
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



 



MEASURES ON THE RANDOM GRAPH

510.6
C28R
92-144

by

Michael H. Albert

Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

Research Report No. 92-144

March, 1992



University Ub**

Measures on the random graph

Michael H. Albert
Department of Mathematics
Carnegie Mellon University

Pittsburgh, PA 15213

March 18, 1992

Abstract

We consider the problem of characterizing the finitely additive prob-
ability measures on the definable subsets of the random graph which are
invariant under the action of the automorphism group of this graph. We
show that such measures are all integrals of Bernoulli measures (which
arise from the coin-flipping model of the construction of the random
graph). We also discuss generalizations to other theories.

1 Introduction

Let ft denote the countable random graph, a countable model of Tind, or the
countable homogeneous universal graph - these are all the same thing expressed
in different dialects of mathematics (according to whether your "kitchen culture"
comes from [1], [8], or [2].)

A simple concrete description (from [2]) is to take the vertex set of ft to be

u/= {0,1,2,...},

and to have x and y (with x < y) adjacent if and only if 2X occurs in the unique
representation of y as a sum of powers of 2. Because ft is an No-categorical
structure, its automorphism group has only finitely many orbits on n-tuples for
any finite n. More precisely, if the induced subgraphs of ft on two sequences of
vertices:

a = ai ,o2 , . . . , a n ;

b = &!,62,...,&n



are isomorphic (with the isomorphism sending each a,- to 6t- for 1 < i < n), then
there exists g £ Aut(Q.) such that aig = &,- for 1 < i < n, or more succinctly:

a.g = b.

Note that we will write functions on the right.

A subset A of ft is called definable if for some sequence b of vertices, and some
first order formula <f>(x,y) in the language of a single binary relation E (whose
interpretation is the edge relation in the random graph),

A = {aen : ft |=0(a,b)}.

The field of definable subsets of ft will be denote De/(ft). This field is generated
by the finite sets, and the sets defined by formulas <j>n^ for 0 < k < n of the
following form:

j A
j=\ j=k+\

For a sequence of parameters b, the set defined by <t>ntk{x^h) which we denote
</>n,fc(ft5 b) is just the set of points which are adjacent to &i, 62,..., bk and inde-
pendent of &jfc+i,... ,6n. In fact, an axiomatization of ft is given by the set of
axioms:

for each n > 0 and each 0 < k < n.

For a general discussion of No-C&tegorical structures, their automorphism groups,
and the structure of their definable sets (in particular the quantifier elimination
which yields the results above) we suggest [2].

Another method of constructing ft is to begin with a single vertex, and to form
a sequence of finite graphs, adding a vertex at a time, and deciding which of
the previous vertices to connect it to by flipping a fair coin for each edge. The
union of the resulting graphs will then be isomorphic to ft with probability 1.
From this model, we see that there is a finitely additive probability measure
jjii/2 on the field of definable subsets of ft determined by:

Moreover this measure has the property that it is invariant under the action of
the automorphism group of ft namely, if A and B are definable sets and A = Bg
for some g G Aut(Q.) then fii/2(A) = fii/2(B). For the "random" viewpoint of
the random graph, see [1].

The goal of this paper is to classify all finitely additive measures on ft which have
this property (invariance under the automorphism group of ft.) In [2] another
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type of measure on ft is considered. The connection between such measures and
the ones which we deal with, as well as measures on other types of structures
are considered in Section 4.

2 Definitions

We have defined the random graph ft and its field of definable subsets Def(Cl)
above. In this paper we consider functions:

Ik : Def(n) -> R

with the following properties:

• For all A in Def(Q), fi(A) > 0.

• If A and B are disjoint elements of De/(ft) then fi(AUB) = fi(A) -f fi(B).

• If A is an element of Def(il) and g is an automorphism of ft then fi(Ag) =

We refer to such functions as finitely additive automorphism invariant proba-
bility measures on ft, or more briefly simply as measures on ft.

For any finite subset F of ft and any measure fi on ft, fi(F) = 0 since F has
infinitely many disjoint images under the automorphism group of ft.

If G is a graph, then V(G) denotes the set of vertices of G,

Fix now a measure \i on ft. Let G be a finite graph, and let X be a subset of
the vertices of G. Then we can find a sequence b G ft such that there is an
isomorphism between the induced subgraph on b and G which sends an initial
segment of b to X (this is by the universality of the random graph). Moreover,
if b and c are two such sequences, then there is an automorphism g of ft with
b = eg (by homogeneity). Hence the quantity:

/x(G,X) := /i(<£n,fc(ft,b)) where n = \G\ and k = \X\

is well defined. Furthermore if a is an isomorphism from G to another graph H
then:

n(G,X) = fi(H,Xa) (1)

since G and H may be viewed as subgraphs of ft and a can be extended to an
automorphism of ft. Clearly, the quantities /x(G, X) as G runs over finite graphs
(or over a representative set of isomorphism types of finite graphs) determine
all the quantities /i(</>nifc(ft,b)).



Henceforth we will work only with the quantities fi(G,X). Also given any finite
graph, we implicitly identify it with some isomorphic subgraph of ft.

Let G be any finite graph and let X be any subset of V(G). Suppose that G1 is
a graph which extends G by a single new vertex v. By the additivity of fi:

, X) = fi(G\ X) + fi(G\ X U M ) . (2)

This relation just states that any vertex of ft is either adjacent to v or indepen-
dent of v, and that these possibilities are disjoint. An extension of this relation
which applies to any graph G1 containing G is the following:

f*(G,X)= £ n(G\XUY). (3)
YCV(G')-V(G)

Of course this follows easily from (2) and induction.

It is also easy to see that:

£ > ) = 1 (4)
XCG

) > 0

Any function //(G, X) which satisfies the relations (1), (2), and (4) is determined
by a unique measure on ft. So in our attempt to classify measures on ft we will
concentrate on classifying the functions with these properties. We will prove:

Theorem 1 Let a measure ft on ft be given. Then there is a unique probability
measure v on [0,1] such that for all finite graphs G and all X C V(G):

In particular, //(G, X) depends only on \G\ and \X\ and not on the structure of
G.

For the measure fii/2 considered above, the associated probability measure is
an atomic measure concentrated at 1/2. More generally, for 0 < p < 1 there
are measures \xp which arise (at least for p ̂  0,1) from a construction of the
random graph with an unfair coin, and which correspond to atomic measures
concentrated at p. The content of theorem 1 is that every measure defined on
ft lies in the closure of the convex hull of the set

{fip :pe [0,1]}.

In effect this means that "the random graph can only be constructed by flipping
coins".



In the proof of this theorem it will be necessary to add many vertices to certain
finite graphs G. To this end we define for each positive integer iV, the set

and we assume that [N] and V(G) are disjoint whenever necessary (since all
the concepts we deal with are isomorphism-invariant this is not a restrictive
assumption.) Also KN denotes the complete graph with vertex set [N].

The next section is devoted to the proof of Theorem 1, and the following section
to some further discussion and generalizations.

3 Proof of Theorem 1

The proof of Theorem 1 is rather involved. For the reader's guidance we begin
with a plan of the proof:

• There is a unique probability measure vK such that for all n

o

where Kn is the complete graph on n vertices. (Lemma 2)

t=i

where the A; are non-negative, and the V{ are probability measures which
are supported on intervals with at most one point in common then

where the \i{ are Aut(Ct) invariant probability measures and:

This is Lemma 3, the decomposition lemma. Some extra but inessential
technical assumptions are required.

• If G is fixed, and the support of vK is sufficiently narrow, then for all
X C V(G):

1

Jo
This is Lemma 4. Again there is a small technical restriction which is
dealt with in Lemma 5.



Hence by decomposing vK into narrow pieces, and taking limits:

as claimed in Theorem 1.

The first part of the proof shows that the measure behaves properly when re-
stricted to complete graphs. The main work then comes in extending this be-
havior to arbitrary graphs. In both the second and the third part of the proof,
the idea is to begin with an arbitrary finite graph G, and to add many more
vertices so that the resulting graph G* contains a large clique, and has auto-
morphisms which permute the members of the clique arbitrarily. We can then
apply equation (3) to calculate fi(G,X) from some quantities n(G*,Y). The
presence of the large clique in G* permits us to find bounds for some of these
quantities by relating them to fj,(Kjv,Z) (Since KN C G* this is possible by
further application of equation (3)). From there it is just a matter of applying
some fairly easy limiting arguments to get the results we desire.

There are a number of places in the argument where N tends to oo and S to
0, or where we deduce that some quantity has an appropriate limit by show-
ing that a number of other quantities behave reasonably and yield a suitable
approximation. To handle these arguments in full e-6 detail would make the
proofs more unreadable than they already are, so we often give such arguments
quite informally.

Lemma 2 Let fj, be a measure on ft. Then there is a unique probability measure
vK on [0,1] such that:

f
Jo

for all complete graphs Kn and subsets X of their vertices.

Proof: By the isomorphism-invariance of //, ii(Kn,X) can depend only on n
and k = \X\. Let ^(n, k) denote this value, and define

Then from equation (2) (applied to the passage from Kn to Kn+\) and non-
negativity we get:

1/(0,0) = 1
v{l,k) > 0 forallO</,&



But:
0 < i/(l, k) = i/(0, k) - i/(0, k + 1),

and subsequent iterates of this establish that for all r > 0:

( -A)>(0 ,0) , 1/(0,1),..., i/(0, fc),...) > 0

where A is the difference operator:

But by Theorem 2 in Section 7.3 of [6] (the Hausdorff moment theorem) this
implies that there is a unique probability measure vK on [0,1] such that:

{k,l)= I xk(l-x)ldvK

Jo

(n,fc) = / xk(l-x)n

Jo

or,
)n~kdu

/o *
as claimed. •
Our second lemma will allow us to decompose fi given a decomposition of vK.

To decompose /i on G we first expand G to a graph Gjv by adding a large
complete graph connected to all vertices of G. Then we associate each term
which arises in the computation of fi(G,X) in the expanded graph GN to a
unique part of the vK decomposition. Next we define fi{(G,X) just by taking
the sum of the terms which arise from U{. Finally a certain amount of house
cleaning is required to check that the properties required of a measure still hold
and we're done.

We fix a decomposition of vK of the following type:

where each V{ is a probability measure on [0,1], and there is a sequence:

0 = a0 < a\ < a2 < • • • < an = 1

such that the support of vx is contained in [a,*_i,at-], and none of the points ax

for 0 < i < n are atoms of v. For simplicity we will also assume that the a,- for
0 < i < n are all irrational.

Given a positive integer N we define Ii(N) to be the collection of subsets Y of
[N] for which

ai-iN<\Y\<aiN,

and for N' > N define:

Pi(N, N') = {YC [Nf] : \Y\ € J.-(JV') and \Y n [N]\ € Ii(N)}



An important fact which we will use is that for N a sufficiently large positive
integer any N' > iV, and any i between 1 and n:

(5)

(where the o(l) is with respect to N —• oo.) This is true because the polynomial
being integrated converges to the characteristic function of [a,-_i, a,-] as N tends
to infinity. Note that

I1

Jo

Note also that it follows that any sum of distinct terms II(KN*,Y) where either
Yn[N] e Ii(N) or Y e It-(JV') but Y is not an element of P,(iV, JV') is o(l)
since the sum in equation (5) over Y C Ii(N) or Y C Ii(N') is also A,- -f o(l).

Now we can state and prove the lemma:

Lemma 3 Let // be a measure on ft and suppose that the associated probability
measure vK is decomposed as above. Then there are measures m such that for
all G and X:

and fif = i/j.

Proof: Fix for the moment a graph G, and define Gjv to be the graph obtained
by adding vertices [N] to G which form a clique, and are connected to every
vertex in G. For X C G define:

We claim that the limit as N tends to infinity of /zf (G,X) exists. If N' > N
then:

Y ZC[N']-[N]

where the first sum is over the same index set as before. After cancellation
of common terms, the difference between this and fif'(G,X) is the difference
between:

W



where W n [N] € I{(N) but W £ Ii(N'),

where V 0 [N] £ Ii(N), but V G Ii(N'). Each of these is dominated by the
corresponding sum over KN> of terms of the form:

But both of these sums are o(l) by the note after equation (5). Now define

Clearly

1 = 1

so it remains only to show that each \i{ is a measure. The only non-trivial part
to check is equation (2), but this follows immediately from the fact that if G'
extends G by a single vertex v, then:

(G')N = (GN)'

so the terms which occur in the sums for /xf (G\X) and fi^(G\X U v), are
exactly the same as those obtained by applying equation (2) to the terms in

Now we will prove that if vK is narrow, then for a fixed graph G,

JO

It suffices to show that:

where

pdvK =p.
/o

Define the discrepancy of /z on G to be:

I1

= sup
YCG

and define the width of a probability measure on [0,1] to be the length of the
smallest closed interval which contains the support of the measure.



Lemma 4 Let G be a finite graph. Let e > 0 be given. There exists a 6 > 0 such
that if ft is a measure on ft, and the width of vK is less than 6 then Disa{^) < £
(i.e. the discrepancy tends to 0 as the width tends to 0).

Proof: If p = 0 or p = 1 then vK is a point mass at 0 or 1 respectively, and it
is easy to check that in these extreme cases \i is essentially trivial (if p = 0 then
//(G, X) = 0 whenever X is non-empty, and if p = 1 then //(G, X) = 0 whenever
X ^ G.) In these cases the result is true, and so we assume that p ^ 0,1 and
set

q=P/(l-p).

Let v be any vertex of G, and let N be a positive integer. Construct the graph
G]Y by adding new vertices [N] to G which, together with v form a clique, and
which are connected to another vertex w ^ v of G if and only if v is. Note that
any permutation of the vertices {v} U [N] extends to an automorphism of G (the
remaining vertices will be fixed.)

Let X be any subset of G which does not contain v. Then:

(6)

Where the last equality is true because for any j element subset Y of [N] there
is an automorphism of GV

N which fixes G and sends Y to [j]. Similarly:

N
v
N,XU{v}U[j)). (7)

Now for every j between 0 and N

and

because both the left hand sides of the inequality are terms which arise in the
computation of the right hand side, when K^ is expanded by adding a copy of
G to form GV

N.

In particular, since the support of uK is contained in [p — 6,p -f 6) we may
conclude that:

E

10



and

je[N(p-6),N(p+6)]

and if 0 < p — 6 < p+6 < 1 then the extreme terms of either sum are also o(l).
The following argument applies only to this case.

If the discrepancy of G were 0 then we would have

qfi(G,X)-ti(G,XU{v}) = 0.

So we aim to show that the quantity on the left hand side is small.

\qii(G,X)-»(G,XU{v})\ =

We may choose ft which is o(l) as 6 —» 0 so that for sufficiently large N and all
jz[N(p-6),N(p + 6)],

So:
\qn(G,X) - fi{G,XUv)\ < fs + o(l) = gs

Where
g6 = o(l) as 6 -+ 0

can be chosen independently of v and X.

Applying the triangle inequality we can conclude that for any Y C V(G):

\Y\-l

where he is also o(l) as 6 —»> 0 since the sum is bounded by a number depending
only on q and \G\. But now by summing all the quantities /x(G,F) we will be
able to show that /x(G,0) must be close to (1 — p)'G', and then that fi(G,Y)
must be close to p'y ' ( l -p) l G H y l provided that 6 is sufficiently small, and thus
the discrepancy of G will be small for sufficiently small S.

What about the case when p — 6 < 0? If vK has no atom at 0 then the above
argument can easily be modified to work in this case (since we can effectively
ignore any contribution from terms corresponding to sufficiently small subsets.)

11



However, the case where vK does have an atom at 0 (or at 1) must be dealt
with separately, and this is done in the next lemma. •

We need to eliminate the annoying special case in the previous lemma. This is
easily done:

Lemma 5 Suppose that vK has an atom of weight A at 0. Then

/z = A/zi -f- (1 — A)/x2

where fi\ and fi2 are measures and //i(G, X) = 0 unless X = 0.

Proof: It is easy to see that it suffices to show that

fi(G,<D)>\

for all G. Let GN be the graph obtained by joining adding a clique of size N to
G, each vertex of which is adjacent to every vertex of G. Since

it suffices to show that we can make the latter arbitrarily close to A for suffi-
ciently large N. But:

N, 0) +

Each term in the sum is dominated by //(iijv+i, {x}) and since:

fi(KN, 0) = fi(KN+1,0) + n(KN+l, {x})

we can make such a term arbitrarily small. Since the number of such terms
depends only on |G| and not on N we are finished. •

A similar argument deals with atoms at 1. So in order to prove Theorem 1 it
is sufficient to consider the case where vK does not have an atom at 0 or 1, so
that Lemma 4 can be applied to any term of a decomposition of vK. Actually
the proof of the theorem is now essentially complete.

Let //, and G be given. We want to show that:

And of course it suffices to show that fi(G, X) is arbitrarily close to the right
hand side. Since vK can have only countably many atoms, we can decompose

12



so that each V{ is as narrow as we like, and the conditions of the decomposition
lemma are also met (since we assumed that vK has no atom at 0 or 1)

and /x,(G,X) is close to (say within e of)

for each 1 < i < n. But then

fi(G,X)-

So we have finished.

4 Discussion and other examples

On page 112 of [2], P. Cameron introduces a different type of measure p on
ft. We will call his measures "subgraph measures" because for a given finite
graph G, p(G) is intended to indicate the probability that a sequence a in ft is
isomorphic (via a specified labelling) to G. With this interpretation, he then
gives the following natural axioms for such a function p:

p(A) > 0 for all A;

P(0) = i;

p(A) = VJp(A') where the sum is over all children A' of A;

p(A) is independent of the labelling of A.

Note that a child of A is an extension of A by a single vertex.

These conditions are superficially quite similar to those required of a measure
/x. However the complicated recurrence for subgraph measures as opposed to
the much simpler one:

',X) ,X U {v})

13



means that an analysis of all subgraph measures leading to a theorem akin to
the one above seems out of the question (Cameron himself remarks that the
conditions are too general and admit "too many" solutions).

From the logical point of view, the subgraph measures are really a sequence of
measures on the n-types over the empty set, satisfying the conditions that the
measure of a type should be the sum of the measures of all its extensions, and
an invariance under permutation of variables. This suggests that such measures
could be investigated more fruitfully in theories where the collection of n-types
is much simpler than is the case for graphs.

There is an obvious way to attempt to define a subgraph measure from a mea-
sure, namely by the use of conditional probabilities. If G' is an extension of G
by a vertex v which is adjacent to X then we should have:

or p(G')=p(G)fi(G,X).

However, an arbitrary p satisfying the conditions above will not in general yield
a measure /x, nor will an arbitrary /x yield a suitable p. Considering the second
construction only, problems arise because of the requirement of isomorphism
invariance. In the end p(G') will be a product of factors of the form ^i(G{^X),
and the order in which the vertices are chosen must not affect the value of this
product. From this idea it is not hard to prove:

Proposition 6 If a subgraph measure p and a measure \i on fi are connected
by the relationship:

^ or p(G')=P(GHG,X).

Then there exists p G [0,1] such that:

In other words both p and ft arise from the model of ft obtained by flipping a
fixed coin with a probability p of "heads".

Proof: Let \i and p be given. Let Ik denote the k element independent set.
Let v be the probability measure on [0,1] associated to fi and define:

= fpndv.
Jo

Pn
Jo

Note that we may assume that p\ ^ 0,1 for the result is trivial in those cases.

We wish to show that pn = pn for every n. The result holds for n = 0,1.
Assume that it holds for all n < N. Consider the graph SN+I which is a star

14



on N + 1 vertices (i.e. an independent set of size N and another, central, vertex
connected to all of these.) By adding the central vertex last we see that:

Adding the central vertex second last we get:

p(SN+1) =

Equating the two results (and noting p(Jjv-i) ^ 0) and using the inductive
hypothesis we get:

Hence

PN ((1 ~ P) ~ ~~ (""!) ~ P ~ ) = P ((1 — p) ~ — (~1) ~ j* ~ )

and so p r̂ = p^ as required. •

The question of classification of finitely additive probability measures on other
No-categorical structures, or of finding a general theory of such, is currently
under investigation. In many cases, it is easy or trivial to classify the measures.
For example for the theory of dense linear order without endpoints, a measure
is determined by a single numerical parameter A G [0,1] which is the measure
of any (and hence all) sets of the form {x : x > a}.

A somewhat more interesting case to consider is that of triangle-free graphs.
If one considers the first order sentences which almost all finite triangle free
graphs satisfy then the countable model of this theory is an infinite bipartite
graph. In this graph the two parts are both infinite sets, and given any two
disjoint subsets of a single part there exists a vertex in the other part adjacent
to all the vertices in the first set and none in the second. This graph is not
homogeneous since there are independent sets which contain vertices from both
parts, and independent sets which are contained in a single part, and there can
be no isomorphism of the graph which exchanges such sets. This is the only
obstruction to homogeneity; in fact if two subgraphs are isomorphic as bipartite
graphs with specified bipartition, then there is an automorphism extending the
isomorphism. There is also an automorphism exchanging the parts. So for any
measure , each part will have measure 1/2, and there will be a unique probability
measure v such for disjoint finite subsets X and Y of one part:

»(XUY,X) =

15



The proof is very easy since any two finite subsets of the same size, each con-
tained in a single part are conjugate. Thus one needs only a version of Lemma
2, which is proved in exactly the same way.

The result "almost all finite graphs are bipartite" simplified the example above.
Another candidate graph to consider is the infinite homogeneous-universal tri-
angle free graph, ft3. This is a countable graph, unique up to isomorphism, with
the following properties:

• It is triangle free;

• Given any finite subgraph G and any triangle free graph H containing G
there is an embedding of H in ft3 which extends the identity map on G.

In ft3 the definable sets are also generated by finite sets, and those given by
"extension conditions". So a measure is determined by the values fi(G,X) as in
ft (where here we must add the guarantee that fi(G,X) = 0 if two vertices in
X are adjacent.)

It seems clear that on ft3 the values ji(G,X) must depend on the structure of
G since for example fi(K2,{x}) = 0, while it would seem that the same need
not be true if we replace K2 by I2. On the other hand, the arguments for ft
seem also to be valid, though we must of course work with large independent
sets rather than large cliques. As the following shows, the second viewpoint is
correct, though for an unfortunate reason:

Proposition 7 Let fi be a measure on ft3. Then:

) otherwise

In particular fi(G,X) depends only on \G\ and \X\.

Proof: Certainly if G and X are non-empty:

p{G,X)<ii{Ku{x}).

Consider the graph, G v̂, consisting of a single vertex {x} adjacent to an inde-
pendent set of size N. Then for any non-empty subset Y of the independent
set,

Hence:
/*(#!,{*}) = ii(GN9 {x}) < n{IN,0).

Suppose that j.i(IN,ib) —> 0 as N -> 00. Then /i(G,X) = 0 for all non-empty X.
But in that case //(/yv,0) = 1 for all TV, a contradiction.

16



But the argument of Lemma 5 can be used to show that if /^(//v, 0) —> A ̂  0 as
N —> oo, then unless A = 1, a new measure is obtained by subtracting A from
/x(G, 0) (and renormalizing) for all G, and this new measure has the paradoxical
property from above. So the only possibility is that /z(Jn,0) = 1 for all n and
hence (easily) that fi is as described above. •

An alternative proof of this result is more directly connected to the abstract
study of measures on models. First consider a sequence of pairs of vertices
(a,-, bi) in f̂  with the following property a,- is adjacent to bj if and only if i < j .
Now consider the sets 5,- of common neighbors of a,- and &,-. Then for i < j ,
Si and Sj are disjoint since a,- and bj cannot have a common neighbor. On the
other hand the measure of all the sets Si must be the same, since each is just
the set of neighbors of a pair of independent points. So this measure must be
0. But now let ct- be any sequence of independent points, and let N{ be the
neighbors of c,-. By the above, the measure of iV,- f] Nj is 0 when i ^ j , so the
N{ are "almost disjoint" sets of equal measure, and hence must have measure
0. But then by monotonicity, the measure of any set which is contained in the
set of neighbors of a point is 0, which gives the stated result.

Thus there are no non-trivial measures on D3. A similar argument also works
for any other infinite universal-homogeneous graph (these are all like Q3 only
they omit either a clique or an independent set of some fixed size n. This
classification is given in [7]), though the almost sure models (see [5]) of these
theories all behave nicely.

An unfortunate result of this argument is that one gains no new insight into the
question of whether the theory of fi3 has the finite model property. A structure
M has the finite model property if every sentence true of M is true of some
finite structure. The random graph Q, has this property, as does the naked set
(which is in some sense f^)- It is an open question whether or not ilk has the
finite model property for k > 3 (some examples of graphs which satisfy a few
of the required sentences are known: [3]). An interesting measure on ft 3 would
have provided some guidance as to where to look for examples. For example had
it turned out that 1/5 < / /(A'I, {#}) < 1/3 then it would have been reasonable
to look for examples among graphs with n vertices where the average degree
was around n/4. But the failure of interesting measures to exist yields no such
positive guidance. It suggests, but by no means proves that the edge density of
finite graphs satisfying many of the extension axioms should be small.

Doug Ensley [4] has begun to establish a connection between the existence of
interesting measures, and various conditions which arise in stability theory. An
oversimplification of his results is "stable = dull, strict order property = dull or
bad, independence property = maybe interesting". The "maybe" is necessary
as the example of Q3 shows.
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