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1. INTRODUCTION

Mappings between linear cones have been studied in [NS77a], [NS77b], [Sch78],
[Sch79b], [Sch81], and [Sch79a]. The purpose of the present paper is twofold. First,
we give proofs of two theorems that were announced without proof in [NS77b]
(where they were designated as Theorems 1 and 3). These theorems deal with
linear cones consisting of quadratic forms over finite-dimensional real-linear spaces.
The first of these, called Theorem 1 here, states that there is an inclusion-reversing
one-to-one correspondence beween the lattice of subspaces of a given space and the
lattice of faces of the cone of quadratic forms on that space. The second, called
Theorem 2 here, states that cone-isomorphisms between cones of quadratic forms
are induced by linear isomorphisms between the underlying spaces (i.e., the linear
spaces which are the domains of the forms).

The second purpose of the paper is to show (Theorem 3 here) that a cone-linear
mapping F from one cone of quadratic forms to another is induced by a linear
mapping between the underlying spaces if and only if both F and its cone-transpose
are face-preserving mappings.1

One of the reasons for studying the mappings described above is the possibility of
generalizations to include the case when the cones of quadratic forms are replaced by

aThe proof of Thm. 2 presented here was found by R.A; it is different and more direct that
the one W.N. had in mind when [NS77a] was published. Thm. 3 was discovered recently by R.A.
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Hermitian forms over complex-linear spaces, which arise in the study of quantum
mechanics (see [Art78]). These genereralizations, as well generalizations which
apply to forms over quaternionic-linear spaces, will be deferred to future papers.

The notation and terminology of [Nol87] is used in this paper. In particular, IN
denotes the set of all natural numbers and IP the set of all positive real numbers
(both including zero). A superscript x indicates the removal of zero; in particular
IPX denotes the set of all strictly positive real numbers. Given n G INX, we denote
by v} the set consisting of the first n non-zero natural numbers. The collection of
all subsets of a given set S is denoted by Sub«S. Given a mapping <j> and subsets
A of its domain Dom^ and B of its codomain Cod<j>, we denote the image of A
under </> by <j>>(A) := {<f>(x) \ x G .4} and the pre-image of B under <j> by <^<(6) :=
{x G Dom<j) | <j)(x) G B}. If <f>>(A) C B, we define the adjustment </>\%: A -> B of <f>
by

^|5(x) := 4>(x) for all x G A.
If <j> is bijective, we denote its inverse by <f>*~~: Cod <f) —• Dom^.

Let a set A and S G Sub A be given. We denote by lscA £ Map(<S,̂ 4) the
inclusion mapping, i.e., the mapping which satisfies 1SQA(X) — x f°r aU x G S. We
abbreviate 1.4 := IACA, SO 1.4 is the identity mapping on A.

When we say "let a linear space be given" (or equivalent language), we mean "let
a finite-dimensional real linear space be given". When dealing with linear spaces,
we extensively use the notation, terminology, and results of Chapters 1 and 2 of
[Nol87]. In particular, when a linear space V is given, we identify V** = V.

Let a linear space V and a subset S of V be given. We note that the closure2

of S remains unchanged if V is replaced by a subspace of V that includes S. The
interior of <S, however, depends not only on S but also on the imbedding space V;
we write Inty S for the interior of S to make this dependence on V explicit (See
[Nol87], Sect. 53).

The collection of all subspaces of V is denoted by Subsp V. For each U G Subsp V,
we denote by Oy/w G Lin(V, V/U) the quotient mapping; , i.e., the mapping which
satisfies fiy/wv := v + U for all v G V.

Let a second linear space W and a (not necessarily linear) mapping <f>: V —> W be
given. We call Null<^ := <^<({0}) the nullset of <f>.3 We record several elementary
facts for later reference:

Proposition 1.1. Let sets A, B} C and a surjective mapping a: C —• A be given.
Then the mapping

(1.1) (<j>^<j>oa): Map(.4>B)->Map(C,jB)

25 injective.

Proposition 1.2. Let U G Subsp V be given. Then nQy/y G UL for all n G
(V/W)* and

(1.2) (»

2 All topological terms are to be understood in the context of the usual topologies for finite-
dimensional spaces; see Chapter 5 of [Nol87].

3 In [Nol87], this notation was used only for the case in which <f> is a linear mapping; in that
case Null <f> is a subspace and is called the nuWspace of <f>.
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is a linear isomorphism.

Proposition 1.3. Let L be a linear mapping. Then there is exactly one linear
isomorphism L: DomL/NullL —• RngL such that

(1-3) L — SlvomL/NuULL iRngLcCodL •

Corollary 1. Let L and V be surjective linear mappings such that DomL = DomZ/
and Null L = NullL'. Then there is exactly one linear isomorphism
A: Cod L -> Cod V such that V = AL.

Corollary 2. Let L and V be injective linear mappings such that Rng L = Rng V.
Then there is exactly one linear isomorphism A: DomL —* DomL' such that
L = L'A.

2. LINEAR CONES

Throughout this section, we assume that a linear space W is given. A subset V
of W is called a linear cone in W if it is stable under addition and under scalar
multiplication by strictly positive real numbers, i.e., ifV + VcV and IPX V C V.
Linear cones are convex sets. The interior and the closure of a given linear cone are
again linear cones. The intersection of a collection of linear cones is again a linear
cone. Hence, for every subset S of >V, there is exactly one smallest linear cone that
includes S\ we call this linear cone the cone-span of S and denote it by Csp S (see
[Nol87], Sect. 03)

For the remainder of this section, we assume that a linear cone V € W is given.
If V is not empty, then its linear span is given by Lsp'P — V — V. Thus V spans

VV if and only if V — V = W. The dimension of a linear cone V, denoted by
dim'P, is defined to be the dimension dim Lsp'P of its linear span.

A linear cone that is included in V is called a sub cone of V. We say that a
sub cone T of V is a face of V if it includes Pf){0}4 and

(2.1) u + veF => u,v£F for all u, v £ V.

The intersection of a collection of faces of V is again a face of V'. Hence, for a
given subset S of V, there is exactly one smallest face of V that includes S\ we
call this face the facial span of <S, and denote it by Fcsp S. Of course, V is a
face of itself. A face of V which is a proper subset of V is called a proper face of
V. A one-dimensional face of V is called an extreme ray of V. The concepts of
face, facial span, and extreme ray do not depend on the linear space in which V is
considered to be a linear cone.

Proposition 2.1. Assume that V is not empty. Then V spans >V if and only if
is non-empty.

Proof. Since V is convex, this result is an immediate consequence of Prop. 6 of
Sect. 54 of [Nol87]. •

Proposition 2.2. For every u G Intw V, we have Fcsp {u) = V.

4 This definition is revised relative to the one presented in [NS77b]; the first condition has been
added to insure that a face of a cone with zero contains the zero and is thus non-empty. This
revision is necessary for Thm. 1 of [NS77b] (as well as Thm. 1 of this paper) to be correct as
stated.
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Proof. Let u £ Intw V be given and put T \— Fcsp {u}. Let v EV be given. Since
u £ Intyy/'P) we may and do choose e G IPX such that w := —ev G V and hence
w + ev — u. Since u E T and since ^ is a face, it follows from (2.1) that ev G ̂ *.
Hence, since T is a linear cone, we have v = j(e») £ .F. Since v G V was arbitrary,
it follows that T = V. D

Proposition 2.3. Every non-empty face ofV is the facial span of a singleton.

Proof Let a non-empty face T of V be given and put U := Lsp T* Then T is a
linear cone that spans U. Hence, by Prop. 2.1, the interior Int^ T oi T relative to
U is not empty. Choose u G Int^ «F. By Prop. 2.2 we have Fcsp {u} — T. D

We say that a family (^t \i: G /) of faces of *P is facially independent if the facial
span of its union properly includes the facial span of the union of each of its proper
subfamilies, i.e., if

(2.2) Fcsp (llje j^7 ;) = FcsP ( U e / ^ ) => J = * for all J G Sub /.

A facially-independent family of faces of V is called a facial decomposition of V
if the facial span of its union is V. We note that a family (T{ | * G /) of faces of 'P
is a facial decomposition of "P if and only if

(2.3) Fcsp (Uje/^i) = V *=> J = 7 ^ all J G Sub /.

The dual of the linear cone V is defined by

(2.4) V* := {A G W* | A>(7>) C IP}.

It is easily seen that V* is a closed linear cone in W*.
Now let, in addition to W and V, a linear space W; and a linear cone 7*' be

given. Also, let a linear mapping Q:W —* W be given. We say that Q is
cone-compatible (relative to V and V') if Q>(V) C V and cone-preserving
if <3>CP) = V. Now let a mapping P: V -> P ' be given. We say that P is
cone-linear if it preserves addition and scalar multiplication by strictly positive
numbers. If P is also invertible, then its inverse is also cone-linear and P is called a
cone-isomorphism. When dealing with cone-linear mappings, we adopt the same
"multiplicative" notation used in [Nol87] for linear mappings. In particular, if P is
cone linear, then, given x £ V, we abbreviate Px := P(x)] if P is also invertible we
denote its inverse by P" 1 := P*~. We denote by Lin(P, V1) the set of all cone-linear
mappings from V to V1 * If Q: W —» W is a cone-compatible linear mapping, then
Q\?> '. V -+ V is cone-linear. Conversely, if P : P -+ *P' is cone-linear, then there
is a cone-compatible linear mapping Q: W —» W' such that P = Q|£ ; moreover,
if V spans W then Q is uniquely determined by P; also, if V and P ; span W and
W; respectively, and P is a cone-isomorphism, then Q is a cone-preserving linear
isomorphism.

Suppose that V spans W and that P is cone-linear, and denote the (cone-
compatible) linear extension of P by Q: W —> W. It is easy to see that QT : W'* —>
W* is cone-compatible relative to the dual cones V'* and V* (defined by (2.4)).

5We note that if V and V equal their linear spans, then the set of cone-linear mappings from
V to V' and the set of linear mappings from ? to ? ' are one and the same. Thus Lin(P,7?') is
not ambiguous.
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Thus we may and do define the cone-transpose of P by PT := <3T|™** • Clearly,
pT . <pi* _^ v+ ig c o n e _i i n e a r

Again, suppose that P is cone-linear. It is not hard to show that the pre-image
under P of each face of V is a face of V. We say that P is face-preserving if the
image under P of each face of V is a face of V1. Of course, every cone-isomorphism
is face-preserving and the range of every face-preserving cone-linear mapping is a
face. An injective cone-linear mapping is face-preserving if and only if its range is
a face. We note that the transpose of a face-preserving cone-linear mapping need
not be face-preserving. (See Sect. 6.)

3. SPACES AND CONES OF QUADRATIC FORMS

Throughout this section, we assume that a linear space V is given.
Our treatment of quadratic forms is based on Sect. 27 of [Nol87]. In particular,

we define the space Qu V of quadratic forms on V as the range of the injective
linear mapping

(3.1) 5 ^ 5 o ( l v , l v ) : Sym2(V2,IR)-»Map(V,.ft),

and we shall make use of the natural isomorphism6

(3.2) <t>^<t>u: Qu V -> Sym2(V
2, IR) £ Sym(V, V*)

characterized by

(3.3) <f>U(v,v) = 4>{v) for all v eV.

Let A, fj, G V* be given. The tensor product A (g) A* G Lin(V, V*) is defined in
Sect. 25 of [Nol87] by (A ® fi)v := (At>)/i for all v G V; it follows from Prop. 1 of
the same section that the symmetric tensor product |(A <g> ft + fi 0 A) is a member
of Sym(V, V*). In this paper, we find it convenient to use the value-wise product
Xfi: V —• IR defined by

(\fi)(v) := (XV)(IAV) for all v G V.

This function is the quadratic form on V which corresponds under the isomorphism
(3.2) to the symmetric tensor product of A and /x, i.e.,

(3.4) AjiGQuV and (A//)u = %(\®f* + M® A).

In particular, we have (A2)u = A (8) A when A2 denotes the value-wise square of A.
It is not hard to show that

(3.5) Qu V = LSP{AAX| A,/x G V*} = Lsp{A2| A G V*},

where the symbol Lsp denotes linear span in the space Map(V, IR) (see Problem 8,
Chapter 2 of [Nol87]).

We denote by7

(3.6) Pqu V := {</> G Qu V | Rng <f> C IP}

6 Clearly, (3.2) is the inverse of the linear isomorphism obtained by adjusting the codomain of
(3-1).

7In [NS77b], the symbol Qu+(V) was used for our PquV.
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the set of all positive quadratic forms on V. It is clear that Pqu V is a closed linear
cone in Qu V. Since A2 G Pqu V for every A G V*, it is clear from (3.5) that Pqu V
spans Qu V. Also, we have

(3.7) Pqu V = Csp{A2 | A G V*}.

(This fact can easily be inferred from [Nol87], Prop. 2 of Sect. 85 by introducing a
genuine inner product in V, using the resulting natural isomorphism from Pqu V to
Pos V, and then using the Spectral Theorem.) The interior of Pqu V is the (open)
linear cone8

Pqu+V : = {<f> G Qu V | </>>(Vx) C IPX}
= {<£ G Pqu V| Null <£ = {0}}

of all strictly positive quadratic forms on V. (This fact can easily be inferred
from the first statement in the Theorem on the Smoothness of the Strict Lineonic
Square Root in Sect. 85 of [Nol87].) In view of Prop. 2.3, we have

Fcsp {</>} = Pqu V for all </> G Pqu+ V.

In view of [Nol87], Prop. 1 of Sect. 27, we have

(3.8) dimQuV = dim Pqu V = dimPqu+V = ^ ^ H - d i m y )

Proposition 3.1. For all </> G Pqu V, we have9

(3.9) \<t>u(u,v)\2 < </>(u)<t>{v) for allu,v G V.

Proof. Let <f> G Qu V and u) v G V be given. Since Rng</> C IP, we have

(3.10) 0 < <f>(au - pv) = a2<j>{u) + p2<f>(v) - 2a/? <j>u{u, v)

for all a, p G IR.
Suppose that <j>(u) = <f>(v) = 0. Then using (3.10) with a := ^, p := —1 yields

0 < (f)u(u,v). Using (3.10) with a := | , p := 1 yields 0 < -<t>u(u,v), and we
conclude that <f>u(u,v) = 0, so that (3.9) holds because both sides are zero.

Suppose that one of <f)(u) and <f>(v), say <f>(u)) is not zero. Using (3.10) with
a := </>(v)2 and /? := <j>u(u,v) yields

Since <f>(v) > 0, it follows that (3.9) holds. •

For each u G V, we define u+: V —> V by

(u+)(v) :=u + v for all v G V.

8In [NS77b], the symbol Qu+(V) was used for our Pqu+V.
9 In the special case when (f> is strictly positive, it can be used to make V an inner-product

space and (3.9) reduces to the Inner-Product Inequality (see Sect. 42 of [Nol87]).
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Proposition 3.2. For all <f> G Pqu V, we have10

(3.11) Null<£=Null<£u = {ue V\<f>o(u+) = <f>}

when <f>u is regarded as an element 0/Sym(V, V*).

Proof. Let </> G Pqu V and u G V be given.
On the one hand, suppose that u G Null<£, so that that <j>(u) = 0. By Prop. 3.1

we then have (<t>uu)v = <f>u(u,v) = 0 for all v G V and hence <£u = 0, showing
that u G Null<£u. Since u G Null0 was arbitrary, it follows that Null<£ C Null<£u.
On the other hand, suppose that u G Null<£u; then 0 = (<f)Uu)u — <f>(u) and hence
u G Null0. It follows that Null0u C Null<£. It also follows that

<f>(w + u) = <f){w) + 0(ti) + 2<f>u(u)w = 0(t«) for all to G V,

so that

Finally, suppose, instead, that <f) o (u+) = >̂. Then <f>(u) — <j){u -ftt) =
and hence <j)(u) = 0, so it G Null<^. It follows that

Null</O {tiG V |0o( t«+) = ^ } . •

As an immediate consequence of Prop. 3.2, the nullset Null<£ is a subspace for all

For every U G Subsp V, the set

(3.12) $ v (U) := {</> G Pqu V|<A|w = 0} = {<t> G Pqu

is clearly a sub cone of Pqu V.

Proposition 3.3. For every U G Subsp V, the subcone <I>v (M) of Pqu V defined by
(3.12) is actually a face o/PquV.

Proof. Let U G Subsp V and </>1} <t>2 G Pqu V be given such that

<£ := <£i + 02 e $v (W).

By (3.12) this means that 4>x(u) + ^ 2 ( ^ ) = ° f o r a 1 ' ^eU. Since Rng</>i C IP and
Rng^ 2 C IP by (3.6), we conclude that ^x(ti) = 0 = 02C14) ^or a ^ u m ^> f ' - e*» t n a t

0 i , 0 2 G*v(W). D

In view of Prop. 3.3, we may consider (3.12) to be the definition of a mapping

(3.13) $v : Subsp V -» Face (Pqu V)

from Subsp V to the lattice Face (Pqu V) of all faces of Pqu (V).

Proposition 3.4. Let U G Subsp V be given. Then pofty/u G $v (W) for all p in
Pqu (V/U) and the mapping

(3.14) p^po ilv/u : Pqu (V/U) -+ $v (U)

is a cone-isomorphism.

1 0The second equality in (3.11) holds for all <f> in Qu V; the first fails when 0 G QuV is
double-signed, i.e., when neither <f> nor —<j> is positive.

11 If <f> E Qu V is double-signed, then Null<£ is not a subspace.
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Proof. Let p G Pqu(V/W) be given. Since the composite of a linear mapping
with a positive quadratic form is again a positive quadratic form, it is clear that
po fty/u G Pqu V. Also, since U is the zero-element of V/U and since £lv/uu — U
for all u in U, it is clear that (p o Hy/w) \u = 0, so that poHv/w G 3>v(^0 in view
of (3.12).

It is evident that the mapping (3.14) is cone-linear. Since flv/u is surjective,
the mapping

<j> •-> <j> o nv /w : Map(V/W, HI) -> Map(V, IR)

is injective by Prop. 1.1; it follows that (3.14) is injective.
Now let </> in $ v (W) be given, so that ^ C Null<£ by (3.12). It follows by

Prop. 3.2 that

^(v+U) = <£>(M) = {<£(*)} fo r a11 v ^ V.

Thus we can determine p : V/£/ —• IR by the condition p{Q) G <f>>(G) for all £7 in
V/ZY; it is clear that <f> = po fiy/t/- Choosing a right inverse L G Lin(V/ZY, V) for
llv/Wj w e note that (j>o L = P°^v/u ° L — p. It follows that p G Pqu (V/U). Since
</> G ̂ v (^ ) w a s arbitrary, if follows that (3.14) is surjective. •

Proposit ion 3.5. For all <j> G Pqu V, the facial span of the singleton {</>} is given
by

(3.15) Fcsp{</>} = $v(Null<£).

Proof. We noted after proving Prop. 3.2 that Null</> G Subsp V for all <f> G PquV.
Let <f> G PquV be given and put U := Null<^. It is clear from (3.12) and Prop. 3.3
that <J>v(̂ O is a face of PquV that contains <j> and hence that Fcsp {</>} C $v(U).
In view of Prop. 3.4, we may determine p in Pqu {V/U) such that p o 17V/w = </>,
so p(y -\-U) = <̂ >(v) for all v G V. Since £/ = Null<̂ >, it follows that

Nullp= {v+U\vEN\ill<t>} = {U}.

Thus, since U is the zero-element of V/U, and since clearly p G Pqu V, we have p G
Pqu+ (V/U). Since Pqu+ (V/W) is the interior of Pqu (V/U), it follows by Prop. 2.2
that Pqu(V/W) = Fcsp {p}. Hence, by Prop. 3.4, we have $V(U) = Fcsp {<f>}. •

It follows from Proposition 3.4 and (3.8) that

(3.16) dim<M£0 = dimPqu(V/ZY) =

for all U G Subsp V.

Theorem 1. The mapping <$v of (3.13), defined by (3.12); is an inclusion-reversing
bisection.

Proof. It is easily seen from (3.12) and (3.8) that <l>v is strictly inclusion-reversing
in the sense that

(3.17) U^W = > * v ( W ) 3 * v ( W )

for all U, W G Subsp V. Hence $v is injective. To show that $v is surjective, let
a face T of the cone PquV be given. By Prop. 2.3, we may choose </> G PquV
such that T — Fcsp {</>}. By Prop. 3.5 above, we have T — $v (Null</>) and hence
T G R n g ^ y Since the face T was arbitrary, it follows that <£v is surjective. •
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It follows from Theorem 1 that for every family {U{ \ i E /) of subspaces of V, we
have

(318) *v (a6 /%) = Fcsp (U
(3.19) 4>

these formulas relate greatest lower bounds in the lattice Subsp V to least upper
bounds in the lattice Face (Pqu V) and vice versa.

4. DUALITY

Throughout this section, we assume that linear spaces V and V are given. We
note the identification V** = V which states that every vector v € V may be
regarded as linear form on V*. Hence we consider the value-wise square v2 of a
given v £ V as a quadratic form on V*, so that v2 6 Qu V*.

Proposition 4.1. There is exactly one bilinear mapping

(4.1) T: QuVx QuV* -> IR

such thai

(4.2) r(\\v2) = (\v)2 for all\ in V*, v eV.

This mapping satisfies

(4.3) T(<£,v2) = 4>(v) for all <f>eQuV,v in V,

(4.4) T(A2, / ) = / ( A ) for all\eV*,f in Qu V*,

and the mappings

(4.5) tf-IW,.): QuV-.(QuV*)*,

(4.6) f"T(.,f): QuV->(QuV)'

are cone-preserving linear isomorphisms relative to the cones PquV, (PquV*)
and Pqu V*, (PquV)* ; respectively.

Proof Using [Nol87], Prop. 6 of Chap. 2, with the choices Vi := V2 := V*, W := H,
and using the identifications V** = V and Lin(V, V*) = Lin2(V

2,IR), we see that
there is exactly one linear isomorphism

A: Lin2(V*2,IR)-^(Lin2(V2,IR))*

such that B(Ai, A2) = A(B)(\1 ® A2) for all B E Lin2(V*2, IR),and all Ai, A2 G V.
Define

f: Sym2(V*2,IR) - (Sym2(V
2,lR))*

by
T(S) := A(5)|s,m9(v»,R) for all 5 G Sym2(V*2,1R).

Then F is easily seen to be the only linear isomorphism from Sym2(V*2,lR) to
(Sym2(V

2,IR))* which satisfies 5(A, A) = T(S)(\ ® A) for all 5 € Sym2(V*2,IR)
and all A e V*. Replacing the spaces Sym2(V

2,IR) and Sym2(V*2,IR) of bilinear
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mappings by the corresponding spaces Qu V and Qu V* of quadratic forms yields
the first statement of the proposition.

In view of (3.5) and the linearity of F in its first argument, (4.3) follows directly
from (4.2); statement (4.4) is established similarly.

It follows from (4.3) that

<f> = 0 «=» F(<£, -) = 0 for all <t> G Qu V,

so that (4.5) is injective and hence a linear isomorphism. In view of (3.7) and the
linearity of F in its first argument, it also follows from (4.3) that

<£ePquV «=> F(<£,-)<E(PquV*)* for all <£ G Qu V;

thus (4.5) is cone-preserving. The assertions that (4.6) is a linear isomorphism and
cone-preserving are established similarly. •

The mappings (4.5) and (4.6) establish natural linear isormorphims between
Qu V and (Qu V*)* and between Qu V* and (Qu V)* which are compatible with the
identification (Qu V)** = QuV. They also establish cone-isomorphisms between
PquV and (PquV*)* and between Pqu V* and (Pqu V)* . We do not treat these
natural isomorphisms as identifications per se12, but we re-interpret some notation
and terminology (insofar as it applies to cones and spaces of quadratic forms) in
order to let the four spaces and cones on the left-hand sides of these isomorphisms
conveniently "stand in" for those on the right. In particular,

(1) we consider annihilators of subsets of QuV and QuV* to be subsets of
Qu V* and Qu V, respectively; thus

(4.7) AL = {/ G Qu V* | F(<£, / ) = 0 for all <t> G A}

for MAe Sub(QuV),

(4.8) BL = {4>eQuV\ F(<£, / ) = 0 for all / in B}

forall£inSub(QuV*);

(2) we consider the transposes of linear mappings Qu V —> Qu V' to be lin-
ear mappings QuV* —» QuV*, and transposes of cone-linear mappings
PquV —> PquV; to be cone-linear mappings PquV'* —• PquV*; thus, for
all Q G Lin(Qu V, Qu V) and all P G Lin(Pqu V, Pqu V), the transpose QT

and the cone-transpose P T are determined by the properties13

(4.9) T(Q4>, / ) = F(</>, QTf) for all </> G Qu V, / in Qu V*,

(4.10) F(P<£,/) = F(</>,PT/) for all </>G PquV, / in PquV'*;

(3) given a linear space W, w G W, <t> G QuV and / G QuV*, we interpret
the tensor products w ® 4> and w ® / as members of Lin(Qu V*, W) and
Lin(Qu V, W), respectively.

12To do so would lead to awkward ambiguities, e.g., identifying (f> G QuV with F(<£, •) £
(QuV*)* would make "Rng0" ambiguous.

13We note that the symbol F on the right side of the equalities denotes the bilinear map-
ping (4.1) with domain QuV X QuV*, while the same symbol F on the left side denotes the
corresponding bilinear mapping with domain Qu V' X Qu V'*.
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In addition, we feel free to speak of the spaces Qu V and Qu V* (and of the cones
Pqu V and Pqu V*) as being dual to each other.

Proposition 4.2. Let a subspace UofVbe given. Then we have

(4.11) *v(Z/) = Csp{A2|A€M"L}

and

(4.12) (*v (W))1 = {/ G Qu V* | f\u, = 0},

where $v(U) is defined by (3.12).

Proof. Since

(4.13) M2 o nv/u = (nSlv/u)2 for all /x G (V/W)*,

it follows from Prop. 1.2 that

Csp{/i2 o fty/w I A* € (V/Z/)*} = Csp{(M}v/M)2 | H € (V/U)*} =

Csp{A2 |A6Z/ J-}.

Since
Csp{/x2 | M G (V/W)*} = Pqu (V/U)

by (3.7), the assertion (4.11) follows by Prop. 3.4.
It follows from (4.4) that f\u± = 0 if and only if T( / , A2) = 0 for all A G UL.

By (4.11), this is the case if and only if T(f)<f> = 0 for all </> G ^v (W), i.e., in
view of (4.7), if and only if / G (^v(W))1". Since / in Qu V* was arbitrary, (4.12)
follows. •

Proposit ion 4.3. For each <f> G (Pqu V) x
; <f> belongs to an extreme ray of QuV if

and only if</> = A2 for some A in (V*)x.

Proof. Saying that <j> belongs to an extreme ray means that Fcsp {</>} = IP cf>. By
Prop. 3.9, this is the case if and only if $ v (Null<£) = JP<f>. By Prop. 4.2, (4.11),
this is the case if and only if TR<f> = IRf/2 for some /i G V* and hence <f> = A2 for
some A G V*. •

Let n G IN be given. We denote the set of all isotone pairs in (7J)2 by Ip(n), i.e.,

(4.14) Ip(n) :={ (* , t ) e (n l ) 2 | f< fc} .

Given any list /3 := (/3,. | i G ri) in (V*)n, we define the family /3D/3 G (Qu V) Ip (n )

by

(4.15) 08n/3)(,-|Jb) := PiPk f o r a11 («. *) € Ip(n).

Proposi t ion 4.4. Zetf n G IN, a linear space W, and -7 G (W*)n 6e ^tven. Then
the following are equivalent:

(i) 7 is a ftasis ofW*;
(ii) ^D^/ is a basis of Qu >V;
(iii) (IP7 t-

2 I i G n^) is a facial decomposition of Pqu VV.
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Proof. We first prove the equivalence of (i) and (ii). On the one hand assume (i).
Then

(§(7,- ® 7j + 7 i ® 7i) I ihj) e Ip(n))

is a basis for Sym2(W
2,IR) by an argument very similar to the one used to prove

Prop. 1 of Sect. 27 of [Nol87]. In view of (3.4) and the fact that (3.2) is a linear
isomorphism, we have (ii).

On the other hand, assume (ii). Let a list t := (U \ i G n') be given such that

(4.16)

Then we have

Since (7i7,- | i G iJ) is a subfamily of the basis 7Q7 of Qu W, it is linearly inde-
pendent. It follows that t — 0.

Since t was arbitrary, subject to (4.16), 7 is linearly independent, and hence a
basis.

We next prove the equivalence of (i) and (iii). In view of (2.3), (3.18), and the
fact that Pqu W = $w({0}), (iii) holds if and only if

^w(a G j^W^(IP7i 2 ) ) = ^w({0}) <=> J = rJ for all J € Sub n'.

Since, in view (3.15), we have

E>7t.
2 = $w(Null7t.

2) = *w(Null7,.) for all i G n\

it follows that (iii) holds if and only if

n t € J Null7t = {0} «=> J = n] for all J G Sub n1.

Since

p | Null7i = (j2 E 7 i ] = (Lsp{7t- I i G J})1 for all J G Sub rJ

by [Nol87], Prop. 5 of Sect. 21, it follows that (iii) holds if and only if

LsP{7i \i e J} = V <=> J = n) for all J G Sub n\

which is equivalent to (i) because bases can be characterised as minimal spanning
families. •

Corollary 1. Let n G IN, U G Subsp V, and fi G (V*)n be given. Then the follow-
ing are equivalent:

(i) & is a basis ofUL;
(ii) pUp is a basis ofLsp$v(U);
(iii) (JPPi2 I i G n̂ ) is a facial decomposition of
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Proof. If Rng/3 £ UL, then none of (i), (ii), and (iii) are valid. Assume Rng/3 C
UL. In view of Prop. 1.2 we may determine 7 G ((V/£/)*)n such that /3f. = 7,-fiy/w
for all 1 G n'. We note that the conclusion of Prop. 4.4 holds for W := V/U and
7 as just chosen. The equivalence of (i), (ii), and (iii) (of the present proposition)
follows by appeal to the isomorphisms (1.2) and (3.14). •

5. CONE-ISOMORPHISMS

Throughout this section, we assume that non-zero linear spaces V and V are
given. It is clear that if L: V —> V is a linear isomorphism, then the mapping
P : Pqu V -> Pqu V defined by

(5.1) P(<j)) :-(t>oL for all <f> in Pqu V

is a cone-isomorphism. (Indeed, its inverse is given by P~l{^) = i/> o L~l for all V?
in Pqu V.)

Theorem 2. For every cone-isomorphism P : Pqu V —>• PquV there are exactly
two linear isomorphisms L.V1 —*V such that (5.1) holds. If L is one of them, then
—L is the other.

Proof Let a cone-isomorphism P: Pqu V —• Pqu V1 be given and let P: Qu V —>
Qu V be the linear isomorphism that extends P.

Lemma 5.1. Suppose that \ , 11 G V* anrf A;
; \i! G V* satisfy

(5.2)

Then

(5.3)

Proof (Lemma b.l). The assertion is easily seen to be valid if one of A and fi is
a scalar multiple of the other. We may assume, therefore, that (A, jz) is linearly
independent. Put U := {A,ji}-\ W := {A' ,^ '}1- It is clear that (A,/i) and
(//', A') are bases of W and (U')'L, respectively. It follows by Cor. 1 of Prop. 4.4
that Fcsp{A2,^2} = $v(U) and Fcsp {7 / 2 , / /2} = *v(W;). Since P is a cone-
isomorphism, the images under P of facial spans in Pqu V are corresponding facial
spans in PquV. In particular, we have P> (Fcsp {A2, ji2}) = Fcsp {A'2, j i / 2}, i.e.,

(5.4) P>($

Hence, since P is linear

(5.5) P> (Lsp*v(W)) = LspP>

It follows from item (ii) of Cor. 1 of Prop. 4.4 that P(Xfi) G Lsp <bv>(W) and that
(A/2, AV;> H'2) is a basis of Lsp $v(U'). Hence we can determine a, 6, c G IR such
that

(5.6) P(A*i) = aA/2 -f bX'ii' + c/x'2
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Now let t G IR be given and put 7 := A + tfi. On the one hand, since P is linear,
it follows from (5.2) and (5.6) that

( ' ' = (1 + 2ta)A'2

On the other hand, since 7 2 belongs, by Prop. 4.3, to an extreme ray of Pqu V, its
image P(72) must belong to an extreme ray of Pqu V', and hence we may choose
7 ' G V* such that

(5.8) P ( 7 2 ) = V 2 .

Since 7 2 G $v(W), it follows from (5.4) that 7 ' 2 € * y ( w ' ) and hence, by (4.11),
that 7 ' G W = LspjA',^ '}. Thus we may determine s and r E E such that
7 ' = sA' + 171'; it follows by by (5.8) that

(5.9) P(72) = s2A'2

Since (A/2, jx'2, A'/x') is linearly independent, we conclude from (5.7) and (5.9) that

s2 = (l + 2*a), sr = ib, r2 = (t2 + 2tc)}

and hence that

t2b2 = s2r2 = (l+2*a)(*2 + 2tc) = 2*3a+(l+4ac)*2 + 2tc.

Since this equality must be valid for all t G IR, it follows that a = c = 0 and 62 = 1.
Hence we must have 6 = l o r 6 = —1 and (5.6) reduces to (5.7). •

We now put n := dim V = dim V* and choose a list-basis /3 of V*. We note that
the conclusions of Prop. 4.4 apply. Hence (IP/3,-2 | i G n)) is a facial decomposition
for Pqu V. Since P preserves extreme rays, it follows from Prop. 4.3 and Prop. 4.4
that we may choose a list-basis /3f of V'* such that

(5.10) P(/3t-
2) = /3J2 for all i in n\

Let i G n̂  be given. By Lemma 5.1 applied to A := /32 and /x := /3t-, we see that
we may choose st- G {1,-1} such that

(5.11)

Hence we obtain a list (s{ \i G ril) G {1, — l } n with s\ = 1.

Lemma 5.2. VTe Aave

(5.12) 'Pifiifa) = -̂SfciSjiS; /or a// i, jb G n'.

Proof (Lemma h.2). Since 5i = 1, it is clear from (5.10) and (5.11) that (5.12)
holds when i — 1 or k = 1 or i — k. Suppose, then, that i and k G rJ are given such
that i ^ 1, A: / 1, and i / Ar. Then the triple (/31,/3t-,/3Jk) is linearly independent
and we may apply Cor. 1 of Prop. 4.4 to it. Using an argument similar to the one
used in the proof of Lemma 5.1, we determine a, 6, and c G IR such that

P ((13, + /3,- + /3,)2) = (a/3', + 6 # + c/3',)2.
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Using the linearity of P and (5.10) and (5.11), we find that

2 + # 2 + {3'k
2 + 2s,/3'1# + 2skp\(5'k

Since ~P(Pi/3k) G IR/3j-)8'fc by Lemma 5.1 and since the sextuple

is linearly independent, we conclude that a2 = b2 = c2 = 1, a£ = st-, ac = s^,
and T(PiPk) = bcp'ip'k. Hence «,•«* = (at)(ac) = a2bc = be and P(/3t/3fc) =

Since /3 is a basis of V* and (s«/3j | i G n )̂ is a basis of V'*, we can determine a

linear transformation L: V —• V whose transpose L T : V* —• V* satisfies

LT/3f = Sift for all fin n1.

By Lemma 5.2 we have

= (/5,-/3fc) o L for all f, Ar G n'.

Since y^D/3 := ( ^ - ^ I (h k) G Ip(^)) is a basis of Qu V, we conclude that (5.1) holds.
It is easy to see that (5.1) also holds when L is replaced by — L.

Now let a linear transformation M: V —• V' be given such that

(5.13) <j>oL = P(<f>) = <f)oM for all <£ G Pqu V.

Using (5.13) with <f> := / V , we find that (MTPX)2 = ( L 1 ^ ) 2 . Hence we may
choose e G {1, -1} such that MT/3X — cLT/3l. Now let k £ n) be given. Using
(5.13) with <j> := /3k/31 we find that

Since LT/3X ^ 0 and since k G n̂  was arbitrary, it follows that

LT(3k = cMT/3jt for all Jfe G n1.

Since /3 is a basis of V*, we conclude that LT = eMT and hence M = cL. •

6. LINEARLY INDUCED MAPPINGS

Throughout this section, V, V', and V" are given linear spaces. For a given L G
Lin(V, V), we define qu(L) in Lin(Qu V, Qu V) and pqu(L) G Lin(Pqu V, Pqu V)
by

(6.1) qu(.
(6.2) pqu(.

It is clear that

u\(j> : = <p o L

L)(/> : = (f> o L

for all <;

for all <;

t>GQuV;
f> in Pqu V.

(6.3) pqu(L) = qu(L) |^v f o r a11 L

If a given Q G Lin(Qu V, Qu V') equals qu(L) for some L in Lin(V/, V), we say
that Q is linearly induced (by L); similarly, if a given P G Lin(Pqu V, Pqu V)
equals pqu(L) for some L G Lin(V/, V), we say that P is linearly induced (by L).



16 RAY E. ARTZ AND WALTER NOLL

The following two results are immediate.

Proposition 6 .1. Let L G Lin(V/,V) and Q G Lin(Qu V, Qu V) be given. Then
Q — qu(L) if and only if Q is cone-compatible and

Proposition 6.2. A composite of linearly induced mappings is itself linearly in-
duced. Indeed, let Lx G Lin(V", V') and L2 in Lin(V/, V) be given; then

(6.4) qu(Li)qu(L2) = qu(L2Li), pqu(Li)pqu(L2) = pqu(L2Li).

Proposition 6.3. The transpose of a linearly induced linear mapping and the cone-
transpose of a linearly induced cone-linear mapping are both linearly induced. In-
deed, let L G Lin(V, V) be given; then

(6.5) (qn(L))T = qu(LT), (pqu(L))T = pqu(LT)

Proof It is clear that q\i(LT)w2 = (wLT)2 = (Lw)2 for all w G V; it follows by
(4.2) that

T ((»L)2,w2) = r (qu(L)/i2,T^2) for all ^ G V*, w G V.

In view of (3.5) and the bilinearity of F, it follows that

T (qu(L)</>, g) = T(</>, qu(LT)g) for all <f> G Qu V, g in Qu V*.

In view of the determining conditions (4.9) and (4.10) for the transposes, we have
the first equality in (6.5). In view of (6.3), the second follows by adjustment. •

Proposition 6.4. Let L G Lin(V', V) be given. If L is surjective, then qu(L) and
pqu(L) are injective. If L is injective, then qu(L) and pqu(L) are surjective.

Proof. First, suppose that L is surjective. Then qu(L) and pqu(L) are injective by
Prop. 1.1.

Next, suppose that L is injective, so LT is surjective. Then, we have

Rngpqu(L) D Csp{pqu(L)(A2) | A G V*} =

Csp{(LTA)2 | A G V*} = Csp{/x2 | p G V'*}.

It follows by (3.7) that Rngpqu(L) = PquV', so that pqu(L) is surjective. Of
course Rngqu(L) = Lsp (Rngpqu(L)), so qu(L) is also surjective. •

Proposition 6.5. Let L in Lin(V',V) and U G SubspV be given. Then

(6.6) Pqu(L)> (*v (W)) = qu(L)> (*v (W)) = * y (L

Proof Let <t> G ^v(W) be given. By (3.12), <j>\u = 0. It follows immediately
that (<f> o L)\L<(U) = 0. Of course <f> o L is positive, so it follows by (3.12) that
qu(L)</> = <t>o L G $v(L<(U)). Since </) in 4>v(^0 was arbitrary, it follows that
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We note that, by the Theorem on Annihilators and Transposes ([Nol87], Sect. 21)
and by (6.5) and (4.12), we have

(6.7) (qu(£)> (*

(qu (LT)) < ({g € Qu V 19\u± = 0}) = {/ € Qu V | ( / o LT) |Mx = 0}.

Now let / € (qu(£)> ($v {U)))L be given. It follows by (6.7) that ( / o LT) \ux = 0.
Using the Theorem on Annihilators and Transposes again, we obtain

{0} = (f o LT )> ( ^ ) = f> (L\ (U±)) = /> ((L<0/))X) ,

so / | ( L < ( W ) ) JL = 0. In view of (4.12) again, it follows that / G ($y (L<(U)))L.

Since / E (qu(L)> ($y (£/))) was arbitrary, it follows that

and hence

This establishes the second equality in (6.6); the first follows by Prop. 6.1. •

Theorem 3. Let P G Lin(Pqu V, Pqu V) be given. Then P is linearly induced if
and only if both P and PT are face-preserving.

Before proving this theorem, we note that the cone-transpose of a face-preserving
cone-linear mapping need not be face-preserving. Indeed, suppose that dimV > 2
and that dimV' > 1, and choose / G Pqu+V* and jz G (V/+)x. Then the mapping
(/x2 ® /)|pqu v ^s face-preserving because the image of every non-zero face of Pqu V
under this mapping is the extreme ray IP^x2 of Pqu V'. However, the range of the
cone-transpose ( / ® A*2)|pqu v;* °f tne mapping above is IP / , which is not a face.

Proof (Thm. Z). On the one hand, suppose that P is linearly induced and choose
L G Lin(V, V) such that P = qu(L). Let a T G Face (Pqu V) be given. In view
of Thm. 1, we may determine U G Subsp V such that T = $v(£0- T h e n P>(?) =
$V ' {^{U)) by Prop. 6.5, so P>(f) was a face of Qu V by Prop. 3.3. Since T G
Face (Pqu V) was arbitrary, it follows that the P is face-preserving. Indeed, since
P was an arbitrary linearly induced cone-linear mapping, every linearly induced
cone-linear mapping is face-preserving. In particular, in view of Prop. 6.3, PT is
face-preserving.

On the other hand, suppose that P and PT preserve faces. Then their ranges
are faces of Pqu V and Pqu V*, respectively. It follows by Thm. 1 that subspaces
U and U1 of V and V, respectively, can be determined such that

(6.8)

(6.9) RngP = $ y {U).

Denote by Q G Lin(Qu V, Qu V) the linear mapping determined by P, so that

^Ipquv' = P- li f^ows from (6.8) thatfrom (6.8) that

(6.10) Rng Q = Lsp Rng P = Lsp $
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and from the Theorem on Annihilators and Transposes ([Nol87], Sect. 21), (6.9),
and (4.12) that

(6.11) NullQ = ( R n g Q ^ 1 = (RngP T ) =

( * v {u±))1' = {<f> e Qu v 14>\u = o}.
We will now describe and establish the validity of the following commutative

diagram:

D o m Q D ° m Q / ' " " q
l DomQ/NullQ —?—> R n g Q l R* t O C D°° q . CodQ

1 I II
Q u V «**H2l QuW _ 2 _ Q U ( V / W ) qU("V'/U'). QuV'

The upper line in the diagram represents Q as the composite of three linear map-
pings as described in Prop. 1.3. Two linear isomorphism-pairs, represented in the
diagram by two-headed vertical arrows, will be determined below. Then, in turn,
a linear isomorphism Q G Lin(Qu V, Qu(V'/W) will be determined such that

(6.12) Q = qu(ftV'/w)<5qii(lwcv).

It will be shown that Q is linearly induced, and hence that the lower line in the
diagram represents Q as a composite of three linearly induced mappings.

The linear mappings l̂ DomQ/NuiiQ a n d qu(lwcv) °n the left side of the diagram
are both surjective: the first because it is a quotient mapping and the second, since
lucv is injective, by Prop. 6.4. Of course NullttvomQ/NullQ — NullQ, and, in
view of (6.11),

Null qu( l w c v ) = {<f> e Qu V | <f>\u = 0} = Null Q.

Thus ^DomQ/NuiiQ a n d qu(lwcv) a r e linear surjections with common domain and
nullspace. It follows by Cor. 1 of Prop. 1.3 that the leftmost square in the com-
mutative diagram determines a linear isomorphism-pair Dom Qj Null Q <-• Qu V as
indicated.

Similarly, the linear mappings lRngQcCodQ and qu(Hv7w) o n the right side of
the diagram are both injective: the first because it is an inclusion mapping and
the second, since Hy'/w is surjective, by Prop. 6.4. Of course RnglRngQCcodQ =
RngQ and, in view of Prop. 3.4 and (6.10),

Rngqu(nV'/w) = Lsp^v'^O = Rng<5-
Thus lRngQcCodQ and qu(ftv7w) a r e linear injections with common range. It
follows by Cor. 2 of Prop. 1.3 that the rightmost square in the commutative diagram
determines a linear isomorphism-pair RngQ <-• Qu(V'/W) as indicated.

Since the double-headed vertical arrows in the diagram indeed represent linear
isomorphism-pairs, and since Q is a linear isomorphism by Prop. 1.3, the center
square in the diagram determines a linear isomorphism Q as indicated.

We shall next show that Q is cone-preserving relative to the cones Pqu V and
PquV;.
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In view of (6.12) and (6.8), we have

(6.13) (qu(nVvw) 0 qu(lwcv)) (Pqu V) = Q> (Pqu V) = * v , {W).

Since qu(17v'/£/') is injective, it follows immediately that

(6.14) <5> (qu(lwcv))> (Pqu V) = qu(nVVl/i)
< ($y (Z/')) .

Since pqu(lz/cy) is linearly induced, it preserves faces (as shown in the first part
of this proof). It follows that the image under qu(l^cy) of the cone Pqu V, which
is spanning in Qu V, is a face of Pqu U which is spanning in Rng P = QuW; hence

(6.15) qu(lwcv)> (Pqu V) = PquW.

By Prop. 3.4 we have

(6.16) qu(nV 7«')< (*y (W)) = Pqu {V(W).

Substitution of (6.15) and (6.16) into (6.14) yields

so the linear isomorphism Q is cone-preserving. It follows that Qlpquv is a cone-

isomorphism; hence,in view of Thm. 2, there is a linear isomorphism, say L: V jW —»

U, which induces Qlp^y and hence Q as well. Thus Q = qu(Z). Putting

L := lc/cv LQv/u' G Lin(V',y), it follows, in view of (6.12) and Prop. 6.2, that
Q = qu(L) and hence, in view of Prop. 6.1, that P = pqu(L). •

Proposition 6.6. Let L, M £ Lin(V, V) be given. Then pqu(L) = pqu(M) (equiv-
alently, qu(L) = qu(M)) if and only ijM — L or M = —L.

Proof. It is easy to see that pqu(L) = pqu(—L). It is also clear that the result holds
if L = 0. Assume that L ^ 0 , put n := dim V, and choose a basis /3 = (/3t-1 i G n̂ )
of V such that f3iL ^ 0. By the same argument used in the last part of the proof
of Thm. 2, we may determine e e {1, -1} such that LT/3fc = MT/3k for all k 6 n\
It follows that L = eM. D
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