x (K′)t
)
H(x) (42.11)

for all t ∈ TxM, where Υ
•

x is described in Prop. 3 of Sect. 41.

Proof: Equation (42.11) follows from K = Aφ
x − IxΓφ

x (K), K′ = Aφ′

x −
IxΓφ′

x (K′), (42.10) and (41.28).

43. Alternating Covariant Gradients

Let a number p ∈ , with p ≥ 1, connections C : M → ConTM and
D :M→ ConB of class C1 be given.

Let Φ be an analytic tensor functor. For every differentiable Φ(B)-valued
skew-p-linear field S : M → Skwp(TMp,Φ(B)), the covariant gradient of S at
x ∈M relative to (C,D) is the mapping

∇–(C(x),D(x))S :M→ Lin(TxM,Skwp(TxMp,Φ(Bx)).

Taking the alternating part of ∇–(C(x),D(x))S, we obtain the skew (p + 1)-linear
mapping

Alt (∇–(C(x),D(x))S) ∈ Skwp+1(TxMp+1,Φ(Bx)). (43.1)

Proposition 1: Let x ∈M be given. For every manifold chart χ ∈ ChxM and
every bundle chart φ ∈ Chx(M,B), we have

(p + 1)Alt (∇–(C(x),D(x))S)(v)

= (p + 1)Alt
(
∇–χ,φ

x S +
(
Φ
•

x(Γφ
x (D(x)))̃ S(x)

))
(v)

−
∑

1<i<j<p+1

(−1)i+j−1S(x)
(
Tx(C(x))(vi,vj),del(i,j)v

) (43.2)

where del(i,j) : Vp+1 → Vp−1 is defined by del(i,j) := delj ◦ deli, i < j, for all
v ∈ TxMp+1.

Proof: Let χ ∈ ChxM and φ ∈ Chx(B,M) be given. We have

C(x) = Aχ
x − IxΓχ

x (C(x)) and D(x) = Aφ
x − IxΓφ

x (D(x)).
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For every i ∈ (p + 1)], (42.11) gives

∇–(C(x),D(x))S(vi,deliv) = ∇–χ,φ
x S(vi,deliv) + Φ

•

x(Γφ
x (D(x)vi)S(x)(deliv)

−
∑

j∈(p+1)]\{i}

S(x)(del(i,j)v).j)Γχ
x (C(x))(vi,vj)

(43.2)
for all v ∈ (TxM)×(p+1). Sum up and rearrange all the terms, we obtain the
desired formula by observing that Tx = Γχ

x − Γχ
x .̃

Prop.1 has several applications. The first application is given in the follow-
ing Prop.2. The second kind of applications are Bianchi identities in Sect.44 and
the third application leads to the definition of exterior differential in Sect.45.

For every cross section H : M → Φ(B) of class Cp, p ≥ 2, we define the
covariant gradient-mapping of H relative to D

∇–DH :M→ Lin(TM,Φ(B))

by
∇–DH(y) := ∇–D(y)H for all y ∈M. (43.3)

The second covariant gradient-mapping of H relative to (C,D) is defined
by

∇– (2)
(C,D)H := ∇–(C,D)(∇–DH) :M→ Lin2

(
TM2 , Φ(B)

)
. (43.4)

The second covarient gradient-mapping ∇– (2)
(C,D)H is not necessarily symmetric.

Indeed, we have the following:

Proposition 2: We have

∇– (2)
(C,D)H− (∇– (2)

(C,D)H)˜ = Φ
•
(R(D)(·, ·))H−

(
∇–DH

)
T(C) (43.5)

where, for each x ∈ M, Φ
•
(x) := Φ

•

x ∈ Lin (LinBx,LinΦ(Bx)) is defined as in
Prop. 1 of Sect. 42.

Proof: Let x ∈M be given. Choose χ ∈ ChxM and φ ∈ Chx(B,M). Applying
Prop. 1 with H replaced by ∇–D(x)H and Φ replaced by Lin ◦ (Id,Φ) (see [N2]),
we have

∇– (2)
(C(x),D(x))H(u,v)−∇– (2)

(C(x),D(x))H(v,u) +
(
∇–D(x)H

)
Tx(C(x))(u,v)

= (∇–(Aχ
x ,Aφ

x)∇–DH)(u,v)− (∇–(Aχ
x ,Aφ

x)∇–DH)(v,u)

+ Φ
•

x(Γφ
x (D(x))u)(∇–D(x)H)v − Φ

•

x(Γφ
x (D(x))v)(∇–D(x)H)u

(43.6)
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for all u,v ∈ TxM. Observing ∇–DH = ∇–CφH + Φ
•

x(Γφ(D)), we have

∇–(Aχ
x ,Aφ

x)∇–D(x)H(u,v) = ∇–(2)

(Aχ
x ,Aφ

x)
H(u,v) +∇–(Aχ

x ,Aφ
x)Φ

•

x(Γφ(D))̃ H(u,v).

(43.7)
for all u,v ∈ TxM. Since Φ

•

x is a natural linear assignment, the second term on
the right handside of the equality in (43.7) is

(∇–(Aχ
x ,Aφ

x)Φ
•

x(Γφ(D))̃ H)(u,v)

= Φ
•

x(∇–(Aχ
x ,Aφ

x)Γ
φ(D)(u,v))H(x) + Φ

•

x(Γφ
x (D(x))v)(∇–Aφ

x
H)u.

(43.8)

We also have, the third term on the right hand side of the equality (43.6) satisfies

Φ
•

x(Γφ
x (D(x))u)(∇–D(x)H)v

= Φ
•

x(Γφ
x (D(x))u)

(
∇–Aφ

x
H + Φ

•

x(Γφ
x (D(x))

)
v

= Φ
•

x(Γφ
x (D(x))u)∇–CφHv + Φ

•

x(Γφ
x (D(x))u)Φ

•

x(Γφ
x (D(x))v)

= Φ
•

x(Γφ
x (D(x))u)∇–CφHv + Φ

•

x(Γφ
x (D(x))uΓφ

x (D(x))v).

(43.9)

Combining (43.6) to (43.9) with (43.2) and observing that

∇– (2)

(Aχ
x ,Aφ

x)
H = Φ(φ

⌋
x
)−1

(
∇(2)

χ Hφ
)
(∇xχ×∇xχ) (43.10)

is symmetric and x ∈M was arbitrary, we obtain (43.5).

Remark: When the given bundle B is the tangent bundle TM, then we only
need one connection say; the connection C. If this is the case, we have

∇– (2)
C H− (∇– (2)

C H)˜ = Φ
•
(R(C)(·, ·))H−

(
∇–CH

)
T(C). (43.11)
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44. Bianchi Identities

Let connections C : M → ConTM and D : M → ConB of class C1

be given. Both of the torsion field T(C) : M → Skw2(TM2,TM) of the
connection C and the curvature field R(D) : M → Skw2(TM2,LinB) of the
connection D are skew-2-linear fields. Applying Prop.1 of Sect.43, the alternat-
ing part of ∇–CT(C) gives the first Bianchi idetity and the alternating part
of ∇–(C,D)R(D) gives the second Bianchi idetity.

Proposition 1: (First Bianchi idetity) We have

Alt (∇–CT(C) + T(C)T(C)) = Alt (R(C)) (44.1)

where T(C)T(C) is regarded as a cross section of Skw2(TM2,LinTM).

Proof: Applying Prop.1 of Sect.43, we have

Alt (∇–CT(C) + T(C)T(C)) = Alt (∇–C
χ T(C) + Γχ(C)˜ T(C)). (44.2)

Using (33.8) and (34.30), we see that

Alt (∇–C
χ T(C) + Γχ(C)˜ T(C)) = Alt (R(C)). (44.3)

The desire result (44.1) follows from (44.2) and (44.3).

Remark 1: When C is curvature-free (but not necessary torsion free), Eq. (44.1)
reduces to

Alt (∇–CT(C) + T(C)T(C)) = 0. (44.4)

If in addition that Alt (∇–CT(C)) = 0, then

Alt (T(C)T(C)) = 0; (44.5)

that is T(C) satisfies Jacobi identity (cf. Lie Group, Prop.7 of Sect.44 ).

Proposition 2: (Second Bianchi idetity) We have

Alt (∇–(C,D)R(D) + R(D)T(C)) = 0. (44.6)

where R(D)T(C) is regarded as a cross section of Skw2(TM2,Lin(TM,LinB)).

Proof: Applying Prop.1 of Sect.43, we have

Alt (∇–(C,D)R + Rx(C)(Tx(C)))

= Alt (∇–(Aχ
x ,Aφ

x)R + Γφ
x(D)˜Rx(C)−Rx(C)(·, ·)Γφ

x(D)).
(44.7)
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Applying Prop.5 of Sect.34, we obtain

Alt (∇–(Aχ
x ,Aφ

x)R + Γφ
x(D)˜Rx(C)−Rx(C)(·, ·)Γφ

x(D))

= Alt
(
∇–(2)

(Aχ
x ,Aφ

x)
Γφ(D)−

(
∇–(2)

(Aχ
x ,Aφ

x)
Γφ(D)

)˜ )
.

(44.8)

In view of (44.5), we observe that

∇–(2)

(Aχ
x ,Aφ

x)
Γφ(D)−

(
∇–(2)

(Aχ
x ,Aφ

x)
Γφ(D)

)˜ = 0. (44.9)

The desired result follows from (44.7), (44.8) and (44.9).

Remark 2: When the given linear-space bundle is the tangent bundle B := TM
ofM, the Bianchi identities can be found in literatures (see [P]) as

(∇–CT(C))(U,V,W) + (∇–CT(C))(V,W,U) + (∇–CT(C))(W,U,V)
+T(C)(T(C)(U,V),W)+T(C)(T(C)(V,W),U)+T(C)(T(C)(W,U),V)
= R(C)(U,V,W) + R(C)(V,W,U) + R(C)(W,U,V)

(44.10)
and

(∇–CR(C))(U,V,W) + (∇–CR(C))(V,W,U) + (∇–CR(C))(W,U,V)
+R(C)(T(C)(U,V),W)+R(C)(T(C)(V,W),U)+R(C)(T(C)(W,U),V)
= 0

(44.11)
for all vector fields U,V,W ∈ XTM.

Remark 3: Most of the literatures, especially in physics, only deal with the
special case : in the absence of torsion. Under this assumption, the Bianchi
identities becomes

Alt (R(C)) = 0 (44.12)

and
Alt (∇–CR(C)) = 0. (44.13)
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45. Differential Forms

Let p ∈ and a differentiable W-valued skew p-linear field ω be given.
In this section, we apply Prop.1 of Sect.43 with the tensor functor Φ := TrW ,

the trival functor for a linear space W (see Sect.13).

Proposition 1: For every x ∈M, we have

Alt (∇–χ
x ω) = Alt (∇– γ

x ω) (45.1)

for all manifold charts χ, γ ∈ ChxM.

Proof: The desire result (45.1) follows from Prop.1 of Sect.43 with (TrW)
•

x = 0
and Tx(Aχ

x) = 0 = Tx(Aγ
x) (see Theorem in Sect.33) for all manifold charts

χ, γ ∈ ChxM.

Definition : The pth-exterior differential at x ∈M
dp

x : X(Skwp(TMp, ))→ Skwp+1(TxMp+1, ) (45.2)

is defined by

dp
xω :=

1
p!

Alt (∇–χ
x ω) for all ω ∈ X(Skwp(TMp, )) (45.3)

which is valid for all manifold chart χ ∈ ChxM.
The pth-exterior differential

dp : Xs(Skwp(TMp, ))→ Xs−1(Skwp+1(TMp+1, )) (45.4)

is defined by
dp(x) := dp

x for all x ∈M. (45.5)

Remark : IfM be the underline manifold of a flat space E , then ∇ω = ∇–χω for
all manifold chart χ. The definition (45.3) of exterior differential at x becomes

dpω =
1
p!

Alt (∇ω). (45.6)

Equation (45.6) can be found in Sect.2.3 of [CH] and in Sect.51 of [B-W].

Proposition 2: Let W be a linear space and let ω :M→ Skwp(TMp,W) be a
differentiable W-valued skew p-linear field. For every x ∈M,we have

dp
xω(v) = (

1
p!

Alt (∇–C(x)ω))v

+
∑

1≤i<j≤p+1

(−1)i+j−1ω(x)
(
Tx(C(x))(vi,vj),del(i,j)v

) (45.7)

for all connection C and all v ∈ TxMp+1.
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Proposition 3: We have
dp+1 ◦ dp = 0. (45.7)
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46. Lie gradients, Lie brackets

In this section, we only deal with the tangent bundle of a given Cs-manifold
M, where 2 ≤ s ∈ .̃

We assume that a vector-field h is given and that h is differentiable at x.

Proposition 1: There is exactly one shift, which is called the shift of h at x
and is denoted by �x h ∈ SxTM, such that

Bx (�x h) = xh, (46.1)

where Bx is given in (33.6) and xh ∈ Lin (SxTM,TxM) is the shift-gradient
of h as defined by (41.3). We have

Px (�x h) = h(x) (46.2)

Proof: The injectivity of Bx (see Prop. 2 of Sect.15) shows that there is at most
one �x h ∈ SxTM with the property (46.1).

We now choose χ ∈ ChxM and define

�x h := Ix

(
( xh)Aχ

x

)
+ Aχ

x h(x). (46.3)

By (15.6)1 and (32.23) we have

Bx (�x h) = ( xh)(Aχ
x Px) + Bx

(
Aχ

x h(x)
)

= xh (1SxTM − Ix Λ(Aχ
x)) + Bx

(
Aχ

x h(x)
)
.

(46.4)

It follows from (41.4) and (15.6)2 that

xh
(
Ix

(
Λ(Aχ

x)(s)
))

= −Λ(Aχ
x)(s)h(x)

= −Bx (s)
(
Aχ

x h(x)
)

=
(
Bx

(
Aχ

x h(x)
))

(s)

holds for all s ∈ SxTM. Hence (46.4) reduces to (46.1). Applying Px to (46.3)
and observing Px Ix = 0 and Px Aχ

x = 1TxM yields (46.2).

Proposition 2: Let χ ∈ ChxM be given. The shift �x h of h at x satisfies

Λ(Aχ
x)(�x h) = ∇–χ

x h (46.5)

Proof: The equality follows by operating on (44.3) with Λ(Aχ
x) and observing

Λ(Aχ
x)Ix = 1LinTxM and Λ(Aχ

x)Aχ
x = 0.
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For every manifold chart χ ∈ ChxM, we have

Aχ
xh(x) + Ix xhAχ

x =
(
∇1TxM

tlisχ
x

)−1(
hχ(x) , ∇xhχ

)
. (46.6)

In view of (46.3), we have

�x h =
(
∇1TxM

tlisχ
x

)−1(
hχ(x) , ∇xhχ

)
for every manifold chart χ ∈ ChxM.

Remark: By (46.1) and the injectivity of Bx, we have

�x k = 0 if and only if xk = 0 (46.7)

Proposition 3: If f :M→ is differentiable at x, so is the vector-field fh and
we have

�x(f h) = f(x)�x h + Ix (h(x)⊗∇xf). (46.8)

Proof: It follows from (15.6)1 with M := h(x)⊗∇xf that

Bx

(
Ix (h(x)⊗∇xf)

)
= (h(x)⊗∇xf)Px = h(x)⊗P>x ∇xf.

In view of (46.4) and (41.15), it follows that

Bx

(
�x(f h)

)
= x(f h) = f(x) xh + h(x)⊗P>x ∇xf

= Bx

(
f(x) �x h + Ix (h(x)⊗∇xf)

)
Since Bx is injective, (46.8) follows.

Let Φ be a functor as described in Sect.13 and let H : M → Φ(TM) be
a tensor-field that is differentiable at x. Also, let k be a vector-field that is
differentiable at x.

Definition: The Lie-gradient of H with respect to k at x is defined by

(LiekH)x := xH(�x k), (46.9)

where xH is the shift-gradient of H at x as defined by (41.3) and where �x k
is the shift of k at x as determined by (46.1).

Proposition 4: Let f :M→ and H be differentiable at x. We have(
Liekf H

)
x

= f(x)
(
LiekH

)
x

+
(
(∇xf)k(x)

)
H(x);(

LiefkH
)
x

= f(x)
(
LiekH

)
x

+
(
Φ
•

x

(
k(x)⊗∇xf

))
H(x),

(46.9)

where Φ
•

x ∈ Lin
(
LinTx,LinΦ(Tx)

)
is defined as in Prop.1 of Sect.41.

16



General Product Rule
Let H1,H2 be cross sections as given in the General Product Rule of Sect.41,

then we have

(LiekB(H1,H2))x = BBx

(
(LiekH1)x,H2(x)

)
+ BBx

(
H1(x), (LiekH2)x

)
.

(46.10)

Remark: We have

(LiekH)x = (∇–KH)k(x) + Φ
•(

Tx(K)k(x) +∇–Kk
)
H(x)

for all K ∈ Comx(TM).

We now assume that two vector-fields h and k, both are differentiable at x,
are given.
Definition: The Lie-bracket of h with k at x is defined by[[

k , h
]]

x
:= Bx(�x h,�x k). (46.11)

It follows from (46.1), (46.9) and (46.11) that[[
k , h

]]
x

= (Liekh)x (46.12)

Proposition 5: We have [[
k , h

]]
x

= −
[[
h , k

]]
x
. (46.13)

If f :M→ is differentiable at x, then[[
f h , k

]]
x

= f(x)
[[
h , k

]]
x
−

(
(∇xf)k(x)

)
h(x). (46.14)

Proof: (46.13) follows from the skewness of Bx. Substitution of fh for h in
(46.11) and use of (46.8) gives[[

f h , k
]]

x
= f(x)

[[
h , k

]]
x
−Bx

(
Ix (h(x)⊗∇xf),�x k

)
and hence, by (15.6)1,[[

f h , k
]]

x
= f(x)

[[
h , k

]]
x
− (h(x)⊗∇xf)(Px �x k)

The desired result (46.14) now follows from (46.2).
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Remark: Let r =∞, let h,k ∈ X∞M and let h
∇

and k
∇

be the mappings from
C∞(M) to C∞(M) defined by (24.6). One can easily show that the mapping[[

h , k
]]∇

: C∞(M)→ C∞(M) corresponding to
[[

h , k
]]∇

is given by

[[
h , k

]]∇
= h

∇
◦ k
∇
− k

∇
◦ h

∇
(46.15)

If f ∈ C∞(M), we then have[[
fh , k

]]∇
= f

[[
h
∇

, k
∇ ]]
− k

∇
(f)h

∇
, (46.16)

which can be derived from (46.14) or directly from (46.15).

Proposition 6: If both h and k are vector-fields that are differentiable at x,
then have [[

h , k
]]

x
= (∇–χ

x k)h(x)− (∇–χ
x h)k(x). (46.17)

for every manifold chart χ ∈ ChxM where ∇–χ
x k and ∇–χ

x h be defined according
to (23.26). Moreover, we have

(∇–Kk)h(x)− (∇–Kh)k(x) =
[[
h , k

]]
x

+ Tx(K)(h,k) (46.18)

for all K ∈ ConxTM.

Proof: If we substitute s := �x h and s′ := �x k in (33.6) and (12.5) we obtain
from (46.11) that

[[ h , k ]]x = −Dχ
x (�x h)Px (�x k) + Dχ

x (�x k)Px (�x h)

The desired result (46.17) follows now from (46.5) and (46.2).
By (42.3) we have

(∇–Kh)k(x) = (∇–χ
x h)k(x) + Γχ

x (K)
(
k(x),h(x)

)
.

Interchanging h and k and taking the difference, we obtain (46.18) from (46.17)
and (33.8).

Let s ∈ 1..(r − 1) and h, k ∈ XsTM be given. Then the vector-field[[
h , k

]]
is defined by[[

h , k
]]
(x) :=

[[
h , k

]]
x

for all x ∈M (46.19)

It is clear from Proposition 5 that
[[

h , k
]]
∈ Xs−1TM. Using (23.6), it

follows from (46.17) and the definition (23.35) that[[
h , k

]]χ = (∇χkχ)hχ − (∇χhχ)kχ. (46.20)
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Proposition 7: (Jacobi identity): Let s ∈ 2..(r− 1) and h1,h2,h3 ∈ XsTM
be given, then[[ [[

h1 , h2

]]
, h3

]]
+

[[ [[
h2 , h3

]]
, h1

]]
+

[[ [[
h3 , h1

]]
, h2

]]
= 0 (46.21)

Proof: A straightforward but somewhat tedious calculation, using (46.20) and
the Symmetry Theorem for Second Gradients, yields the desired result (46.21).

IfM is a C∞ manifold, then X∞TM together with the bilinear mapping[[
,

]]
: X∞TM×X∞TM−→ X∞TM

given in (46.21) is a Lie algebra, as defined in Sect.11.

47. Transport Systems

We assume that r ∈ ˜ with r ≥ 2 and a Cr-manifold M are given. Let
(B, τ,M) be a Cs linear-space bundle, s ∈ 0. .r.

We define the bundle of transfer isomorphisms of B by

TlisB :=
⋃

x∈M
TlisxB =

⋃
x,y∈M

Lis(Bx,By). (47.1)

It is endowed with the natural structure of a Cs-fiber bundle overM×M whose
bundle projection π : TlisB →M×M is

π(T) :∈
{

(x, y) ∈M×M T ∈ Lis(Bx,By)
}
. (47.2)

Definition: A subset T of TlisB is called a Cs transport structure for B
if T is a Cs-submanifold of TlisB such that

(T1) for all A ∈ T, A−1 ∈ T,

(T2) for all A,B ∈ T such that CodA = DomB, BA ∈ T,

(T3) for all x, y ∈M, T ∩ Lis(Bx,By) 6= { }.

It can be shown that Tx := T ∩ Tlisx B is a Cs-submanifold of Tlisx B.
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Theorem on Transport Structure and Parallelisms

Let C :M→ ConB be a connection of class Cs. Define

F := {A ∈ TlisB | · · · · · · · · · · · ·}.

Then F is a transport structure for B.

Proof:

A cross section F : M×M → T is called a (global) transport system
for B if

F(x, z) = F(y, z)F(x, y) for all x, y, z ∈M (47.3)

and
F(x, x) = 1Bx for all x ∈M. (47.4)

Recall that a cross section T :M→ TlisxB of the bundle TlisxB, x ∈ M,
with

T(x) = 1Bx
(47.5)

is called a transport from x. It follows from (47.3), (47.4) and (47.5) that, for
each x ∈M, the mapping F(x, ·) :M→ TlisxB is a transport from x. Moreover,
we have

F(y, ·) = F(x, ·)F(y, x) for all x, y ∈M. (47.6)

Conversely, let x ∈ M and a transport Fx :M→ TlisxB from x be given. For
each y ∈M, we obtain a transport Fy :M→ TlisyB from y by

Fy(z) := Fx(z)Fx(y)−1 for all z ∈M. (47.7)

and, a transport system F :M×M→ TlisB by

F(y, z) := Fx(z)Fx(y)−1 for all y, z ∈M. (47.8)

We conclude that, for each x ∈ M, there is one to one correspondent between
the set of all transports from x for B and the set of all transport systems for B.

Every transport system F : M × M → TlisB induces a connection
C :M→ ConB by

C(y) := ∇1By
F(y, ·) for all y ∈M. (47.9)

Let a transport system F : M×M → TlisB for B, a tensor functor Φ
and a cross section H :M→ Φ(B) be given. We say that H is parallel with
respect to F if

H(y) = Φ(F(x, y))H(x) for all x, y ∈M. (47.10)
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Proposition 1: Let C be the connection induced by a transport system F, as
given in (47.9). Let H : O → Φ(B) be a cross section of class C1. If H is
parallel with respect to F, then ∇–CH = 0. Conversely, if ∇–CH = 0 and if M is
connected then H is parallel with respect to F.

Proof: Fix x ∈ M and let T := F(x, ·). Let y ∈ M be given and define
Ĥy : TlisyB → By in accord with (41.2). Then

Ĥy(T(z)T(y)−1) = Φ(T(y)T(z)−1)H(z) for all z ∈M.

Differentiation with respect to z at y gives, using (42.1), (41.3), (47.9), and the
chain rule,

(∇–CH)(y) = ( yH)C(y) = Φ(T(y))∇yH̃, (47.11)

where H̃ : M → Φ(Bx) is defined by H̃(z) := Φ(T(z)−1)H(z) for all z ∈ M.
Since y ∈ M was arbitrary and since Φ(T(y)) is invertible, we conclude from
(47.11) that ∇–CH = 0, if and only if ∇H̃ = 0. Now if H = Φ(T)v for
some v ∈ Φ(Bx), then H̃ is a constant and hence ∇H̃ = 0. Conversely if M is
connected and ∇H̃ = 0, then H̃ is a constant and hence H = Φ(T)v for some
v ∈ Φ(Bx).

Remark : Let a connection C, not necessarily induced by a transport system,
be given. Then the condition ∇–CH = 0 does not equivalent to to the condition
that H is parallel with respective to a transport system.

Proposition 2: Let T : [0, d]→ TlisxB be a differentiable transfer process from
x, and put p := πx ◦ T : [0, d] → M. For every differentiable cross section
H :M→ Φ(B), we have

( p(t)H)(sdtT) = ∂t

(
s 7→ Φ(T(t)T−1(s))H(p(s))

)
(47.12)

for all t ∈ [0, d], the derivative (47.12) may be interpreted, roughly, as the rate
of change of H at p(t) relative to the transfer process T.

Let C : M → ConB be a continuous connection and p : [0, d] → M be a
process of class C1, with x = p(0). Let T be the parallelism along p for the
connection C. It follows from (35.23), sdT = (C ◦ p)p•, that

(∇–C(p(t))H)p•(t) = ( p(t)H)(sdtT). (47.13)

This result does not depend on the choice of the process p, and hence does not
depend on the parallelism T along p.
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Proposition 3: Let C : M → ConB be a continuous connection and let the
cross section H : M → Φ(B) be differentiable. Then ∇–CH = 0 if and only if,
for every differentiable process p : [0, d]→M,

(( H) ◦ p)(sdT) = 0 (47.14)

where T is the parallelism along p for C.

Let x ∈ M and a continuous vector field k : M → TM be given. By the
maximum local flow for k at x we mean a mapping

α : I ×D →M

where I is an open interval containing 0,and D containing x, and D is an open
subset ofM containing x, such that for every y ∈ D the mapping α(·, y) : I →M
is the maximum integral process (integral curve) of k with the initial condition
y; i.e. α(0, y) = y and k

(
α(t, y)

)
= (α•(·, y))(t).

Let x ∈ M and a continuous vector field k : M → TM be given. It is a
well known theorem in O.D.E. (see Sect.1 of Ch.4, [L]) that there is a maximum
local flow

α : I ×D →M

for k at x. We may define a mapping Lk : I → TlisxM by

Lk(t) := ∇xα(t, ·) for all t ∈ I.

It is clear that
Lk>(I) =

⋃
y∈α(·,x)>(I)

Lis(Tx,Ty).

Since Lk(0) = 1Tx
, Lk is a transfer process from x. We shall call Lk the Lie

transfer process from x of the vector-field k.

Proposition 4: Let x ∈ M and a vector field k :M→ TM be given. Let Lk

be the Lie transfer process from x of k. We have sd0Lk = �x k and

(LiekH)(x) = ∂0

(
t 7→ Φ(Lk(t)−1)H(p(t))

)
. (47.15)

Proof: Define the processes H : I → LisVχ and V : I → LisVχ by

H(t) : = ∇αx (t)χ∇xαt(∇xχ)−1 = ∇αx (t)χLk(t)(∇xχ)−1

V(t) : = ∇αx (t)χ(Dχ
αx (t) �

αx (t)
k)(∇αx (t)χ)−1
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Taking the gradient of H at 0 and observing Dχ
αx (t) �αx (t) k =

(∇αx (t)χ)−1∇αx (t)kχ, we have

H
.(t) = ∂t

(
s 7→ ∇αx (s)χ∇xαs(∇xχ)−1

)
= ∂t

(
s 7→ (∇xα

s
)
)χ(∇xχ)−1

= ∇x

(
∂t(s 7→ α

s
)
)χ(∇xχ)−1

= ∇x(kχ ◦ αt)(∇xχ)−1

= ∇αx (t)kχ∇xαt(∇xχ)−1

=
(
∇αx (t)χ

(
(∇αx (t)χ)−1∇αx (t)kχ

)
(∇αx (t)χ)−1

)(
∇αx (t)χ∇xαt(∇xχ)−1

)
=

(
∇αx (t)χ(Dχ

αx (t) �
αx (t)

k)(∇αx (t)χ)−1
)(
∇αx (t)χ∇xα

t
(∇xχ)−1

)
= (VH)(t).

This shows that Lk is the only transfer process from x such that sdLk = (�k)◦
α

x
. Since α

x
(0) = x, we have sd0Lk = �x k. The assertion follows by applying

Prop.2.

48. Lie Group

Definition: A Lie group is a set G endowed both with the structure of a group
and with the structure of a Cω-manifold in such a way that the group-operation
and the group-inversion are analytic mappings.

We use multiplicative notation and terminology for the group G and denote
its unity by u.

For every x ∈ G, we define the left-multiplication lex : G → G by

lex(y) := xy for all y ∈ G. (48.1)

lex : G → G, is invertible for all x ∈ G; in fact,

(x 7→ lex) : G → Perm G (48.2)

is an injective group-homomorphism, i.e. we have

leu = 1G , lexy = lex ◦ ley , lex−1 = le←x (48.3)

for all x, y ∈ G. Also, when x ∈ G is given, lex is analytic and we have

∇ylex ∈ Lis(TxM,TxyM) ⊂ TlisyG (48.4)
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for all y ∈ G. We define the analytic mapping

G : G → TlisuG (48.5)

by
G(x) := ∇ulex for all x ∈ G. (48.6)

Taking the gradient of (48.18)2 at u gives

G(xy) := (∇ylex)G(y) for all x, y ∈ G. (48.7)

For every t ∈ TuM, we define the analytic vector field Gt : G → TG by

(Gt)(y) = G(y)t for all y ∈ G. (48.8)

We have

G(u) = 1TuM and (Gt)(u) = t for all t ∈ TuM. (48.9)

Proposition 5: For all t, s ∈ TuM we have

[[ Gt , Gs ]] = G [[ Gt , Gs ]]u (48.10)

Proof: Let t ∈ TuM and x ∈ G be given and choose χ ∈ ChxG. Since lex is
analytic and invertible and lex(u) = x, we have χ lex ∈ ChuG. Using the
chain rule and (48.22), we obtain

∇y(χ lex) = (∇xyχ)∇ylex = (∇xyχ)G(xy)G(y)−1 for all y ∈ G. (48.11)

Using the definitions (48.23) and (23.25), we see that

(Gt)χ lex(y) = ∇y(χ lex)G(y)t = (∇xyχ)G(xy)t

for all y ∈ G and hence

(Gt)χ lex = (Gt)χ lex. (48.12)

Using the chain rule again, we find

∇u(Gt)χ lex = ∇x(Gt)χG(x) for all t ∈ Tu (48.13)

Now let s, t ∈ TuM be given and put h := Gt, k := Gs. Using (43.17)
with x replaced by u and χ by χ lex we conclude from (48.28) that

[[ h , k ]]u = ∇u(χ leu)−1
(
(∇xkχ)h(x)− (∇xhχ)k(x)

)
.
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Using (48.26) with y := u and observing (48.23), we obtain

[[ h , k ]]u = G(x)−1∇xχ−1
(
(∇xkχ)h(x)− (∇xhχ)k(x)

)
.

Since x ∈ G was arbitrary, we obtain (48.25) by applying (43.17) again.

Proposition 6: Define(
(t, s) 7→ [t, s]

)
: TuM2 → TuM (48.14)

by
[t, s] := [[ Gt , Gs ]]u, (48.15)

where G is defined by (48.21). Then (48.21) endows TuM with the structure of
a Lie-algebra, i.e. it is bilinear, skew, and satisfies the “Jacobi-identity”[

[t1, t2], t3

]
+

[
[t2, t3], t1

]
+

[
[t3, t1], t2

]
= 0 (48.16)

for all t1, t2, t3 ∈ TuM. We use the notation LaG := TuM for this Lie-algebra
and call it the Lie-algebra of G.

Proof: It is clear from the definition (48.30) and from (43.13) that (t, s) 7→
[t, s] is bilinear and skew. The Jacobi-indendity (48.31) follows from Prop. 7 of
Sect. 43, applied to hi := Gti , i ∈ 3], and Prop. 5.

For each y ∈ G, define C(y) ∈ Lin(TyM,SyTG) by

C(y) := ∇y

(
z 7→ G(z)G(y)−1

)
. (48.17)

Then (48.32) defines, as described in (48.9), a natural connection C : G → ConG
on G. This connection is analytic.

Let a vector fuield h ∈ X1(TG) be given and let the lineon-field ∇–Ch
be defined according to (41.3). Then it follows from Prop.2 that ∇–Ch = 0 if
h = Gt for some t ∈ TuM, where G is defined by (48.21). Conversely, if
∇–Ch = 0 and if G is connected, then h = Gt for some t ∈ TuM.

Proposition 7: The Lie-algebra-operation of TuM is the opposite of the torsion
Tu(C(u)), i.e.

[t, s] = Tu(C(u))(t, s) for all t, s ∈ Tu. (48.18)

Proof: Let t, s ∈ Tu be given. Application of (43.18) to h := Gt, k := Gs,
x := u gives (48.33) if (48.30) is observed and ∇–Ch = 0 = ∇–Ck, as described in
above, is applied.

Remark : The curvature field R(C) = 0 ???
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Proposition 8: Let d ∈ × and p ∈ [0, d] → G, of class C1 and with p(0) = u,
be given. Then G p : [0, d]→ TlisuG is the parallelism along p for C.

Proof: Put T := G p. Then T(s)T(t)−1 = G(p(s))G(p(t))−1 for all s, t ∈
[0, d]. Hence, by (48.32), (35.10), and the chain rule,

sdtT = C(p(t))p.(t) for all t ∈ [0, d],

i.e. sdT = (C p)p. . In view of (35.23) the assertion follows.

An non-constant homomorphism q : → G from the additive group of to G
is called a one-parameter subgroup of G if it is of class C1.

Proposition 9: Let d ∈ × and p ∈ [0, d] → G, of class C1 and with p(0) = u,
be given. Then p is geodesic if and only if p = q|[0,d] for some one-parameter
subgroup q of G.

Proof: By Prop. 6 and (35.28), p is geodesic if and only if p.(0) 6= 0 and

G(p(t))p.(0) = p.(t) for all t ∈ [0, d]. (48.19)

Let q be a one-parameter subgroup of G and p = q|[0,d]. Let t ∈ [0, d[ be
given. Then

lep(t)p(s) = q(t)q(s) = q(t + s) = p(t + s)

for all s ∈ [0, d] ∩ ([0, d]− t) = [0, d− t[.

Differentiating with respect to s at 0 and using (48.21), we get

G(p(t))p.(0) = p.(t).

Since t ∈ [0.d[ was arbitrary and since p. is continuous at d, (48.34) follows.
Assume now that p is geodesic, i.e. that (48.34) holds. Let q : I → G be

the (unique) solution of the differential equation

? q ∈ C1(I,G) , (G q)p.(0) = q. (48.20)

whose domain I is the maximal interval that contains 0 ∈ . Then I is an
open interval, [0, d] ⊂ I, and p = q|[0,d] by the standard uniqueness theorem for
differential equations. Let t ∈ I be given and define u : I → G and v : (I−t)→ G
by

u(s) := q(t)q(s) = leq(t)(q(s)) for all s ∈ I (48.21)

and
v(s) := q(t + s) for all s ∈ I − t (48.22)
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Using the chain rule and (48.24), it follows from (48.36) that

u.(s) = (∇q(s)leq(t))q
.(s) = G(q(t)q(s))G(q(s))−1q.(s)

for all s ∈ I and hence, by (71.23) and (71.24), that

u. = (G u)p.(0) , u(0) = q(t). (48.23)

On the other hand, it follows (48.35) and (48.36) that

v.(s) = q.(t + s) = G(q(t + s))p.(0)

for all s ∈ I − t and hence that

v. = (G v)p.(0) , v(0) = q(t). (48.24)

Comparing (48.38) and (48.39), we see that u and v satisfiy the same dif-
ferential equation and initial condition. Since the domain of q is the maximal
interval containng 0, it is clear that the domains of u and v must both be the
maximal interval containing 0. It follows that I − t = I, which can be valid for
all t ∈ I only if I = . The standard uniqueness theorem for differential equations
shows that u = v and hence, by (48.36) and (48.37), that q(t + s) = q(t)q(s)
for all s ∈ . Since t ∈ was arbitrary, it follows that q must be a one-parameter
subgroup of G.
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Chapter 5

Geometric Structures.

We assume in this chapter that numbers r, s ∈ ,̃ with r ≥ 3 and s ∈ 0..r,
a Cr manifold M and a Cs linear-space bundle B over the manifold M are
given. We also assume that both M and B have constant dimensions, and put
n := dimM and m := dimB − dimM. Then we have n = dim TxM and
m = dim Bx for all x ∈M.

51. Compatible Connections

Let x ∈M be fixed. Let Φ be an analytic tensor functor and let E ∈ Φ(Bx)
be given.

Notation: We define the mapping

E� : TlisxB → Φ(B) (51.1)

by
E�(T) := Φ(T)E for all T ∈ TlisxB. (51.2)

Since Φ is analytic, it is clear that E� is differentiable at 1Bx
.

Proposition 1: We have ∇1Bx
E� ∈ Lin (SxB,TEΦ(B)) and, for every bundle

chart φ ∈ Chx(B,M),

(∇1Bx
E�)s = AΦ(φ)

E Pxs + IEΦ
•

x

(
Λ(Aφ

x)s
)
E (51.3)

for all s ∈ SxB.

Proof: By using (51.2) and the definition (23.21) of gradient, we obtain the
desired result.

Taking the gradient of E�
∣∣Φ(Bx)

LisBx
at 1Bx

, we have(
∇1Bx

E�∣∣Φ(Bx)

LisBx

)
L =

(
Φ

•

x(L)
)
E (51.4)

for all L ∈ LinBx. For the sake of simplicity, we use the following notation

E◦ := ∇1Bx

(
E�∣∣Φ(Bx)

LisBx

)
. (51.5)
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Given r ∈ \{0}, we observe from (51.5) that (rE)◦ = rE◦ and hence

Null E◦ = Null (rE)◦. (51.6)

It is follows from (51.3) and (51.4) that

Px = PE(∇1Bx
E�) and (∇1Bx

E�)Ix = IEE◦,

i.e. the diagram

LinBx
Ix−−→ SxB

Px−−→ TxM

E◦

y ∇1Bx
E�

y
∥∥∥∥∥

Φ(Bx) IE−−→ TEΦ(B) PE−−→ TxM

(51.7)

commutes. And it also clear from (51.3) that

AΦ(φ)
E = (∇1Bx

E�)Aφ
x ∈ RconEΦ(B) (51.8)

for all bundle chart φ ∈ Chx(B,M). More generally, we have

(∇1Bx
E�)K ∈ RconEΦ(B) for all K ∈ ConxB. (51.9)

In view of (51.9), the mapping ∇1Bx
E� induces the following mapping.

Definition: We define the mapping

JE : ConxB → RconEΦ(B)

by
JE(K) := (∇1Bx

E�)K for all K ∈ ConxB. (51.10)

Proposition 2: The mapping JE, defined in (51.10), is flat. Hence, for every
D ∈ Rng JE, J<

E ({D}) is a flat in ConxB with

dimJ<
E ({D}) =????.

Let a cross section H : M→ Φ(B), that is differentiable at x ∈M, be given.
The gradient of H at x is a tangent connector of Φ(B); i.e. ∇xH ∈ RconH(x)Φ(B).
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Proposition 3: We have

∇–KH = Λ
(
(∇1Bx

H(x)�)K
)
∇xH (51.11)

for all K ∈ ConxB and hence ∇–KH = 0 if and only if JH(x)(K) = ∇xH, i.e.
K ∈ J<

H(x)({∇xH}).

Proof: The desired result (51.11) follows from (51.8), (41.11), (42.1) and Re-
mark 1 of Sect. 32.

If K ∈ ConxB be such that ∇–KH = 0, then it follows from (51.11) that
Λ

(
(∇1Bx

H(x)�)K
)
∇xH = 0. Applyiny Prop.1 of Sect.14, we see that this can

happen if and only if (∇1Bx
H(x)�)K = ∇xH. Since K ∈ ConxB was arbitrary,

the assertion follows.

Now, let a differentiable cross section H : M→ Φ(B) be given.

Definition: A connection CM→ ConB is called a H-compatible connection
if ∇–C(x)H = 0 for all x ∈M, i.e.

∇–CH = 0. (51.12)

It clear from Prop.3 that a connection C is H-compatiable if and only if

JH(x)(C(x)) = ∇xH for all x ∈M. (51.13)

Proposition 4: Let connectors K1,K2 ∈ J<
H(x)({∇xH}) be given and determine

L ∈ Lin (TxM,LinBx) such that K1 −K2 = IxL; then we have

H(x)◦(Lt) = 0 for all t ∈ TxM. (51.14)
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52. Riemannian and Symplectic Bundles

We apply Sect.51 to the case when Φ = Smf2 or Skf2 (see example (4) of
Sect.13).

Let x ∈M be fixed and E ∈ Φ(Bx), Φ = Smf2 or Skf2, be given. We have

E◦(M) = E ◦ (M× 1Bx) + E ◦ (1Bx ×M), (52.1)

where E◦ is given in (51.5), for every M ∈ LinBx.

Proposition 1: If E is invertiable, then E◦ is surjective; i.e.

Rng E◦ = Sym2(B2
x, ) when Φ = Smf2 (52.2)

i.e., E ∈ Sym2(B2
x, ) and

Rng E◦ = Skw2(B2
x, ) when Φ = Skf2 (52.3)

i.e., E ∈ Skw2(B2
x, ).

Proof: By using (52.1).

Proposition 2: If E is invertiable, then the flat mapping JE defined in (51.10)
is surjective.

Proof: The surjectivity follows directly from (51.3), (51.4), (51.5) and the sur-
jectivity of E◦.

In view of Prop.2 we see taht, for every D ∈ RconEΦ(B), the preimage
J<
E({D}) is a flat in ConxB. Let K1,K2 ∈ J<

E({D}) be given and determine
L ∈ Lin(TxM,LinBx) such that K2 − K2 = IxL. Applying (51.3), we have
0 = JE(K2)−JE(K1) = E◦(L), that is L ∈ Lin(TxM,NullE◦). Since K1,K2 ∈
J<
E({D}) were arbitrary, we conclude that

dimJ<
E({D}) = dim Lin(TxM,NullE◦). (52.4)

Definition: A cross section G : M→ Smf2(B) is called a Riemannian field
if, for every x ∈M, G(x) is invertiable when regard as element of Sym(Bx,Bx

∗).
A cross section S : M→ Skf2(B) is called a symplectic field of B if, for

every x ∈M, S(x) is invertiable when regard as element of Skw(Bx,Bx
∗).

We say that B is a Cs Riemannian linear space bundle if it is endowed
with additional structure by the prescription of a Cs Riemannian field.

We say that B is a Cs symplectic linear space bundle if it is endowed
with additional structure by the prescription of a Cs symplectic field.
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Remark 1: A symplectic field of B exist if and only if, for every x ∈ M,
m := dimBx is even (see Sect.11). If m is odd, then

Skw(Bx,Bx
∗) ∩ Lis(Bx,Bx

∗) = ∅.

Proposition 3: If G : M→ Smf2(B) is a Riemannian field, then

dim J<
G(x)({∇xG}) = n

(
m

2

)
for all x ∈M. (52.5)

If S : M→ Skf2(B) is a symplectic field, then

dim J<
S(x)({∇xS}) = n

(
m + 1

2

)
for all x ∈M. (52.6)

Proof: It following easily from (52.4), (52.2) and (52.3).

Remark 2: Let G be a Riemannian field and C : M → ConB be a G-
compatible connection. Let L : M→ LisB be a cross section with ∇–CL = 0 be
given. Then, it follows from ∇–CG = 0 and ∇–CL = 0 that ∇–C(G ◦ (L×L)) = 0.
Hence, the Riemannian field H := G ◦ (L× L) satisfies ∇–CH = 0.
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53. Riemannian and Symplectic Manifolds.

Definition: We say that M is a Riemannian manifold if the tangent bundle
TM is endowed with additional structure by the prescription of a Cr−1 Rieman-
nian field.

We say that M is a symplectic manifold if the tangent bundle TM is
endowed with additional structure by the prescription of a Cr−1 symplectic field.

Let a Riemannian field G : M → Syminv(TM,TM∗) of class Cr−1 be
given.

Proposition 1: For every x ∈M, the restriction

Tx

∣∣
J<
G(x)({∇xG}) : J<

G(x)({∇xG}) → Skw2(TxM2,TxM) (53.1)

of the torsion mapping Tx is bijective.

Proof: Given x ∈ M. If K1,K2 ∈ Conx(TM,M), then we have Tx(K1) =
Tx(K2) if and only if K1 −K2 = IxL for some L ∈ Sym2((TxM)2,TxM) and
hence

(G(x)L)(t,b,d) = (G(x)L)(b, t,d) (53.2)

for all t,b,d ∈ TxM.
Let K1,K2 ∈ J<

G(x)({∇xG}) with Tx(K1) = Tx(K2) be given and deter-
mining L ∈ Lin2((TxM)2,TxM) such that K1 −K2 = IxL. Applying (52.1),
(51.14) and (53.2), we have

(G(x)L)(t,b,d) = −(G(x)L)(t,d,b) = −(G(x)L)(d, t,b) =
= (G(x)L)(d,b, t) = (G(x)L)(b,d, t) =
= −(G(x)L)(b, t,d) = −(G(x)L)(t,b,d)

for all t,b,d ∈ TxM. This shown that G(x)L = 0. Since G(x) is invertible, we
observe that L = 0 and hence K1 = K2. In other words, the restriction

Tx

∣∣
J<
G(x)({∇xG}) : J<

G(x)({∇xG}) → Skw2(TxM2,TxM) (53.3)

of the flat mapping Tx is injective and hence bijective. Since x ∈ M was
arbitrary, the assertion follows.
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Proposition 2: For every x ∈M, we have

J<
G(x)({∇xG}) =

{
K− 1

2
IxG(x)−1

(
S (∇–KG)

)∣∣K ∈ Conx(TM,M)
}

(53.4)

where (
S (∇–KG)

)
= ∇–KG +∇–KG˜(1,2) −∇–KG˜(1,3).

Moreover, if K1,K2 ∈ Conx(TM,M) with Tx(K1) = Tx(K2), i.e.

K1 −K2 ∈ {Ix}Sym2(TxM2, TxM)),

then we have

K1 −
1
2
IxG(x)−1

(
∇–K1G +∇–K1G˜(1,2) −∇–K1G˜(1,3)

)
= K2 −

1
2
IxG(x)−1

(
∇–K2G +∇–K2G˜(1,2) −∇–K2G˜(1,3)

)
.

(53.5)

Proof: By (41.8), we have(
( xG)IxG(x)−1∇–KG

)
(s, t,u) = ∇–KG(s, t,u) +∇–KG(s,u, t),(

( xG)IxG(x)−1∇–KG˜(1,2)
)
(s, t,u) = ∇–KG(t, s,u) +∇–KG(u, s, t),(

( xG)IxG(x)−1∇–KG˜(1,3)
)
(s, t,u) = ∇–KG(t,u, s) +∇–KG(u, t, s);

(53.6)

for all s, t,u ∈ TxM. Observing ∇–KG ∈ Lin
(
TxM,Sym2(TxM2, )

)
, we see that

(53.4)) follows easily from (53.6).

The more general version of “the fundamental theorem of Riemannian ge-
ometry” follows immediately from Prop. 1:

Fundamental Theorem of Riemannian Geometry (with torsion):
For every prescribed torsion field L : M → Skw2(TM2,TM) of class Cs,

s ∈ 0..r− 2, there is exactly one G-compatible connection C, i.e. one satisfying
∇–CG = 0, such that T(C) = L. C is of class Cs.

Remark 1: When L = 0, the corresponding connection is called the Levi-
Cività connection.

Remark 2: It follows from Theorem 3 that for every connection C′ : M →
Con TM of class Cs, s ∈ 0..r − 2, there is exactly one connection C : M →
Con TM such that T(C) = T(C′) and ∇–CG = 0. Moreover, in view of Prop. 2,
we have

C = C′ − 1
2
IG−1

(
∇–C′G−∇–C′G˜(1,2) +∇–C′G˜(1,3)

)
. (53.7)
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Now let a connection C : → ConTM be given. We may define, for each
x ∈M, a mapping

AC
x : ConxTM→ Sym2(TxM2,TxM) (53.8)

by

AC
x(K) := Λ(C(x))K +

(
Λ(C(x))K

)˜ for all K ∈ ConxTM. (53.9)

Let a symplectic field S : M→ Skwinv (TM,T∗M) of class Cr−1 be given.

Proposition 3: For every x ∈M, the restriction

AC
x

∣∣
J<
S(x)({∇xS}) : J<

S(x)({∇xS}) → Sym2(TxM2,TxM) (53.10)

of the mapping AC
x is bijective.

Proof: Similar to the proof of Prop. 1.

Proposition 4: For every connection C and each prescribed symmetric field
L : M → Sym2(TM2,TM) of class Cs, s ∈ 0..r − 2, there is exactly one S-
compatible connection K, i.e. one satisfying ∇–KS = 0, such that AC(K) = L.
K is of class Cs.

Proof: It follows immediately from Prop.3.

Notes 53

(1) The proof of the Fundamental Theorem of Riemannian Geometry given
here is modelled on the proof given by Noll in [N1].

(2) In [Sp], Spivak, M. stated: “Perhaps its only defect [of the fundamental
theorem of Riemannian geometry] is the restriction to symmetric connections.”
We show that this restriction is not needed.
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54. Identities

Let a Cr, r ≥ 2, Riemannian manifold M with the Riemannian-field G be
given. Assume that dim M≥ 2.

For every A,B ∈ X(TM) and a connection C : M → Con(TM), we use
the following notations

〈A,B〉 := G(A,B) and ∇AB := (∇–CB)A.

Proposition 1: A connection C on a Riemannian manifold M is compatible
with the Riemannian-field G if and only if

A〈B,D〉 = 〈∇AB,D〉+ 〈B,∇AD〉 (54.1)

for all A,B,D ∈ X(TM).

Proof: Taking the covariant gradient of G◦(B,D) with respect to C, we obtain

(∇–C(G ◦ (B,D)))A = G((∇–CB)A,D) + G(B, (∇–CD)A).
+ (∇–CG)(A,B, D)

The equation (I.1) holds if and only if ∇–CG = 0.

For the sake of simplification, we adapt the following notation

〈〈X, Y, Z, T 〉〉 := 〈R(X, Y )Z, T 〉 for all X, Y, Z, T ∈ X(TM),

where R := R(C) is the curvature field for a given connection C. Also recall
that

R(X, Y, Z) = ∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z

for all X, Y, Z ∈ X(TM).

Proposition 2: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

〈〈X, Y, Z, T 〉〉 = −〈〈X, Y, T, Z〉〉 (54.2)

for all X, Y, Z, T ∈ X(TM).

Proof: To prove (I.2) is equivalent to show

0 = 〈〈X, Y, Z, Z〉〉 = 〈∇Y ∇XZ −∇X∇Y Z +∇[X,Y ]Z,Z〉.

Applying (I.1), we have

〈∇Y ∇XZ,Z〉 = Y 〈∇XZ,Z〉 − 〈∇XZ,∇Y Z〉
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and
〈∇X∇Y Z,Z〉 = X〈∇Y Z,Z〉 − 〈∇Y Z,∇XZ〉.

Hence

〈〈X, Y, Z, Z〉〉 = Y 〈∇XZ,Z〉 −X〈∇Y Z,Z〉+ 〈∇[X,Y ]Z,Z〉.

It follows from (I.1) and the symmetry of the Riemannian-field G that

1
2
A〈D,D〉 = 〈∇AD,D〉 for all A,D ∈ X(TM). (54.3)

And hence

〈〈X, Y, Z, Z〉〉 =
1
2
Y (X〈Z,Z〉)− 1

2
X(Y 〈Z,Z〉) +

1
2
[X, Y ]〈Z,Z〉

= −1
2
[X, Y ]〈Z,Z〉+

1
2
[X, Y ]〈Z,Z〉 = 0.

Since X, Y, Z ∈ X(TM) were arbitrary, the equation (I.2) follows.

Let C be a compatible connection with the Riemannian-field G.

Given x ∈ M. Since Rx(C) ∈ Skw2(TxM2,LinTxM), we observe form
Prop. 2 that

〈〈 · , · , · , · 〉〉 ∈ Skw2(TxM2,Skw2(TxM2, )).

Lemma : Let an inner-product space T , with dim T ≥ 2, and a two-dimensional
subspace S of T be given. If both {u,v} and {s, t} are bases for S, then we have

W(u,v,u,v)
(u ∧ v)(u,v)

=
W(s, t, s, t)
(s ∧ t)(s, t)

(54.4)

for all W ∈ Skw2(T 2,Skw2(T 2, )).

Proof: By calculations.

Applying the above Lemma, we arrive the following definition.

Definition : Let V ⊂ TxM be a two-dimensional subspace of TxM. Let {u,v}
be a basis for S. The sectional curvature of S at x is defined by

Kx(S) :=
〈〈u,v,u,v〉〉
(u ∧ v)(u,v)

(54.5)

10



which does not depend on the choice of {u,v}.

Remark : The definition of sectional curvature “does not ” require the assuption
of the compatible connection C to be torsion-free.

Proposition 4: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

〈〈X, Y, Z,W 〉〉 − 〈〈Z,W,X, Y 〉〉 = V(X, Y, Z,W ) (54.6)

for all X, Y, Z,W ∈ X(TM).

Proof:

R(X, Y )Z ·W + R(Y, Z)X ·W + R(Z,X)Y ·W
+ R(Y,Z)W ·X + R(Z,W )Y ·X + R(W,Y )Z ·X
+ R(Z,W )X · Y + R(W,X)Z · Y + R(X, Z)W · Y
+ R(W,X)Y · Z + R(X, Y )W · Z + R(Y, W )X · Z

= ∇– T(X, Y, Z) ·W +∇– T(Y, Z, X) ·W +∇– T(Z,X, Y ) ·W
+∇– T(Y, Z, W ) ·X +∇– T(Z,W, Y ) ·X +∇– T(W,Y, Z) ·X
+∇– T(Z,W,X) · Y +∇– T(W,X, Z) · Y +∇– T(X, W, Z) · Y
+∇– T(W,X, Y ) · Z +∇– T(X, Y,W ) · Z +∇– T(Y,W, X) · Z
+ T(T(X, Y ), Z) ·W + T(T(Y,Z), X) ·W + T(T(Z,X), Y ) ·W
+ T(T(Y,Z),W ) ·X + T(T(Z,W ), Y ) ·X + T(T(W,Y ), Z) ·X
+ T(T(Z,W ), X) · Y + T(T(W,X), Z) · Y + T(T(X, Z),W ) · Y
+ T(T(W,X), Y ) · Z + T(T(X, Y ),W ) · Z + T(T(Y, W ), X) · Z

Proposition 5: Let C be a connection on a Riemannian manifold M which is
compatible with the Riemannian-field G, then we have

tr
(
R(x)(s, ·) t−R(x)(t, ·) s + R(x)(t, s)

)
=???? (54.7)

for all s, t ∈ TxM.

Second Proof of Pro. 2:
In view of (I.1) we have, for all X, Y, Z, T ∈ X(TM),

〈∇Y ∇XZ, T 〉 = Y 〈∇XZ, T 〉 − 〈∇XZ,∇Y T 〉,

〈∇X∇Y Z, T 〉 = X〈∇Y Z, T 〉 − 〈∇Y Z,∇XT 〉
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and
〈∇[X,Y ]Z, T 〉 = [X, Y ]〈Z, T 〉 − 〈Z,∇[X,Y ]T 〉.

Hence

〈〈X, Y, Z, T 〉〉 = 〈∇Y ∇XZ, T 〉 − 〈∇X∇Y Z, T 〉+ 〈∇[X,Y ]Z, T 〉
= Y 〈∇XZ, T 〉 − 〈∇XZ,∇Y T 〉 −X〈∇Y Z, T 〉+ 〈∇Y Z,∇XT 〉

+ [X, Y ]〈Z, T 〉 − 〈Z,∇[X,Y ]T 〉
= Y (X〈Z, T 〉)− Y 〈Z,∇XT 〉 −X(Y 〈Z, T 〉) + X〈Z,∇Y T 〉
− 〈∇XZ,∇Y T 〉+ 〈∇Y Z,∇XT 〉+ [X, Y ]〈Z, T 〉 − 〈Z,∇[X,Y ]T 〉

= −Y 〈Z,∇XT 〉+ X〈Z,∇Y T 〉
− 〈∇XZ,∇Y T 〉+ 〈∇Y Z,∇XT 〉 − 〈Z,∇[X,Y ]T 〉

= −〈∇Y ∇XT,Z〉+ 〈∇X∇Y T,Z〉 − 〈∇[X,Y ]T,Z〉
= −〈〈X, Y, T, Z〉〉 .

Since X, Y, Z, T ∈ X(TM) was arbitrary, the assertion of Prop. 2 follows.

55. Einstein-tensor field

Let a Cr manifold M, with r ≥ 2 and dim M ≥ 2, and a Cr connection
C : M → Con (TM) be given. Assume that G : M → Sym2(TM2, ) be a
Riemannian-field compatiable with the connection C.

Let x ∈M be given and assume that the following condition hold

tr
(
R(x)(s, ·) t−R(x)(t, ·) s + R(x)(t, s)

)
= 0, (55.1)

i.e. we have

tr (R(x)(s, ·) t)− tr (R(x)(t, ·) s) + tr (R(x)(t, s)) = 0.

Since R(x)(t, s) is skew-symmetric with respect to G, we obtain that

tr (R(x)(s, ·) t) = tr (R(x)(t, ·) s) for all s, t ∈ TxM.

Definition : The Ricci-tensor field Ric : M→ Sym2(TM2, ) is defined by

Ric(x)(s, t) := tr (R(x)(s, ·) t) (55.2)

for all x ∈M and all s, t ∈ TxM.
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Definition : The Einstein-tensor field Ein : M→ Sym2(TM2, ) is defined
by

Ein(x) := Ric(x)− 1
2
tr (G−1(x)Ric(x))G(x) (55.3)

for all x ∈M. (The factor 1/2 is determined by the assumption dim TxM = 4!)

It follows from the 2nd Bianchi Identity (this condition should be weaken)
that

divC Ein = 0. (55.4)

Remark: The matter tensor field Mat : M→ Sym2(TM2, ) satisfying

Ein(x) = κ Mat(x) (55.5)

where κ ∈ is the universal gravitational constant. It follows from (Ein.4)
and (Ein 5) that

divC Mat = 0 (55.6)

(balance of world-momentum).
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