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Abstract
In this paper we study the asymptotic behavior (c —• 0) of the Ginzburg

Landau equation:

ul - Au< + £/(««) = 0,
where the unknown u€ is a real-valued function of [0,oo)xR<1, and the given
nonlinear function f(u) = 2u(u7 - 1) is the derivative of a potential W(«) =
(«* - l ) 3 / 2 with two minima of equal depth. We prove that there are a subse-
quence €n and two disjoint, open subsets V, N of (0,oo)xft'f satisfying

*€n - > l p - 1#, as ii - • oo,

uniformly in 7> and AT (here 1^ is the indicator of the set A ). Furthermore the
Hausdorff dimension of the interface

T = complement of (V U A) C (0, oo) x7id

is equal to d and it is a weak solution of the mean curvature flow as defined in
[13, 93]. If this weak solution is unique, or equivalently if the level set solution
of the mean curvature flow is "thin", then the convergence is on the whole
sequence.

We also show that tie» has an expansion of the form

where q(r) = tanh(r) is the travelling wave associated to the cubic nonlinearity
/ , O(e) —• 0 as e —• 0, and d(t,x) is the signed distance of x to the {-section of

r.
We prove these results under fairly general assumptions on the initial data,

«o- In particular we do not assume that tic(0,x) = q(d(0,z)/€), nor that we
assume that the initial energy, £'(«'((),•)), is uniformly bounded in c.

Main tools of our analysis are viscosity solutions of parabolic equations,
weak viscosity limit of Barles-Perthame, weak solutions of mean curvature flow
and their properties obtained in [13] and Umanen's generalization of Huisken's
monotonidty formula.

Key Words: phase transitions, viscosity solutions, weak viscosity limits, mono-
tonidty formula, Ginzburg-Landau equation, mean curvature flow.

A M S Classifications: 35A05,35K57



1 Introduction.

The equation

(1.1) « J - A « c + ^ / ( t i € ) = O, in(O,

with

/(«) as 2u(u* - 1) m W'(%), W(%)

is the gradient flow of the energy functional

f € 1

since

The term W/e forces the solution u€ to take the values ±1 . Indeed Bronsard
and Kohn [19] proved that if £€(t*c ((),•)) is uniformly bounded in c, then u€

converges to a function * in Ll
loc and \u\ s 1 (also see section 5 in [44].) Thus

the asymptotic behavior of u€ is determined by the interface T that separates the
two regions V and N on which u€ converges +1 and -1, respectively. In the limit
the interlace T moves by mean curvature. The precise formulation and the proof
of this statement was the content of several papers [13, 28, 44, 63, 69, 77, 87],
and in this paper we wiD prove a convergence result that is global in time, for
general initial data with no assumption on the limiting geometric flow.

We continue with a description of earlier work on this problem. In 1979,
Allen and Cahn proposed equation (1.1) as a model for the motion of a curved
antiphase boundary [1]. In their paper Allen and Cahn also gave a short, formal
argument indicating that in the limit, the intertadal velocity V, is proportional
to its mean curvature, K:

This geometric equation was proposed earlier by Mullins to model an idealized
grain boundary movement [79]. For a detailed account of these models we refer
the reader to the recent articles of Gurtin [58, 59] and the monographs of Fife
[45] and Gurtin [60].



First justification of the convergence to the mean curvature flow was appar-
ently given by Rubinstein, Sternberg and Keller in 1988 [87]. By an asymptotic
expansion Rubinstein, Sternberg and Keller formally justified this convergence
result not only for (1.1) but also for systems of equations in any space dimension.
Independently, CaginaJp and Fife [26] obtained the same expansion for a two di-
mensional phase field model which is very similar to (1.1). Since then the formal
expansion techniques have been extended to several other problems, including
systems of equations for which the limit is a harmonic map [88], problems with
boundary conditions and non-local terms [89, 88, 84].

Later deMottoni and Schatzman [77] used the asymptotic expansion tech-
nique together with hard error estimates to prove the following result:

"Suppose that the initial data u(
0 is positive inside a smooth d — 1 dimensional

hypersurface To and negative outside of IV Further assume that there is a
classical solution Ft of the mean curvature flow out <T. Then «e converges to
+1 inside Tt and to -1 outside of F, on t < T.w

The precise result requires additional technical assumptions on the regularity
and the behavior of the initial data around the initial interface IV Indepen-
dently, Chen proved the same result [28]. Chen's method was to cleverly use
appropriate sub and supersolutions of (1.1). In addition to the convergence re-
sult, deMottoni-Schatzman and Chen also analyzed the formation of the initial
interface [28,78]. Since in two space dimensions (d s 2), there is a unique classi-
cal solution of the mean curvature flow [7, 8, 52, 56], deMottoni-Schatzman and
Chen result completely describes the asymptotics of tt*. However when d > 2,
the mean curvature flow developes singularities even if the initial surface Fo is
smooth [57]. Hence for d > 2, the results of deMottoni-Schatzman and Chen
describe only the short time behavior of u€.

It is dear that the global-in-time, asymptotic analysis of «' requires a
weak notion of mean curvature flow. The first weak formulation of the mean
curvature flow was given by Brakke using the theory of geometric measure theory
[17]. Then DeGiorgi and Bronsard-Kohn proposed to use the Ginzburg-Landau
equation to define a weak solution of the mean curvature flow [19], [38]. By
using energy estimates, Bronsard and Kohn also proved a convergence result
for radially symmetric u€. Their approach was influenced by the F-convergence
results of Modica-Mortolla [76], Modica [75], Fonseca-Tkrtar [49], and Sternberg
[95].

More recently an alternate weak formulation was proposed independently
by Evans-Spruck [40] and in more generality by Chen-Giga-Goto [31]. Their
formulation which is based on an idea of Othar Jasnow-Kawasald [83], Sethian
[91] and Osher-Sethian [82], is to view the surface moving by mean curvature
as the level set of a function defined on the whole ambient space and to derive
a differential equation for this function. This level set equation is degenerate



parabolic; and Evans-Spruck and Chen-Giga-Goto overcame this difficulty by
using the theory of viscosity solutions of nonlinear second order partial differen-
tial equations [35,33,34,68]. The level set approach was used earlier by Barles
[9] to study a first order problem arising in flame propagation and was fur-
ther developed by Evans-Spruck [41, 42, 43], Chen-Giga-Goto [32], Giga-Goto
[53], Giga-Goto-Ishii-Sato [54], Soner [93], Barles-Soner-Souganidis [13], Ishii-
Souganidis [67] and Ilmanen [64, 65]. In particular an intrinsic definition that
will be used in this paper was obtained in [93]. The regularity and the other
properties of the solutions and the connection between the level set solutions
and Brakke's solutions were discussed in [64, 41, 42, 43]. Motions in bounded
domains were studied by Sternberg-Ziemer [96], Katsoulalds-Kossioris-Reitich
[69], Giga-Sato [55]. Katsoulakis-Kossioris-Iteitich also obtained a convergence
result for of solutions of (1.1) in a bounded domain with Neumann boundary
condition.

Very recently, an interesting computational algorithm for tracking the
fronts moving by generalized mean curvature was proposed by Bence-Merriman-
Osher [14] and the convergence of this algorithm was proved independently by
Barles-Georgelin [11] and by Evans [39]. Also Gurtin-Soner-Souganidis [61]
and Ohnuma-Sato [81] used the level-set approach to study a class of singular
anisotropic equations. Anisotropic motions with crystalline energies introduce
further difficulties. We refer the reader to the excellent survey of Tfeylor-Cahn-
Handweifcer [103] and recent articles Almgren-T&ylor-Wang [5], Almgren-Tkylor
[4] for more information on anisotropic motions and the use of varifolds in study-
ing them.

Equipped with the level set formulation for the mean curvature equation,
Evans-Soner-Souganidis [44] proved the first global in time, multi-dimensional
convergence result for (1.1). Hence the level set solution of the mean curvature
flow and the solution proposed by DeGiorgi [38] and Bronsard-Kohn are the
same. The convergence result of [44] was extended by Barles-Soner-Souganidis
[13] to include a class of equations that are more general than (1.1). Barles-
Soner-Souganidis also extended the previous work of Gartner [51] and Barles-
Bronsard-Souganidis [10] related to a different scaling in (1.1). Recently Kat-
soulakis and Souganidis [70] used these results to characterize the generalized
mean curvature flow as the hydrodynamic limit of an infinite particle system,
generalizing a previous result of Bonaventura [16]. For more information on
the derivation of the meait curvature Sow from certain other spin systems, we
refer the reader to a recent article of DeMasi-Orlandi-Presutti-THolo [74] and
the references therein.

More precisely Evans-Soner-Souganidis proved the following. Let «c be
the unique solution of (1.1) with initial data «*(0,x) m tanh(<f(*,It)/e)), where
Tg is the boundary of a bounded region and d ( j t l * ) is the signed distance of
x to IV Let (p(tyx) be the solution of the level set equation with initial data



<p(O,x) m d(x,F0). (Recall that the zero level set {x : tp(t,x) = 0} is defined
by Evans-Spruck and Chen-Giga-Goto as the level set solution of the mean
curvature flow.) Then u€ converges to +1 on {<p > 0} and to -1 on {<p < 0} .
Hence the interface is included in the zero level set of <p or equivalently in the
level set solution of the mean curvature flow. Moreover the interface is equal
to the zero level set when it is "thin". However, when the set {<p = 0} is not
"thin", the above result does not yield more information about the interface F
or the limit of t*« in the region {^ = 0} (see Section 5 in [44]).

Using mainly geometric measure theory, Ilmanen [63] obtained a differ-
ent convergence result for u€ that does not require the level-set to be "thin".
Ilmanen proved that there are a subsequence en and a closed bounded set
r C (0,oo)xftd satisfying, a. *' converges to +1 or -1 locally uniformly on
the complement of I \ b. F is a Brakke solution of the mean curvature equation.
Moreover F has Hausdorff dimension d. Ilmanen's elegant proof is quite differ-
ent than those given in [13, 44], an important tool being his extension of the
monotonidty formula of Huisken: Huisken [62] proved his formula for smooth
solutions of the mean curvature flow and Ilmanen extended Huisken's formula to
solutions of (1.1). A statement of Ilmanen's monotonidty formula for the solu-
tions of (1.1) is given in Section 5, below. To further understand the asymptotic
behavior of the solutions in the region {<p = 0}, Dang-Fife-Peletier [37] studied
the stability properties of (1.1) in the plane. They considered solutions with
initial interface dose to the union of two axis. Since the level set solution of the
mean curvature flow starting from this initial interface is "fat", the evolution
of the interface is expected to be very sensitive to perturbations of the initial
data. Schatzman [90] and Dang, Fife and Pdetier [37] proved this instability.

Ilmanen proved his result under the assumption that uc(0, x) s= q(ze(Q, x)/c)
for some function z* satisfying |Z>zc(0,x)| < 1. In particular this assumption
implies that the initial energy is uniformly bounded in c. In this paper we re-
move both of these assumptions. Moreover, we do not assume that the initial
energy is uniformly bounded in e. Our proof combines Ilmanen's monotonic-
ity formula with weak viscosity limits of Barles-Perthame [12]. In addition to
the convergence result, this combination also allows us to obtain an asymptotic
expansion of ul of the form,

on a subsequence of e. Here d(t,x) is the signed distance of x to the t-section
of the interface F.

The analysis of a modd very similar to (1.1) was carried out by Chen-Elliot
[30], Blowey-EUiot [15] and Nochetto-Paolini-Verdi [80]. The bi-stable potential
W that they considered is equal to infinity outside the interval [-1,1] and it is
concave, quadratic inside this interval: the Euler equation related to this energy



functional is the "double obstacle problem*. Solutions of this problem take on
the values ±1 on two different regions and in the interface they solve a linear
equation. Sharp error estimates for this model and numerical approximations
of the mean curvature flow were obtained in [15, 30, 80]. Also Caginalp and
Socolovsky [27] used (1.1) to numerically approximate the mean curvature flow.

In this paper, we will not survey the literature on systems of equations
generalizing (1.1). A brief discussion of the connection between these equations
and the harmonic maps is given in [63]. For information on problems with more
than two phases and 'triple junctions", we refer the reader to Taylor [101,102],
Bronsard-Reitich [20], Sternberg-Ziemer [97] and the references therein. Reader
interested in "slow motion" or in the Cahn-Hilliard equation should consult
Alikakos-Bates-Fusco [3], Bronsard-Kohn [18], and Pego [85].

We complete our historical remarks with a very brief survey of convergence
results for the phase field model for solid-liquid phase transitions in a pure ma-
terial. This model was proposed by Langer [71], Fix [47], Caginalp [21, 22] and
Collins-Levine [36] and more recently modified versions of the phase field equa-
tions have been derived by Penrose-Fife [86] and Ried-Gurtin [50]. Mathemat-
ically, the phase field model consists of two equations. One of these equations
is very similar to (1.1) and the other is a heat equation with a source term. A
rigorous asymptotic analysis of the phase field model have been proved to be
difficult. Formal expansions were obtained by Caginalp-Fife [26] and Caginalp
[23]. More recently Stoth [98, 99] carried out an analysis of the one dimen-
sional and the radially symmetric problems and Caginalp-Chen [24] studied a
version of the phase field model in an annular domain, with radial symmetry
and special boundary conditions. For a generalized Stefan model of solidifi-
cation with melting temperature proportional to curvature, Luckhaus [73] and
Almgren-Wang [6] proved the convergence of a "time-step energyg g [] p g p gy
tion" method. Also computational studies of the limiting equations were carried
out by Strain [100] and Sethian-Strain [92]. However the convergence analysis
of the multi-dimensional phase field model still remains open and further un-
derstanding of the Ginzburg-Landau equation (1.1) may prove to be useful in
this direction.

After the completion of this work, Caginalp and Chen [25] announced
a convergence result. They proved that the phase-field model converges to
the mean curvature equation coupled with a heat equation, provided that the
limiting geometric system has a smooth solution. Their result is closely related
to a recent convergence result of Alikakos-Bates and Chen [2]. Alikakoe-Bates
and Chen proved the convergence of the Cahn-Hilliard equation to the Hele-
Shaw modeL Both [25] and [2] use a recent spectral estimate of Chen [29].



We continue with a brief outline of our proof.

Outline of our proot We always assume that |*€(0,*)| < 1. Then \u€(t,x)\ <
1 for every (f, x) € (0, oo)x1Zd. Let g s tanh. We now introduce a new function

Using (1.1) we obtain,

(1.2) *,' - Az« + — [\Dz< |2 - 1] = 0.

Formally the above equation suggests that in the limit \Dz€\ m 1. However the
only statement one can prove is the following. Let

*•(*,*) = Km sup zc(*,y),

limtaf
( ) (

^ t t = {(t,x): limsupii€(t,z)<0},

and

Te*i «inf{T € (0,oo]: |z*(t,x)|,|^(t,x)| < oo,V(t,*) €

Then **, zm are Lipschitz continuous in the x-variable with a Lipschitz constant
one and satisfy the following in the viscosity sense (see Lemma 4.1, below),

(1.3) -|I>z*| + 1 < 0, intfu n(0,re«i) x
(1.4) \Dz.\ - 1 > 0, i n ^ O(0,r««,) x

In general z* and zm are not continuous in the -̂variable and therefore we do
not expect them to be equal to each other. However, if z* and zm are upper
and lower semicontinuous envelopes of the same function z, respectively, then
by (1-3), (1.4) and the fact that z*, z» are Lipechitz continuous with Lipschitz
constant one, we can show that z is equal to the signed distance function to the
interface. So it is clear that to establish this connection between z* and z* is an
important step in the convergence analysis of «€. But since we have not made
any assumption on the initial data, the behavior of u€ on different subsequences



may be quite different mud consequently x* and x* may not be related in any
way. Tb establish a connection between z* and *», we introduce the measure

Then following Omanen [63], we construct a subsequence cn and a measure /i
such that /!*•(•;*) converges to /*(•;*) for each t. This construction assumes
(2.6). The precise statement of this result and a sketch of its proof are given in
Section 2, below.

Now let r be the support of JI and redefine z9 and z* fay using the sub-
sequence €« instead of the whole sequence c. Then the monotonidty formula
of Ilmanen and a gradient estimate (Proposition 4.1, below) imply that on the
complement of F, «c converges to +1 or -1 locally uniformly. It turns out that
this result and (1.3), (1.4) are enough to make the connection between zm and
z*. Indeed in Section 6 we show that z* is equal to the upper semicontinuous
envelope of d and zm is equal to the lower semicontinuous envelope of d , where
as before d(t, z) is the signed distance of x to the t-section of F. Once this result
is established , then it is easy to show that VU9 Afu and F are disjoint subsets of
(0,oo)xTC<i and their union is the whole space. Moreover «'• converges to +1
uniformly on compact subsets of Vu and to - 1 uniformly on compact subsets

The above convergence result enables us to prove two important proper-
ties of the interface F. First we observe that the monotonidty result yields
the "clearing-out" lemma (Theorem 5.1, below) and the udearing*out" lemma
implies that the Hausdorff dimension of the interface F is d. Recall that F is
a subset of (0,oc)x7£d and therefore the interface F is a "sharp*. Moreover F
is a weak solution of the mean curvature flow. This fact follows from (1.2) and
the techniques developed by Barles, Souganidis and the author in [13]. To give
the basic idea let us assume that |Uz€(0,x)| < 1. Then by maximum prindple
and (1.2), \Dz€{t,x)\ < 1, for every (i ,x) in (0,oo)xft*. We let en go to zero in
(1.2) to obtain,

dt-Ad £ 0onPtt,
< OonAC

of course in the viscosity sense. Since if is a distance function the above in-
equalities immediately imply that F is a weak solution of the mean curvature
in the sense defined in [93]. The general initial condition case requires more
analysis. In particular, we use the gradient estimate (Proposition 4.1, below)
and the techniques developed in [13].



Organization of the paper is as follows. In section 2, we recall several
known results about (1.1). The main results of this paper are stated in Section
3. In Section 4, we define and study the functions z9 and *,. In particular
we state a gradient estimate for z(. The proof of this gradient estimate is
given in the Appendix. Section 5 recalls the monotonicity result of Ilmanen and
a corollary to this monotonicity result is also proved in this section. Finally
proofs of the main results are completed in Section 6. In the Appendix 1, we
state a result of deMottoni-Schatzman and Chen and then prove a corollary
that is used in the earlier sections. The gradient estimate for z€ is proved in
Appendix 2.
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2 Preliminaries.

Let

(2.1) /(«) m 2«(«» - 1) e IF'(«), W(m) m («* - l)»/2.

Consider the scalar Ginzburg-Landau equation,

(2.2) <(t,x) - A«'(M) + £/(««(t,x)) = 0, (t,x) € (0,

with initial data
(2.3) ««(0,x) = «J(z), x€t td .

We will always assume that «J < 1 and continuous on "R.d. Then the standard
parabolic theory implies that there is a unique, bounded, real-valued

«« € Coo((0,oo)x*')nC([0,oo)xfc'')

satisfying (2.2) and (2.3).

Equation (2.2) is the gradient flow of the energy functional

(2.4)

Indeed by simple integration by parts and approximation arguments we can
show that

Since the above identity will not be used in this paper, we leave its derivation
to the reader. For t > 0 define a measure on Bord subsets of Hd by

(2.5) ?(A;t) « Jj±\Du<(t,x)\* + \w(u'(t,x)))dx.

In view of the energy identity, if S€(u€
Q) is uniformly bounded in €, then p€(Hd; t)

is uniformly bounded in c and I. Then we can use well known compactness of
Radon measures to extract a weak* convergent subsequence. In this paper
however, we do not assume that initial energy is uniformly bounded. Instead
we assume that for every 6 > 0 there are positive constants K$ and 17 satisfying,

(2.6) **p{J\1>(*)\9*€(dx;t) : e € (0,1),t € («,



for every continuous function if. The above condition is satisfied if €€(u%) is
uniformly bounded in c, but also holds under more general hypotheses. For
example, (2.6) is satisfied under the hypotheses of [28, 78], Le., if the initial
condition is three times continuously differentiate, has nonzero gradient on its
zero set and its zero level set is bounded, then (2.6) holds. A proof of this fact
and other sufficient conditions for (2.6) is the subject of the sequel of this paper
{94].

Let i>(x) be a compactly supported, smooth, non-negative real-valued
function. Then following Bmanen [63] we obtain,

(2-7) jtf J
J.Du<frx){- A «

(-A « £ £

for some constant C\ {$) depending only on V>» Since t/; is compactly supported,
(2.6) implies that for t > £ ft(({ip > 0}; t) is bounded by some constant
depending on ip but not on t. Therefore the map

-> J\/>(x)f
is nondecreasing on t > 6.

Now using the weak* compactness of Radon measures, (2.6) and the above
monotonidty property in a diagonal argument we construct a subsequence en —»
0 and a Radon measure /i satisfying

for every t > 0 and a compactly supported smooth function i>. The above
argument originates in Brakke [17] and for the details of this argument we refer
to Section 5.4 in Umanen [63]. The density arguments together with (2.6) show
that (2.8) actually holds for all continuous i>{x) that decay taster than e*'*l as
|*| tends to infinity (here the constant q is as in (2.6)). Finally, let

(2.9) F = support ii.

10



We will show in addition to several other properties of T that it has Hausdorff
dimension d and that it is the "sharp interface" separating the two regions on
which u€m converge —1 and 1, see Section 3 below.

Using (2.6) together with (2.7) and the techniques of Bronsard and Kohn
[19], we show that there are a further subsequence, denoted by c* again, and a
function « satisfying, |tt| = 1 and

(2.10) «*•- •« , n -• oo,

locally in Ll((0,oo)x7ld). Under the assumption that the initial energy is uni-
formly bounded in e, the above argument is given in detail in [19] (also see
section 5 in [44]). Since in this paper we assume only (2.6), we need to local-
ize the argument of Bronsard and Kohn by using (2.7). Details of this routine
localization argument is left to the reader. In the remainder of this paper, we
only study the properties of the sequence «*»• So we introduce the notation,

Another important object in our analysis is the travelling wave associated
to the cubic nonlineaxity / . Using the explicit form of / , we can easily show
that

q(r) s tanh(r), r € K

is the unique solution of the equation

(2.11) « » = /(«(')), Vr€fc,

with boundary conditions q(±oc) = ±1 and g(0) ss 0. Clearly the map

q : * - ( - M )

is one-to-one and onto. Therefore if |«n(t,x)| < 1, then we can define a real-
valued function zn satisfying

(2-12)

11



3 Main Results.

Let u€ be a smooth, bounded solution of (2.1), (2.2), the sequence e* be as in
Section 2 satisfying (2.8), (2.10) and un m «<». In addition to (2.6), we will
always assume that

(3.1) K ( * ) | < 1 , * * € * ' ,

then by maximum principle |nn(t,z)| < 1 for every (*,*) € (0,oo)xftrf and
therefore zn(t,x) is defined everywhere. Let us recall that sufficient conditions
for (2.6) are obtained in [94]. In particular (2.6) holds if £«(«$) is uniformly
bounded in e.

Now we are ready to state the main results of this paper. Proofs of these
results will be given in the subsequent sections.

Theorem 3.1 Assume (2.6) and (3.1). Let F be as in (2.9). Then there are
open disjoint subsets V and N of (0,oo)xftrf satisfying,

(3.2) r

Moreover,

(3.3)
(3.4)

UVUAfss ((

«»-•

u n —•

+1
- 1

uniformly in V,
uniformly in N.

Let Ft be the f-section of F and d(t, x) be the signed-distance between x
and Tu i c ,

f dist(x,Ft), (t,x)€V
(3.5) d(t,x)={ -dist(x,Fg), (t>x)€tf

[ 0, (M)€F,

if Ft is empty, we define dist(x,Ff) s oo for all x. Set

[0,oo]: F C (0,t]

Let V>(t,x) be a real-valued function . Then the upper semicontinuous
envelope of ^ is the smallest upper semi continuous function that is greater
than or equal to if and it is denoted by 4>*(t,x). Similarly the lower semi
continuous envelope of ̂  is the largest lower semi continuous function that is
less than or equal to V *nd it is denoted by 4>*(tyx).

12



Theorem 3.2 Assume (2.6) and (3.1). Then the Hausdorff dimension of T
is equal to d . Moreover m (O,tMt) x Kd

f T is a weak solution of ike mean
curvature equation in the sense defined in [93],i.e.,

(3.6) ^[d A 0] - F*{D\d A 0], D2[d A 0]) < 0,

(3.7) ~ ( i V 0] - Fm(D[d V OJ, D2[d V 0]) > 0,

where the above inequalities are understood in the viscosity sense in (0, te«<) xHd,
and dA0 = msn{<f,0},d V0 = max{rf,0} and for a symmetric matrix H and a
nonzero vector p € Hd,

Our final result is a refinement of (3.3) and (3.4).

Theorem 3.3 Assume (2.6) and (3.1). Then, for every (t,x) € (O,te*t) *
we have,

(3.8) limsup z»(*,y) = <*•(*,*),
«-»oo,(«,ir)-+(t,*)

(3.9) liminf
D ( » i f ) K

_.—* zn is as in (2.12), d* is the upper semi-continuous envelope of d, and dm

is the lower semi-continuous envelope of d. On (*«««, oo) xTld we have either
one of the following,

'< 7v C r^ Z* SB Zm B + 0 0 ,

or
(testtOO) X 7v C At) Z = 2$ s — OC.

In general, the distance function d is not continuous in the t-variable.
However, when d is continuous at a point (to»*o)* then (3.8) and (3.9) imply
that zn converges to d uniformly in a bounded neighborhood of (to, x0). In this
neighborhood we have the following expansion,
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4 Weak viscosity limits.

Recall that since K | < 1, |«<(t,z)| < 1 for all (t,x) and therefore z«(t,x) is
defined everywhere and solves the following parabolic equation in (0,oo)xft<f,

(4.1) *J-Az« + ^ ( | i ? z « p - l ] = 0.

Set
w' = |I>z<(t,x)|3, • • = *«• . \Dz*(t,x)\*,

where «„ is the sequence chosen in Section 2 and D denote the differentiation
with respect to the spatial variable x alone. By differentiating (4.1) we obtain,

(4.2) w't + Z > e + JT(t,x,wn) m -2 | |DV| | 2 in (0,oo)xft<*,

where for a real number r, (t,x) € [0,oo)xTZd and a smooth function <p €
*(d)

C\<p{x)

where as before q = tanh. Observe that if |2?z'(0,x)| < 1 for every x, then by
maximum principle \Dz€(t,x)\ < 1 for every (t,x)- This fact was used in an
essential way in [63] (see Section 4.1 in [63]). In this paper we make no such
assumption on the initial data. Instead we have the following gradient estimate.

Proposition 4.1 Assume (3.1). Then there exists 0 < eo < 1 such that for
every e < €<> we have,

(4.3) *<(*,*)

for every (t,x) € (0,oo) x Ud.

We prove (3.5) by maximum principle and appropriate of supersolutions.
Since this proof is somehow tangential to the main trust of this paper, we
postpone it to Appendix 2. We should also note that a "scale-invariant" version
of (4.3) is also discussed in Appendix 2, Remark 8.1.

Although the proof of (4.3) is not important in the subsequent sections,
(4.3) itself is an essential tool in our analysis. Note that after letting c go to
zero in (4.3), we see that the right hand ride of tends to one provided that t is

14



positive and z( is uniformly bounded in c. Hence at least formally, in the limit
as € tends to sero we recover the estimate u\Dz€\ < 1".

By a simple application of the GronwaH's inequality, we obtain the follow-
ing corollary:

Corollary 4.1 Assume (3.1). Let Co be as in Proposition 4.1. Then for every
positive t, there exists a constant K€(t) such that,

(4.4)

where

Now following Barles and Perthame [12] (also see Chapter 7 in [48]), we
define two possibly extended-valued functions z* and z, by,

(4.5) z*(M) = limsup

*.(«,*) « liminf zn(s,y).

We also define,

(4.6) V = { ( t , x )€ (0 ,oo )x^: x.(f ,x)>0},

AT = { ( t , * ) € ( 0 , o e ) x ^ : *•(*,*)

P« • {(«,*) € (0,oo)x^ -; liminf«n(«,*)>0},
AT. = {(»,*)€ (0,oo)x»rf: limBiipt."(«,ar)<0},

and

T.,, = inf{T € {0,oo]: \z*(ttx)\t\x.(ttt)\ < oo,V(t,«) € (0,T) x ^ r f } .

Clearly «n satisfies (3.3) and (3.4), and in particular V C Vmf M C M.. One
of the main objects of the rest of this paper is to show that the complement
of V U M is equal to T. We will prove this fact by carefully analyzing the
properties of z* and x». First observe that, by passing to the fimit €„ -» 0 in
(4.4) m obtain,
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(4.7) |*'(*,*)-**(t,Jf)|

However z* and *• may fail to be continuous in the t-variable. But z* is upper
semi continuous and zm is lower semi continuous. Next we multiply (4.1) by e
and then pass to the limit in the viscosity sense to obtain the following result.

Lemma 4.1 Assume (3.1). Then zm and z* satisfy the following differential
inequalities in the viscosity sense,

(4.8) _ |D**| + 1 < 0, intfm

(4.9) \Dzm\-l > 0, inVu.

Proof: Let $ be a smooth function and (t, x) € Nu be a strict local maximizer
of the difference z* - j> on (0,oo) x 1ld. Since (t,x) € tfu , z*(t,x) < 0 and
since z* — ip has a local maximum at (t, x), 2*(t, x) > oo. Hence z*(ty x) is finite
and there are a subsequence n* and local maximizers (t*,x*) of the difference
zn* - tp converging to (t,x) as k tends to oo. By calculus at (t*,x*) we have,

^t^(z
nk)u D2t(f<D2znh.

We use the above in (4.1) to obtain the following at (t*,x*),

Now if (t,x) € ATy, then tin*(^,xt) < 0 for sufficiently large Jb. Then the above
inequality implies that at

Let I: go to infinity in the above inequality to obtain,

This completes the proof of (4.8). The other inequality (4.9) is proved exactly
the same way. •

Recall that V C T\,, M C A^. Also the distance function is a unique
viscosity solution of the Eikonal equation \Dd\ s 1. These observations and
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comparison results for viscosity sub and supenolutions of the Eikonial equation
(66], yield the following result.

Proposition 4.2 Assume (3.1). Then

(4.10) AT.-AT, Vu-V.

Moreover,

(4.11) *'(t,x) < -di»*(x,jV;c), (t,x)€AT,
z'(t,x) =

and

(4.12) z.(t,x) >
z.(t,x) =
z.(t,x) >

w&ere j4e denote the complement of A and At C ft* denote the t-section of
d

Proof: The only subtle point in the proof of (4.11) and (4.12) is the fact that
(4.8) and (4.9) hold only in open subsets of (0,oo)xftd but not necessarily at
every t. Set

Let (to,*o) be in Vu with to < Tesi.

case a: d(to,xo) < co. Then d(t,x) > 0 in a neighborhood of (to**o) and for
every 6 > 0, there is r(S) > 0 satisfying,

Qt = {(t,x): |x -*o | < rf(«o,»«)-«,|t-«o| < r(«)} C Vu.

For 7 > 0, set

»(«,x) = d(«,,*0) - « - |x - * 0 | " M»-(«)" l< ~ «oO'2. (*.*) €

Then by (4.9)
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\Dz.\ > 1, and \Dv\ = linQ6.

Recall that D denote the differentiation with respect to x-variable only and
the above inequalities hold in the viscosity sense. We also have zm > v on the
boundary of Qe and v is continuous in Q*. Hence by a comparison result for
viscosity sub and supersolutions (see for example [12, 66, 34]) we have z+ > v
in Qs for every positive 6 and 7. Let 6 and 7 go to zero to conclude that
M ) i ( )
case

Set
vN(t,x) = N - \x - *o| - 7 K - \t - toir2, (t,x) € QN.

Now proceed as in the previous case to show that z»(tot*o) > t;jv(to,«o)
for every iV*. Hence

b: d(tt,x0) = 00. Then for every N, there is r# > 0 such that,

o) ( o , o ) « 00.

Hence we have proved that

*•(*,*) > i(«,«) - * '* (* , (P«)?)f V(tf x) € T>..

Now suppose that (t,x) € ^«. Then d(t,x) > 0. Therefore zm(t,x) > 0, and
(t,x) € 7>. Since by construction V is & subset of Vu> we conclude that they are
equal to each other. In summary, we have proved that

V = Vm z.{t,x) > di$t(x,Vf)y V(t,x) € V.

Moreover on (0,Te*t) x 71*, by (4.7) we have,

*(« ,*) ^ dist(x,Vf), V(e,x) € T>H (0,Te.t) x W
V(t,x) € T^ H (0,Te,«) x

Combining above inequalities to obtain (4.12). The second part of (4.10) and
(4.11) are proved similarly.
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Remark 4.1. Suppose that there are a subsequence n* and an open
subset Q of (0,oo)x7^ such that as k tends to infinity, «"* -• +1 uniformly
on compact subsets of Q. Then by restricting the arguments of Lemma 4.1 and
Proposition 4.2 to the subsequence n*, we can show that

for all (*,*) € Q. Clearly a similar result holds if «n* -> - 1 uniformly on
compact subsets of an open set Q.
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5 Monotonicity Formula.

In thb section we recall a remarkable monotonidty formula derived by Ilmanen
[63]. Ilmanen'8 formula is an extension of the Huisken's monotonidty formula
for smooth manifolds moving by their mean curvature [62]. In our analysis
the monotonidty formula is essential in connecting the subsequences on which
*»(t,x) and z*(t,x) are achived. Following the notation and the terminology of
Section 3 in [63], we fix a 'blow-up9 point (y, $) and set

For t < #, Ilmanen proved the following (see Section 3.3 in [63]).

(5.2) j t

where

( 5 -3 ) =

In the above derivation we used the identity (qf)7 = 2W(q). Set

ac(t; s, y) = y p{t, x; y

Observe that if \Dz€(tyx)\2 < 1, then £ is negative and therefore cr€(t;«,y) is
nonincreasing in t In general the gradient estimate (4.3) yields the following
analogue of this monotonidty result. Let €o be as in Proposition 4.2.

Corollary 6.1 Assume (3.1). Then for oil (s,y) € (0,oo)xTC'',0 < € < €o and
0 < 6 <t <r < s, we have,

(5.4)

where
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In particular, far every 0<t<r<s,we have,

J p(r,x;y,$)ti(dx;r) < jp(t,x;y

where p is the hmit of pn (see (2.8)).

Proof Umanen'a monotonidty formula (5.2) , (5.3) and the gradient estimate
(4.3) imply that,

< MiA)^ - or1 f fow)fa
Observe that

and
W(r)r\<4Vr «* , . , £

Hence we have

Since fp(t,x;*,i)dx = ^4ir(« -1) mdt>6,

Finally an applkatioc of GronwakTs inequality yields (5.4). •

We are ready to prove a slight extension of the "clearing-out" lemma
proved by Ilmanen [63]. Our proof follows very closely Section 6.1 in [63].

Theorem 6.1 (Ilmanen) Assume (3.1) mnd (2.6). Let ft be the Umit of fin

(c.f. (2.8)). Then for every 6>0 there exists t)(6) > 0 such that if

(5.5) Jp(tyx;-,»Mdx;t) < 1,(6),
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for some (*o,?o) and t satisfying 6 <t < #* < * + 1 < 1/6, then there is a
neighborhood O o/(*o,yo) **ch that,

(5.6) *•(*,*) >0, V(#,y)€O, or z*(s,y)<0, V(#,y)€O,

* n —• ± 1 uniformly in this neighborhood. In particular, if (5.5) holds then

and

(«o,yo) t {(t,x): x € support /*(•;*)}.

Proof: Assume f € [£, 1/J]. AD the constants in this proof depend on 6, but we
suppress this dependence.
1* Suppose that

*;*o,lfo) = I p(t,x;SQy

for some 17 that will be chosen later in this proof. Set an = cr€*. Then by the
continuity of p, assumption (2.6) and the convergence of /*"(*; t) for every t (cf.
(2.8)), there are an integer no &nd a neighborhood U of («o»yo) satisfying,

<*n(t;s,y) < 2iy, (#,y) € U,n > no.

Here £/* and no may depend on 17 and t, #o9 yo«

2. Use (5.4) with r s i - e j t o construct a constant Jbi (independent of 17 and
n) and n(rj) > no satisfying,

an(s - 4;#,y) < tuy, V(#,») € CT,n > n(iy).

Let B«.(y) be the sphere centered at y with radius €„. Then, we have,

(5.7) <

Observe that the constant fcj is independent of 9.
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Now define,
P SB Jim inf inf

M<

Let c be any number sufficiently dose to one, say (7/8). In the next step we
will show that for a carefully chosen value of tj, 0 > c = (7/8).

3. Suppose that p < (7/8). Then there are a subsequence nk and (**,y*) € V
satisfying,

(7/8)

for every k. Using (4.4) we conclude that there is fco, independent of 17, such
that for k > Jko we have,

!*"•(** - «*4,»)| < €B t |r
l(7/8) + 2], V* € B(mk(yk).

Consequently W(un>(sk - «*,,*)) > W(q[q-l(7/S) + 2]), »nd

(5.8) >

where a;<f is the volume of the d dimensional unit sphere. Now choose

where *2 is as in Step 2. With this choice of 9, (5.8) contradicts (5.7) for
sufficiently large k. Hence 0 > (7/8).

4. Since 0 > (7/8) and un is continuous, for a sufficiently large n we have
either u»($ - «*,„) > (3/4) for all («,*) 6 V or «"(« - €j,y) < -(3/4) for
all (#,y) € V. We also know that the sequence «n is convergent (c.t (2.10)).
Hence we conclude that, we have either *"(# — «J,y) > (3/4) for all sufficiently
large n and (#,y) € £/ or «n(s - c£,y) < -(3/4) for all sufficiently large n and
(*, y) € tf. Without loss of generality suppose that we have the first case. Then
by a result of deMottoni-Schaztman [78] or Chen [28] (see Corollary 7.1, below),
we conclude that un converges to one uniformly on U. Hence
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and by (4.11),

*.(#,») >0 , V(#,y)€tt

The other conclusions of the theorem easily follows from (5.6).
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6 Conclusion*

In this section we complete the proofs of Theorems 3.1, 3.2 and 3.3.

Proof of Theorem 3.1 Let V and AT be as in (4.6). Then dearly they are
disjoint.

1. Suppose that (*o*yo) £ T and *0 > 0. Since p(t,x;*0,yo) decays exponen-
tially as |x| tends to infinity, (2.8) holds with 4>(x) = p(t,x;$0,y0) for every
t < $Q. Moreover p(t,x;$o,yo) tends to zero exponentially fast as t tends to
so, for all x ± y0. Using these facts and (2.6), it is easy to show that (5.5) is
satisfied at every t sufficiently dose to a0. Hence by Theorem 5.1, (5.6) holds
and consequently

2. Suppose that (*o,Vo) € V and *o > 0. Then there are 6 > 0, o > 0 and
no > 0 satisfying,

(6.1) *«(a,if) > a, V|* - JO|, \v - Vo| < «, n > no.

Definition of fin and the gradient estimate (4.3) imply that for sufficiently
large n and \s — $Q\ < 6,

Let a be as in (6.1). Then for sufficiently small e, the function

*-tf(f))V + 3]
is decreasing on z > a. Therefore, for |* — «o| < &%

W * ) ; , ) < Mm ̂ ^ -L(fP(i))»[o» + 3]d, = 0.

Hence (•,,»») ^T.

S. Suppose that («o«yo) € ^ and «e > 0. Then the same argument as in the
previous step yields that («o, yo) f. T. m
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We need the following result in the proof of Theorem 3.3. Recall that
Bs{x) is the d dimensional sphere centered at x with radius 6.

Lemma 6.1 Assume (3.1) and (2.6).

a) Suppose that z*(t,x) > 0 at some (*,*) € (0,oo)xftrf. Then there is a
positive constant 6 satisfying,

*.(',*) > «, V(t,f) € (M + 6] x B6(x).

b) Suppose that z.(t,x) < 0 at some (t,x) € (0,oo)xftrf. Then there is a
positive constant S satisfying,

z*(; y) < -« , V(*, y) € (t, t + «] x ft (x).

Proof: We will prove only part a. Proof of part b is similar.

1. Since z*(t,x) = 7 > 0, the definition z* implies that there are a subsequence
nk and (**,**) -• (s,x) satisfying,

Since xk -• x, in view of (4.4) there is a neighborhood U of x such that for
sufficiently large Jb,

*"*('*>*)> 7/4 Vy€t t

Hence for sufficiently large Jb,

2. By deMottoni-Schatzman and Chen result [28, 78] (see Corollary 7.1, below),
there is 6 > 0 such that u"h -+ +1 uniformly on every compact subset of
(t, t + 6) x £s{(x). Since this convergence is only on a subsequence, we can not
yet use (4.12). But by Remark 4.1 we have,

3. Arguing as in Step 2 of the previous proof, for s € (t, t + S\ we obtain,

26



fim

Recall that JI is the limit of fin (c.i (2.8)). Hence /i(£26 (*);*) s 0 for all
# € (t, t + 5] or equivalently

Then by Theorem 3.1,

Since «n is convergent in Ll (c.f. (2.10)) and tin* converges to one uniformly in
(i, * + 6] x £26(2)9 we conclude that

We complete the proof of part a by using (4.12) in (t,t + 6] x

We continue with the proof of Theorem &3. The above lemma essentially
shows that the boundaries of the sets P = {z, > 0} and N m {z* < 0} in
(0,oo)xTC'' are equal. This observation and Proposition 4.2 will be used to
complete the proof of Theorem 3.3.

Proof of Theorem 3.3.

1. Suppose that zm{t,z) > 0 and t < T€mi. Then by Proposition 4.2, (4.12),

Moreover by (3.2) we have Vf = TtUMt. Hence di$t(x,Vf) < d(t,x). LetyeVf
be such that, di8t(x,T>f) = |x - y\. Since zm is Lipschitz continuous in the 2-
variable, zm(t,y) = 0. Recall that y € T^ m Tt UA/i and zm(t,x) > zm(t,x) = 0.
Therefore y € F« and consequently,

*(*.«) < k - f I

Also (t,x) 6 7> and therefore in a neighborhood of (t,x) we have d = g, where
p(t, x) is the distance between x and the t-section of the dosed set TU/f. Then
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it is elementary to show that g is lower semi continuous and since d « g in a
neigborhood of (t,x) we have,

*•(«•*) = §.&*) = g(t,x) = <f(t,x).

Hence we have proved (3.9) when *»(t,x) > 0 and t < T€Bt. Similarly we can
show that,

provided that z*(t,x) < 0 and t < T d .

2. Suppose that *»(*,*) = 0 and t < T€9i. Since 0 = *«(t,x) < zm(t,x), (t,x)
is not in V U N. Therefore by (3.2) z € Tt and <*(*,*) = 0. We now claim that
d(t,x) = d»(f,x). Indeed if there is a sequence (t*,x*) —• (t,x) satisfying

Then by the previous step and (4.11), z*(^,x^) = d(tk,xk) for all i . Hence

< liminf z*(t*,x*) = liminf </(**, x*) < 0.

But this contradicts with the hypothesses of this step; 2»(t,x) = 0. Therefore
d(t,x) = dm(tyx) = 0, whenever 2»(t,x) = 0. Combining with the first step we
conclude that,

(6.2) *•(*, x) = d(t, x) = d.(t, x), V(t, x) satisfying «.(tf x) > 0.

3. We proceed as in the previous step to obtain,

(6.3) z*(t,x) = d{tyx) m iT(t,x), V(t,x) satisfying *'(t,x) < 0.

4. Suppose that *,(t,x) < 0 and t < T€9t. Set

where ̂  is as in (4.6). For e > 0, we use Lemma 6.1b together with a compact-
ness argument to construct 6 > 0 satisfying,

(6.4) («,* + «] x£7_€(x)cAf.
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Hence,

Hminf &'*t(y,r#) > 7,

and therefore,

d%Bt{xyVt) = 7 < liminf di8t(y,T9) as —u

Since ty (4.12) ^( t ,x )>-7 ,

(6.5) ^(t,x)>d>,x).

We also have

Step 3 and (6.4) imply that for every * sufficiently dose to t and $ > t we have,
z*(8,x) = d(*,x). We use this in the above inequality and then recall (6.5) to
obtain,

zm(t,x) s d[t,x), V(t,x) satisfying z.(t, x) < 0.

5. In this step we will show that d{t,x) defined in the previous step is equal to
dm{t,x) whenever z*(t,x) < 0. Indeed by construction d > dm. We already know
that d(t,x) = zm{t,x) < 0. Set g s dm(tyx). Then e < 0. By the definition
of d+ and the Lipschitz continuity of d% there b a sequence t* —• t satisfying,
^(^,x) -4 0. Since <!(**,x) < 0 for sufficiently large Jb, (tk,x) € M and step 3
implies that z*(t*,x) = d(t^,x). In summary;

z.(t,x) « d(t,x) > d.{t,x) m Jim

m Hm *•(!*,«) > (r*)»(t,x) > z.(t,x).
#—•00

Hence J(t,x) = dm(t,x) and this step together with steps 2 and A complete the
proof of (3.9) on t < T€gt.

6. Suppose that z*(t,x) > 0 and t < TM(. We proceed as in step 4 and then
step 5 to prove that

29



 



*•(*,*) m Em tup dfrx) m i*(t,x).
< ) ( M ) ><

This identity and step 3 complete the proof of (3.8) on t < T9*t.

7. An application of Lemma 6.1 and (4.4) yield that on {TtmU oo) x Kd we have
eitLer zm as z* ws —oo or zm = z* m +oo. Therefore

(6.6) (re,i,oo)x^nr=:e.

Suppose that Vt is empty for some t. Then (3.8) implies that if t < Tett then
z*(t,x) ss +oo for every x. Therefore t > Ttzi- A similar argument shows that
if Mt is empty, then t > T^t. Hence both V% and M are nonempty for all
t < TeKt. So by (3.2) Tt is nonempty for all t < T€mi. This and (6.6) imply that
Temt ss ttzx (recall that t€gt is defined in Section 3).

Combinning all the steps we conclude that (3.8) and (3.9) hold with te*t =

We are now ready to prove Theorem 3*2.

Proof of Theorem 3*2. The e - • 0 limit of (5.4), assumption (2.6), the
"dearing-out", Theorem 5.1, and Bmanen's argument in Section 6.3 in [63]
yields a local upper bound on the rf-dimensional Hausdorff measure of T H U
for any compact subset V of (0,oo)xTC</. The second assertion of the theorem
is a consequence of Theorem 3*3, equation (4.1), gradient estimate(4.3) and
Section 10.2 in [13]. Since the notation and the assumptions used in [13] are
quite different than the ones used in this paper, we will now briefly sketch this
argument.

1- In this step we will show that

zmt - Azm > 0,

o n P f l (0,TCct) x TZd. In bet when \Dz€\ < 1, this inequality follows imme-
diately from (4.1). In general we will prove the above inequality by using a
transformation, the gradient estimate (4.3) and (3.9).

For A small positive constant /J, let y be a smooth, increasing function
satisfying, iKO) = 0, 0 < J' < 0, tf > 1 in (0,oo), if < 1 in (-oo,0) , and
9 > - 0 . Following [13], we define,

(6.7) f«(*,*) « mf(*(*«(*,*)) +1* -
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This transformation is very similar to the inf-convolution used extensively in the
theory of viscosity solutions [68],[72]. We refer the reader to [34] and Chapter 5
in [48], for the properties of the inf-convolution. Since rj is bounded from below
by /?, the above minimum is achieved, say at y(x) (y(x) also depends on t and
e, but we suppress this dependence in our notation.) By calculus, (see [13] for
details), we obtain

«(z«(*,y(*))/c)[l - |I>z«(*,jr(*))|*] > 0, on {z« > 0}.

Now by using equation (4.1) and the properties of viscosity solutions and the
inf-convolution we obtain,

fftt,*)-A**(',J

2 ,
€

in the viscosity sense. Since rf9 < /J, we have,

(6.8) ft«(t,*) - A£«(«,*) + /J|Pz«(t,y(*))|8 > 0, on { f > 0}.

Let

Then the properties of 17, (6.7) and (3.9) imply that zm s zm on V H (0,recg).
Also by carefully letting e go to zero in (6.8) we obtain,

z.t{t,x) - Az.(M) + ^|D^(«,«)P > 0,

ouVD (0, Tccl) x Hd. Now let £ go to zero and use the gradient estimate (4.3)
to conclude that on VH (0,T€mt) x Rd,

(6.9) ^ f ( t ,x ) -Az. ( l f j?)>0.

2* Lemma 2 in [13] and (6.9) imply (3.7). The intuitive idea behind this
is simple. First we observe that since zm is a distance function, \Dzm\2 s 1
in the viscosity sense. We then formally differentiate this identity to obtain
D2z.Dz0 s 0. Hence formally Az* = F(Dzm,D7zm), where F is as in the
statement of Theorem 3.2. This identity and (6.9) imply,
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z.(t,x)) > 0,

on V O (0,TM l) x R*. See [13] for the details of this argument.

Remark 6.1. Following the ideas of Ilmanen, it may be possible to prove that
r is a solution of the mean curvature flow in the sense of Brakke [17]. Since
Brakke's solutions satisfy the distance function property of [13, 93], this would
be a stronger result than Theorem 3.2. Indeed this result was proved by Ilmanen
under the additional assumption that «o = q(*Q/c) and \DZQ\ < 1 [63].
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7 Appendix: a result of Chen and deMottoni-
Schatzman.

In this section we state a result of deMottoni-Schatzman and Chen. Then we
prove a corollary which was used in earlier sections.

The following is a special case of a result proved by deMottoni-Schatzman
[78] and Chen [28]. The particular result stated below follows immediately from
Theorem 3 in [28].

Theorem 7.1 (Chen and deMottoni-Schatzman) Let u* he a solution of
(2.2) and (2.3). Suppose that there are U > 0 and a one parameter family of
bounded closed subsets fit of TV* satisfying,

a* boundary of Sit ** a classical solution of the mean curvature flow on (0, to),

b. signed distance function d(t, z) is three times continuously differentiable on
[0,to] * Hd, (where d(tyx) is the signed distance between x and the boundary of

c. UQ > 0 in the interior o/flo and ul <0 in the complement ofilo, and there
are positive constants C, h, independent of t, such that,

K(x) | > C|*(0, *)|, \Dul(x)\ > C, V|<i(0,*)| < fc.

Then u€ converges to +1 uniformly on compact subsets of{(tjx): t € (0,to),x €
int(ilt)}, and u€ converges to —1 uniformly on compact subsets of {(t,x) : t €
( W J
Corollary 7*1 Suppose that there are subsequences en —* 0 and tn —• to
an open set O of Hd satisfying,

linunf inf tic*(tn,2r) = a > 0,

or
lim sup sup «€* (tm x) ss —a < 0.

Then for every x € O there is 6 > 0 such that «*• converges to +1 or —1,
uniformly on every compact subset of (t, 14- 6] x

Proof: Without loss of generality we may assume that «*•(*„, x) > 0 on O.
Then we have,

(7.1) «€*(*w,*) = a / 2 > 0 , V*€O,
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and sufficently large n. Fix x0 € O and kt v€ be the solution of (2.2) with initial
data

where,

Then for every x £ O, |x - xo| > 6», and

Also for every x, vc(0, x) < f. Therefore by (7.1),

(7.2) t;€*(0,x)<ti€-(*n,x), Vx

and by maximum principle

Observe that the zero level set of t/€(0, •) is the boundary of a ball centered at
xo with radius

Hence the previous theorem holds with

n4 = {*€*': !*-*•(< y/(ro)*-2(d- l)t).

Now the conclusoa of the corollary follows from (7.2) and Theorem 7.1.
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8 Appendix: a gradient estimate.

In this section we prove the gradient estimate (4.3). As in Section 4, we define,

Recall that,

(8.1) wj + Ctw* + JT(t,x,wn) < 0, in (0,oo)xKd,

where for a real number r, (t,x) € [0,oo)xft* and a smooth function ip €
C*(r f)

JT(f,».r) = ^ ( i ! &

and as before g(r) = tanh(r). Set

Recall that the gradient estimate (4.3) states that for sufficiently small t,
it7c < W. We will first show that W is a supersolution of an equation very
similar to (8.1). Then we complete the proof of (4.3) by an application of the
maximum principle.

Lemma 8.1 There art a constant €Q and a function A€(t) such that for every

(8.2) Wt + C\W + jr(«,s,W) > £ ^ [ W - w€] in(0,oo)x7ld.

Moreover X€(t) is uniformly bounded in e, ie .a

(8-3) Ao m sup{|Ac(0|: t >, e < €o} < oo.

Proof: Set,

)* + l , K(€)
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1. We directly calculate that

Wi + C\W m - ^ M + £M[l^

and

(8.4) Wt

where

£il(«, + l)-2«,| + ij!(>,»,H).

In the following steps we will estimate / and J separately.

2. We split the estimate of / into two cases and start with the case,

(8.5) K

(The other case will be analyzed in the next step.) The above inequality yields,

provided that < < 1/3. Since «'z<

Using the above estimate and the poritivity of IC(t,x,W) we obtain,

i. Suppose that (8.5) does not hold, Le.,

e * rf{±

Since
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provided that e < 1. We use this inequality in the definition of Jf to obtain,

4

In the third inequality we used the fact that 1> > 1. Since 2K(e) > e for all
€ < 1 and the product u'z* is always positive, the above inequality yields,

4« Combining the two previous steps we conclude that for all e < 1/3,

i>-\u\w -w%

where I4 is the characteristic function of the set A and

A ={(*,*): JJT(e)|z«(t,*)|>«}.

5. We continue with an estimate of J. First suppose that

(8.6) |z«|>2€.

(The other case will be analyzed in the next step.) Then we have,

Hence,

> [2(tt> +
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6. Now suppose that (8.6) does not hold, Le., \z'\ < 2«. Then,

Recall that ««z€ > 0. Therefore for e < v/?(2)»

+

In the second inequality, we used the tact that ^ > 1.

7. Combining the two previous steps we conclude that for every e < yV(2),

where

^ = {(e,x): \z*(t,x)\<2c).

Now (8.2) follows from this step, Step 4 and (8.4) with e0 = ^ ( 2 ) and

Filially, we prove (8.3) after observing that K(e) -> 0 as € - • 0.

Proof of Proposition 4.1. Fix 6 < £0 and T > 0. We first assume that there
exists a constant C(e) > 1 satisfying,

(8.7) «*(0f*)£C(c)v V*€ft".

We will remove this restriction in Step 6, below. Since C(e) >l,wm C(e) is a
•upenolution of (8.1). Therefore by (8.7) and the maximum principle we have,

(8.8) «,«(*,*) < C(c), V(<,«) € |0,
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To prove (4.3) we first assume that

Inf

and then obtain a contradiction in the next five steps.

1. Set

where Ao and K(e) are as in the previous lemma. This technical choice of Q will
be clear in the next several steps. Then we have,

inf{e-"(W(t,*) - w*(t,x)}: (t,x) € [0,T\ x H") = -26 < 0.

For 6 € (0,6], choose (ts,x() € [0,7] x Hd such that,

- «;«)(««,xt) < -2b + 6.

2. Let q be a smooth function satisfying,

0 < V < 1, i?(0) = 1, I7(x) = 0, V|x| > 1.

Consider the auxiliary function,

t,x) m e~*[W(t,x) - w'(t,x)] - 6V(x - xf).

Then * achieves its maximum over [0,T\ x Kd
y say at (t,x). Moreover,

(8.9) *(f,x) < •(«<,x«) = e-**(W - w')(tt,x() < -25 + 6.

Since W'(l,x) > K(()/t, (8.8) impUes that for all £ £ min{6,1},

0

Therefore,

(8.10)
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3. Set

#(*,*)« e-*V(t,z), W(t,x) m e-"W(t,x).

Then

(8.11) * , -£J* + £(*,*,«) < 0,

(8.12) W i £ ; # + * ( * « 0 £

where for r > 0, (t,x) € [0,oo)x^<f,

Using the definitions of i f and g, we directly estimate that,

(8.13) Rr(t,x,r) m
4 i€l

4. Let

Subtract (8.11) from (8.12) to obtain,

Since y>(t,£) < 0, (8.13) and (8.10) yield,

A(Utf) - *&*.

Hence at (£,£) we have,

(8.14) ipt -
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5. Recall that the auxiliary function • = tp - 6q defined in step 2 attains its
maximum at (£,x) € (0,11 x Kd- Therefore at

Now we use (8.14) and (8.9) to obtain,

24 - «[1 + r,(x - x6)] < -? (£ ,* ) < <*

where L(e) is a constant depending on the function 17 and the operator £' . Since
this constant is independent of j , we obtain a contradiction by letting 6 go to
zero in the above string of inequalities. Hence W > w€ on [0,7] x TCd for every
T > 0. So we have completed the proof of (4.3) under the additional assumption
(8.7).

6. In this step we remove the restriction (8.7). First observe that,

\u\(t,x) - ( , ) | , | ( , )

By well known properties of the heat kernel, we have,

where Cd is an appropriate constant, depending only on the dimension d. Fix
€, and for a positive integer Jb, let uk be the solution of (2.2) with initial data,

t**(0, x) m min{max{tic(*-\x), 1 - t " 1 } , - 1 + / T 1 } .

Define zk by,

Clearly as k tends to infinity, uh converges to u€ in CJ^((0,oo)x7trf) for
any m. Moreover,

\Dz'(o,x)\ = e\Du*(o,

Therefore by the previous steps, \Dzk\7 < W. Now we let Jb to go to infinity to
complete the proof of (4.3). •
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The following remark was pointed out to us by Ilmanen.

Remark 8.1. Observe that if «'(*,*) is a solution (1.1), then for any A > 0,

is again a solution of (1.1) with c replaced with c/A. Then by the gradient
estimate (4.3),

satisfies,

The above estimate holds for all A satisfying, c/A < c0, where e* is as in the
statement of Propsition 4.1. Since

the above estimate yields that,

,— v-,-,, ^ —21n(A/e) t

Now by minimizing the right-hand side over A > c/co, we obtain a scale-invariant
version of the estimate (4.3).
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