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§0. Introduction

Throughout the history of the theory of recursive

functions diverse hierarchies have been proposed in order

to study and classify both constructive and non-constructive

objects. Recently, attempts to classify recursive functions

according to their complexity of computation have exposed

many important aspects of the relationship between these

functions and the devices used to compute themo The objects

under investigation in this work will be finite and infinite

binary sequences. The infinite binary sequences, which one

may regard as the characteristic functions of sets, provide

a means of studying the limiting behavior of finite sequences

as their length increases. Several minimal-program complexity

measures have been proposed (see Kolmogorov [6,7] Chaitin [1,2]

Loveland [8,9]) which in a certain sense measure the information

content of finite, and as a limit, infinite binary sequences.

Recursive sequences are known to have extremely low minimal-

program complexity and random sequences (e.g. in the sequential

test sense of Martin-Lof) high complexity. In this paper the

minimal-program complexity of several formulations of pseudo-

recursive sequence (a pseudo-recursive sequence is one which

in some sense approximates a recursive sequence) and of pseudo-

random sequence. Ideally, one would hope that the pseudo-

recursive sequences would have relatively low minimal-program

complexity and the pseudo-random sequences relatively high

complexity. However, such is not the case for these formulations



suggesting that these are not adequate notions of pseudo-

recursive or pseudo-random sequence at least with regard

to this complexity measure. This will be discussed further

in a subsequent paper entitled "Minimal-Program Complexity of

Sequences with Restricted Resources", which will deal with

the minimal-program complexity of sequences when the resources

used for their computation are restricted.

In section 1 we present the basic definitions for the

minimal program complexity, previous results and some simple

lemmas which will simplify the computations in later proofs.

In section 2 we study several definitions of pseudo-

recursive sequences and determine upperbounds for them in the

minimal-program complexity hierarchy. We formulate two new

definitions of pseudo-recursive sequences, called near re-

cursive and strongly near recursive, and give tight upperbounds

for them. Also considered are the almost recursive sequences

defined by Vuckovic [16], the recursively approximable sequences

defined by Rose and Ullian [13], and the retraceable sequences

defined by Dekker and Myhill [4].

In section 3 we present an example of a pseudo-random

sequence with extremely low complexity and show that it is

possible to make a distinction among some types of pseudo-

random sequences within the minimal-program complexity hierarchy.



§1. Minimal Program Complexity Hierarchy

The minimal program complexity was originally proposed

both by Kolmogorov [6,7] and Chaitin [1,2]o If x is an

infinite binary sequence then we denote by x(n) the nth

member of x and by xn the initial segment of x of

length n, i.e. xn = x(l)...x(n). If p is a string

(finite sequence) then we denote by |p| the length of p

(i.e. number of symbols of p). We give now Kolmogorovfs

original definition.

K^(xn) = |J^.3p(|p| = I and G (p) = xn) , where G

is an algorithm (computing device) and p

is a binary string (encoding of some program).

= 00, if no such p exists.

One may regard C as a digital computer and p a computer

program such that when p is run on G the result is x11, i.e.

p contains the necessary information and procedure for the

computation of xn on G. Thus intuitively, KU (x11) measures

the information needed to compute x . Kolomogorov also

introduced the notion of conditional complexity3 which measures

the information (other than n) needed to compute xn.

^ ( x ^ n ) = |i*.3p(|p| = I and G(p,n) = x n ) ,

where G is an algorithm and p

is a binary string.

= oo, if no such p exists.



For our investigation we will use a formulation of

minimal-program complexity proposed by Loveland (see [8,9])

called the uniform minimal-program complexity and which is

intended to insure that the only information provided by n

to the program which computes xn is that n is the length

of xn.

^ ( x ^ n ) = |it.!Kp(|p| = I and Vi£n.G(p,i) = x 1 ) ,

where G is an algorithm, p is a binary

string and x1 is the first i bits

of xn.

= 0 0 , if no such p exists.

One can show by the same method that Kolmogorov used for

his formulation of minimal program complexity that there is

a "universal11 algorithm G such that for any other algorithm (

there is a constant c such that VxVn.IC (xn;n) <£ Kg(xn;n) + c,

Therefore the minimal-program complexity of a sequence relative

to two universal algorithms cannot differ by more than a

constant. We fix a universal algorithm G for the remainder

of this investigation and in so doing will delete the subscript,

Briefly, K(xn;n) is the length of a shortest program which

computes x , given i, for each i £ n.

For each x11 by considering the program which has xn

stored in its finite control and which prints out x1,

given i, one easily shows that every sequence x has a

well defined minimal-program complexity for each of its initial

segments.



We can associate in a natural way with each infinite

binary sequence x a set of positive natural numbers X

by the condition n€X4=^x(n) = 1 . We say that a sequence x

satisfies a property P of sets if and only if the set X

associated with x satisfies P. For example, a sequence x

is recursive (recursively enumerable, etc.) if and only if

the set X is recursive (recursively enumerable, etc.).
oo oo

By "3n." and "Vn." we mean "there exist infinitely many n€N

such that" and "for all but finitely many neN" respectively.

If f : N->N U {0} then we define the complexity class

named by f,

oo
C[f] = {x|Vn.K(xn7n) £ f(n))

Since we will consider classes named by functions we
2

will make use of A notation. For example, [An.n ] is the
2

name of the function f such that f (n) = n . We will denote

the greatest integer ̂  n by [n].

We now present some well known properties of the minimal-

program complexity hierarchy.

Theorem 1.1; 3c Vx.xeC[An.n+c ].

Theorem 1.2; x is recursive if and only if 3c.X€C[An.c]



Moreover, Loveland has constructed a separating

function E,

Theorem 1.3: x is recursive if and only if xeC[E]•

Theorem 1.4: If x is recursively enumerable then there

is a constant c such that xeC[An.Iog2(n)+c].

Since there are less than 2 programs of length <£ n

it follows that the number of sequences x for which

K(xn;n) > n - c is greater than (1-20"1) • 2n. It therefore

follows that {x|3c.x^C[An.n-c]} is a set of measure 1.

Martin-Lof [11] has shown that such sequences pass all

constructive stochastic tests for randomness.

Theorem 1.5: If 3c.x^C[An.n-c] then x is random (in

the sequential test sense of Martin-Lof [11]).

In particular these sequences satisfy the strong law

of large numbers (lim (—• S (x) ) = •=• , where S (x) = number

n-»oo n n Z n

of lfs in xn) and the law of the iterated logarithm

S (x)-i •

(lim sup( ) = ). Loveland and Martin-Lof have

/ J~T
n-»oo \/n log log n

shown that random sequences necessarily have extremely high

complexity,



Theorem 1.6; If x is random in the sequential test sense

of Martin-Lof then for every non-decreasing unbounded

total recursive function £, x^C[An.n-f(n) ] .

Loveland and Kolmogorov have proposed as a definition of

randomness that a sequence x is random if and only if

3c.x£C[An.n-c]. Schnorr [14] has shown that there cannot

exist a function f which separates the random sequences

from the non-random sequences,

Theorem 1.7: If f is any unbounded non-decreasing function

then there is a sequence x such that x^C[An.n-f(n)]

and which does not satisfy the strong law of large

numbers.

The foregoing results are very pleasing inasmuch as

effectively computable sequences are characterized by the

fact that they require a minimal amount of information for

their computation and random sequences a maximal amount.

Many of the proofs of subsequent theorems will involve

showing that the initial segment of some sequence x is

computable from certain "pieces11 of information. In order

to calculate K(x ;n) these several pieces of information

must be encoded into a single binary string. The following

lemmas are concerned with calculating the length of this
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binary string in terms of the lengths of the original

information strings. We make this precise in the following

manner. Let N denote the set of positive natural numbers,

X denote the set of all binary strings and let I : N X N - ^ X

and s : N -• N. We say that the infinite binary string x

is uniformly computable from I in s pieces if and only

if there is an algorithm ft such that for every n,

Vi<;nJ(I(njl)^I(n,2)^,..^l(n,s(n)),i) = x
1, where *

is the concatenation operation and the symbol $ (intended

as a separating symbol) belongs to the alphabet of the

algorithm ft. We will also say in this case that xn

uniformly computable from I(n,1) , .•., I(n^s(n)) .

Lemma 1.8; If x is uniformly computable from I in

one piece (i.e. s(n) = 1 for each n) then there is

a constant c such that Vn.K(xn
7n) <; |l(n,l)| + c.

Proof; For some algorithm ft, Vn.K(B(x
n;n) <£ |l(n, 1)

and so the lemma follows by the universality of C,

3c VxVn.Kj. (xn;n) <; KB(x
n;n) + c.

Lemma 1.9; If x is uniformly computable from I in s

pieces then there is a constant c such that

Vn.K(xn;n) £ 2- £ (|l(n,i)|+l) + |l(n,s(n))| + c .
i=l

Proof: Let (B be an algorithm such that for every

Vi£n.B(I(n,l)*O*...*...*I(n,s(n)),i) = x1.

Define 1 = 11^ 0 = 00 and for an arbitrary binary

string IT = ^•••o1 ^ where or- = 0 or cr- = 1,



rs* r**

IT = GT*...*O . Define the information function
l n

Clearly^ there exists an algorithm R, such that

for every n, Vi<£n.R, ( In(n^ 1) > i) = x1. The lemma

now follows from Lemma 1.8 and the fact that

Lemma 1,10: 3cVxVn.K(xn;n) ^K(xn|n) + 2^1og(n) + c.

Proof: Let I be such that I(n3l) = n and

| I(n,2) | = K(xn|n) and G(I(n,2),n) = x11.

Clearly xn is uniformly computable from I(n,l)

and I(n^2).
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§2. Pseudo-Recursive Sequences

Theorem 1,3 and Theorem 1.5 in essence describe the

sequences at the extreme low and high ends of the minimal-

program complexity hierarchy. However, only Theorem 1.4

gives any indication of the types of sequences in the

middle region of the hierarchy. In this section an attempt

is made to formulate a definition of pseudo-recursive sequence

and to characterize such sequences in terms of the hierarchy.

In the process we will encounter sequences whose complexity

falls into the intermediate regions of the hierarchy.

If x and y are sequences then the sequence x = y

is defined by the condition, (x=y) (n) = l^x(n) = y(n) ; x

by "x(n) = 1 - x(n) . If x is a binary sequence then we
n n

define S (X) = £ x(i), the number of 1's occurring in x .
n i=l

The limiting relative frequency of a sequence x is defined
by $(x) = lim — S (x). If x and y are binary strings

n+oo
then we write x -< y for Vi£|x| (x(i) = y(i)), i.e. y is

an extension of x. Also if y denotes a string then by "|j,y."

we mean "the least string y with respect to the lexicographical

ordering of binary strings such that11. By "#jfs." we will

mean "the number of integers j such that".

One criterion for a sequence to be pseudo-recursive is

that it must eventually resemble some recursive sequence.

We make the following definition which was originally sug-

gested by Loveland.
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Definition 2.1: We say that a sequence x is near

recursive (n.r.) if and only if there exists a

recursive sequence r such that $(x=r) = 1.

Near recursive sequences have the nice closure property

that if x is near recursive and y is such that $(x=y) = 1

then y is near recursive.

Proposition 2O1: If x is a sequence for which <l>(x) =0

then for every G > 0, xeC[An.e-n].

Proof: For any sequence x, x can be computed by

specifying its position (with respect to the

lexicographical ordering) among all sequences of

length n with exactly s (x) l!s. It then follows

by Lemma 1•9 that
oo n n

Vn.K(x ;n) £ log(s£(x)) + 2-log(sn(x) ) + 2-log(n) + c,

for some constant c.

Suppose $(x) = 0 and let e > 0. Choose m

such that (m+2)*2""m < €. Since $(x) = 0,
0 0 -m oo n
VnoSn(x) £ 2 -n and also Vn. log(Sn(x)) £ (m+1) • 2 • no

oo n _m

Thus, Vn.K(xn;n) £ (m+2)-2 - n ^ e»n.

Theorem 2.2: If x is near recursive then for every e > o

xeCtAn.e-n] .

Proof: Since x is n.r. there is a recursive r such

that <£(x=r) = 1 and consequently 3>(x̂ r) = 0.
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Clearly, x is uniformly computable from r and x = r
OO y-| n n

so we have Vn.K(x ;n) ^ K((x=7) ;n) + 2-K("r ;n) + c1.

By Proposition 2.1 and Theorem 1.2 it follows that for
oo n

every e > 0 Vn.K(x ;n) £ e»n, i.e. for every e > 0

xeC[An.e*n].

Theorem 2.2 provides an upperbound for the class of

near recursive sequences in the minimal-program complexity

hierarchy. Since in our definition of near recursive sequence

we did not specify how fast a near recursive sequence must

approach some recursive sequence we are able to obtain the

following result showing that the upperbound of Theorem 2.2

is a tight upperbound. We first define the set of functions

£ = ff|f is unbounded, non-decreasing, total

recursive function}

which represents the set of effective names for the complexity

classes.

Theorem 2.3; If f e £ and lim f'n' = 0 then there
n-oo n

exists a near recursive sequence x such that x^C[f].

Proof: Let y be a sequence such that y^C[An.n-c]

for some constant c. By Theorem 1.5 y is random

and so $(y) = -j • We will construct the desired

sequence x from y by adding sufficiently many ifs

to y so that $(x) = 1, but at a rate slow enough

to insure that the difference between the complexity

of x and the complexity of y will be small.
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Let fe&. Define g by g(n) = [2'fTm) ̂  where

m= |ip.n ^ 2-f (p) . Clearly gel and g(2-f(m)) £ J

We define the sequence x as follows: We replace

the nth 1 occurring in the sequence y by g(n) lTs

and each 0 by one 0. Since g is unbounded,

$(x) =1 and so x is near recursive ($(x=r) = 1,

where r is the recursive sequence of all l!s).

yn is uniformly computable from x g^n' so

that Tn.Kfy^n) £ K(x n # g ( n ) ;n-g(n)) + C, since n-g(n)
oo

is computable from n. Since 3n.K(y ;n) > n - c,

?n.2-f(n) - c - c! < K(y2#f(n);2-f(n)) - c' £ K(xn;n).

We remark that the class of f!s satisfying the hypothesis

of Theorem 2O3 contain all the effective bounds which grow

strictly slower than every constant multiple of n. Thus

there exist near recursive sequences whose complexity approaches

the upperbound of Theorem 2.2 as closely as can be effectively

measured. The following corollary to Theorem 2.3 makes this

point clearer.

Corollary 2.4; There is a near recursive sequence x

such that for every p < 1, x^C[An.np].
n

n+1
Proof: Let f(n) = [n ] and apply Theorem 2.3.

Because we have placed no restrictions on how fast a

near recursive sequence approaches a recursive sequence we
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have obtained near recursive sequences of rather high complexity.

We therefore formulate a more restrictive definition of

pseudo-recursive sequence. If x is a sequence then we

define 1 (n) = position of the nth 1 occurring in x andx

0 (n) = position of the nth 0 occurring in x. Thus 1x x

enumerates the members of X in increasing order and 9
x

enumerates the members of X in increasing order. A

sequence x is dense if and only if for every fe&,
oo
Vn.9 (n) ^ f(n). (See Martin [10]).x

Definition 2.2; A sequence x is strongly near recursive

(s.n.r.) if and only if there is a recursive

sequence r such that x s r is a dense sequence.

P ropos it ion 2.5; Every strongly near recursive sequence

is near recursive.

Proof; Let x be s.n.r., then there is a recursive r
CD

such that Vn.9 _ (n) <^ f(n), for every fe£.

Let f(n) = 2n9 then Sn(x=r) 2
 n ~ log(n) - c

for some constant c. Thus <£(x=r) = 1 so x

is n.r.

Strongly near recursive sequences have the closure property

that if x is s.n.r. and y is such that x = y is dense

then y is s.n.r.
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Briefly., a sequence is strongly near recursive if and

only if it approaches some recursive sequence faster than

can be measured by any recursive function. Because of

this it is possible to obtain a lower upperbound for the

complexity of strongly near recursive sequences than was

obtainable for near recursive sequences.

Proposition 2.6: If x is a dense sequence then for

every fet5 XGC[An.f(n)•log(n)].

Proof: We remark first that if x is dense then

for every fe £, #j!s(j<^n and x(j) = 0 ) <> f (n)

for all but finitely many n. (This can be proved

by considering the "inverse" g of f defined

by g(n) = |ij.f (j) > n.)

Let x be dense and let feZ, then by the

OO -F ( n)

above remark, Vn. (# j f s( j^n and x(j) = 0) £ ^ ' ) •

Thus we can compute (uniformly) x by specifying

each j £ n for which x(j) = 0. It then follows
0 0 n

by Lemma 1.9 that Vn.K(x ;n) £ f(n)*log(n).

Theorem 2.7: If x is strongly near recursive then

for every fe£, xeC[An.f(n)•log(n)].

The proof is similar to the proof of Theorem 2.2

and so will be omitted.

If we knew that for each dense sequence x that not

Vfe£.Vn(9 (n) ̂  f(n)) but also

constant M such that for every fe£,

only Vfe£.Vn(9 (n) ̂  f(n)) but also that there is a



16

oo
Vm(#j's(f(m) £ 9 (j) £ f(m+l)) £ M) (in other words the

O's of x cannot cluster together in arbitrarily large

groups), then it seems reasonable that we could show that

for some constant c, xeC[An.c*log(n)]. (e.g. if f(n) = 2n

then the information needed to compute xn in this case

produces the series,, log(n) + log log(n) + log log log(n) +...)•

Howeverj as the proof of the following proposition shows, the

0Ts of a dense sequence may indeed cluster together in

arbitrarily large groups.

Proposition 2.8; There exists a dense sequence x such

that for every constant c > 0, x^C[An.c-log(n)].

Proof; Let y be a dense sequence. We will construct

a dense sequence x by regrouping the 0Ts of y. The

particular regrouping we use will enable us to show

that for each constant c > 0 and for infinitely

many n, xn is different from every sequence of

length n computable by a program of length <^ olog(n).

If y is a dense sequence then it can be shown

that there exists a sequence {p.} such that

Pj > Pj_l + J a n d 9y (Pj ) ~ ^ P j - 1 ) > 2 # 0 y ( P j ) D+ + 1

x is constructed by induction as follows; For

n <L e (Pn ) we define x(n) = y(n) .

Suppose we have constructed xn for n <^ 9 (p.-l).

There are at most 2 • 2^ " l o g ( 0y ( p j J J = 2-9 (p-P

programs of length <^ j»log(9 (p.))« On the other
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hand there are n (9 (p.) - 9 (p.-l)-k) strings
v r\ Y J Y J

°V(P1-1)

of length 9 (p.) which extend x I J and

which have exactly j + 1 0Ts occurring between

9 (p. -j) and 9 (p.., all of which occur between

9 (p .-1) and 9
y(Pj) •

I (©V(P-,) - Ov(p.-D-k) 2 (9 (p )-9 (p.-l)-j)
j©V(P-,) - Ov(p.-D-k) 2 (9 (p )-9 (p.-l)-j)
j+1

and by our definition of

(9y(Pj) ~ ©ytPj-D-J)
5"*"1 1 2.9y(Pj)

j so that

there is at least one string of length 9 (p.) which
9 (p.-l) Y 3

extends x ^ ^ and which has exactly j + 1 0Ts

occurring between 9 (p.-l) and 9 (p.) and which is

not computable by any program of length <^ j*log(9 (p.)).

9 (P.) Y 3

We define x •* J to be the least such sequence (with

respect to the lexicographical ordering).

It follows from our construction that for
©v(Pk)every k J> j^ x •* is different from every program

of length £ j«log(9 (p.)). Hence, for each

constant c > 0, x^CfAn.c-log(n) ] .

It can be shown by a straightforward induction
that Vn.9 (n) <^ 9 (n) so that x is dense,y x

Theorem 2.9: There exists a strongly near recursive

sequence x such that for every constant c,

x|C[An.c«log(n)].

Proof; This follows immediately from Proposition 2.8

since every dense sequence is strongly near recursive.
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= x for the recursive sequence r of all l's).

Theorem 2.9 shows that the upperbound for strongly near

recursive sequences of Theorem 2.7 is a tight one, that in

fact there are such sequences whose complexity approaches

that upperbound as closely as can be effectively measured.

We will now consider another restriction to the definition

of near recursive sequences. The notion of a recursively

approximable function was formulated by Rose and Ullian [13].

If x is a sequence and g : N—>N then we define the

sequence xog by (xog) (n) = x(g(n)).

Definition 2.3; A sequence x is recursively approximable

if and only if for every 1-1 total recursive function g

there exists a recursive sequence r such that

$(xog = rog) = 1.

If we take g to be the function g(n) = n we have

immediately^

Proposition 2.10; Every recursively approximable sequence

is near recursive.

The next theorem shows that recursively approximable

sequences extend at least as high into the complexity hierarchy

as do the strongly near recursive sequences. A set X is
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cohesive if and only if 1) X is infinite and 2) for every

recursively enumerable set Y either X 0 Y is finite

or X fl Y is finite. A set X is quasi-cohesive if and

only if X is the union of a finite (non-zero) number of

cohesive sets. In [13] Rose and Ullian showed in essence

that every quasi-cohesive sequence is recursively approximable.

Proposition 2,11; For every constant c there is a

qua si-cohesive sequence x such that x^C[An.c«log(n)].

Proof: This proof is similar in many respects to

that of Proposition 2.8. The proof relies strongly

on the following fact about cohesive sets.

Fact; (Dekker and Myhill (See Rogers [12])). Every

infinite set possesses a cohesive subset.

Let c > 0 and let y be a dense sequence. We

define the sequence {p.} as follows;

pl = 1

pj+l = W?(P>Pj+c+1 a n d ©y(p)-©y(p-l) > 2-Gy(p)°
 C + 1 + c).

We define a sequence z as follows;

For n <^ 9 (p, ) we define z(n) = y(n) . Assuming

that we have defined z 9Y ( pj ) we define z
G y ( P ^ + 1

to be the least string of length 9 (p-.-j) (with

respect to the lexicographical ordering) which extends
© (p.)

z y ^ a n d which has exactly c + 1 0!s occurring

between ©y(P-;+1 - !)
 a n d © ^ P>1^ and which is not

computable by any program of length c-log(9 (p. •,))•
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We are guaranteed the existence of such a string by

the fact that there are less than 2*G (P-.i)

programs of length <£ c^log(9 ( P - . T ) )
 a n d that

c
there are n (©..(p.,-,) - © (P...! - 1)-k) strings

k=0 Y J y D

ev(Pi)
extending z y J with exactly c + 1 0fs occurring

between © y(Pj + 1 - D and ©y(Pj+1)•

We define the function t(i,j) for each

1 £ i £ c + 1 and jeN by, t(l,j) = |in(©y(p..-l) £ n ^ ©y(Pj)

and z(n) = 0).

t(i+l, j) = |in(t(i, j) < n £ 9y(Pj)
 a n d z^n) = °)

Define T^ = {t(l, j) | jeN} . T^ is infinite so by

the above stated Fact there is a cohesive subset

of Tv \ = ft(l,j) | J€NX c N}.

Define T2 = {t(2,j)|jeN^}. Similarly there is a

cohesive subset of T2* T2 = {t(2,j)|j€N2 czN,},

We thus obtain c + 1 cohesive sets T,, . . . ,T - .

Define T. = {t(i, j) | JGN - } . T. is cohesive

since N , c N. for i <^ c + 1 and every infinite

subset of a cohesive set is cohesive.

Define X = U T. . X, being the union of
1

finitely many cohesive sets, is quasi-cohesive. Let x

be the characteristic sequence of X. If jeN , ,

then x(n) = z(n) for 0 (p^-l) ^ n £ 9y(Pj)

so that for infinitely many n, K(xn;n) > c-log(n)

and so x^C[An.c*log(n)]. Therefore we have shown
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that for every constant c > 0 there is a quasi-

cohesive sequence x such that "x̂ C[ An.c log(n) ] .

But surely this also shows that for every constant

c > 0 there is a quasi-cohesive sequence x such

that x^C[An.c*log(n) ] .

Theorem 2.12; For every constant c > 0 there is a

recursively approximable sequence x such that

x^C[An.c-log(n)].

Proof; This follows immediately from Proposition 2.15

since, as we remarked before, every quasi-cohesive

sequence is recursively approximable•

There is a slight difference between Theorem 2.12

and Theorem 2.9 in that we are able to find a strongly

near recursive sequence x such that x^C[An.c*log(n)]

for any c whereas the recursively approximable sequence y

for which y^C[An.olog(n)] depends on the choice of c.

Theorem 2.2 provides an upperbound for the class of

recursively approximable sequences in light of Propsitions 2.10.

However, a tight upperbound is still unknown and it remains

unclear how the additional condition in Definition 2.3 can

be used to find a tight upperbound.

We now consider another definition of pseudo-recursive

sequence based on the notion of almost recursive set

introduced by Vuckovic [16].
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Definition 2,4; A sequence x is almost recursive if and

only if there is a partial recursive function cp

such that if x(n) = 1, then cp(n) = #mTs (m < n and

x(m) = 1).

The following theorem gives an upperbound for the

complexity of almost recursive sequences.

Theorem 2.13; If x is almost recursive then for every e > 0,

xeC[An. (^ + e) *n] .

Proof; Let x be almost recursive and let cp be

a partial recursive function such that if x(n) = 1

then cp(n) = #mfs(m < n and x(m) = 1).

Define u = #mfs(m < n and cp(m) is defined)
n T

v = #mTs(m < n and x(m) = 1)
n -*•
1. = #mfs(m <^ n and cp(m) = i) for 0 £ i <£ v - 1

Clearly £ 1. <^ n.
i=0 x

Given cp* u and v we can compute 1. forY n n ^ l

0 £ i ̂  v - 1. Among the 1. values m for which

cp(m) = i there is precisely one value e. such

that x(e.) = 1. To specify e.3 therefore^ we need

log(l.) bits of information. Since for m <^ n,

x(m) = l<c=̂ m = e. for some i <£ v - 1^ xn is

computable from the e.?s for i <^ v - 1. Therefore
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since we know |e.| for each i, xn is uniformly-

computable from u , v and the concatenation of
c n n

the e.'s. Thus,
1 v

n

1 v -1
nK(xn?n) £ 2-log(u ) + 2-log(v ) + £ log(l.) + c.

n , i=0

It can be shown that £ log(l.) <^ •=• , from which
i=0

oo j_
it follows that for every e > 0, Vn.K(x ;n) <£ (-g-+ e) «n.

The next theorem shows that this is in fact a tight

upperbound.

Theorem 2.14; There exists an almost recursive sequence x

such that for some constant c > 0^ x^CtAn.-j - c] .

Proof; Let y be a sequence such that y<£<2[ An. n-cT ]

for some constant c!. Define x(2n) = y(n) and

x(2n+l) = 1 - y(n) . Define cp(n) = [•£] . Clearly x

is almost recursive. Also y is uniformly computable

from x 2 n so that K(yn;n) <£ K(x2n
72n) + c" and

OO /o

consequently 3n.K(xn;n) J> K(yn' ;n/2) J> -j - c.

We consider now one further formulation of pseudo-

recursive sequence due to Dekker and Myhill [4].

Definition 2.5; A sequence x is retraceable if and only

if there exists a partial recursive function cp
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such that if x(n) = 1 then 1) if 1 (1) = n
X

then cp(n) = n and 2) if 1 (m) = n for m > 1
X

then cp(n) = 1 (m-1) •x

Theorem 2.15: If x is a retraceable sequence then

there is a constant c > 0 such that xeC[An.log(n) + c]

Proof; Let x be retraceable and let cp be a

partial recursive function such that if x(n) = 1

then 1) if lv (1) = n then cp(n) = n andx

2) if 1 (m) = n for m > 1 then <p(n) = lv(m-l) .

Let m be the largest m such that m <£ n

and x(m) = 1. Given m we can use cp to retrace

all the m!s for which m <£ n and x(m) = 1. Therefore,

since m <[ n, by Lemma 1.8 it follows that there

is a constant c such that xeC[An. log(n)+c] 0

We now direct our attention toward the low end of

the minimal-program complexity hierarchy, in an attempt

to discover the properties of sequences with extremely low

complexity. However, contrary to our intuition we will

find sequences with extremely low complexity which possess

properties of randomness. The following theorem will play

a most important part in constructing sequences of extremely

low complexity.
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Theorem 2,16; If x is a dense recursively enumerable

sequence then for every fe£, xeC[f] .

Proof; Fundamentally the proof is very simple.

Since x is r.e. there is a total recursive

function h which enumerates the l's of x. Also x

is dense so that for each fe&, there are at most

f(n) 0Ts occurring in x . By specifying how

many 0!s occur in x we can determine when h

has enumerated all the lTs in xn. Thus,

K(xn|n) £ log(f(n)) + c £ f(n). However, Lemma 1.10

is of no use to us in calculating K(xn;n) since

we are interested in functions fe£ with f(n) « log(n).

In order to compute x uniformly we must know how

many 0fs occur in x1 for each i <^ n. We accomplish

this by, having defined an inverse ge £ for -r-,

constructing an information string 6 which will

enable us to compute the number of 0!s in x ^ m '

where g(m) J> n. Thus to compute x for each

i ̂  n we compute xg i' where m. = |j.m.g(m) J> i.

We now present the formal proof.

Let fe£ and define g(n) = |im.f(m) > 3*n.

Clearly ge£. Thus for some n , 0 (n) J> g(n) for
o x

every n ̂ > nQ. Also g( y? ) y n# L e t h be a

total recursive function which enumerates the l!s

of x. We define the sequence 6 by

6 ( n ) = l < £ £ g ( n - S M n ( 6 ) ) ^ 9 ( S n n ( 6 ) + l ) . D e f i n e t ( n )
ri"~ x x n~ i
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to be the largest t such that 9 (t) £ g(n).

Thus t(n) = #0!s in xg'n'. Furthermore it

can be shown that s
n + t ( n ) ^ = fc^n^*

We now show how to compute x for i <£ n.

Let m be the least m such that g(m) J> n.
^ mn+t(mn)

We can compute x from g, h and 6

as follows:

1) Find the least k, call it k^ such that g(k) J> i.

Clearly k. £ m .

2) Calculate h(j) for each j ^> 1 until the number

of values of h, which are less than or equal to g(k.),

is equal to g(k.) - S, ,, x(6). We will then know

that we have computed all the lTs occurring in xg^ *-'

and hence have computed xg^ i . x1 is then simply

the first i bits of x g ( k ± ) .

oo mn + t ( mn ) ,
Thus by Lemma 1.8^ Vn.K(x ;n) <^ |6 |+c.

Now t(m ) £ m + n and since g( ^n^) > n,

v m +t(m ) -. v
n ^ - Hence | 6 n n | ^ 2 - ^ - + n o and

consequently xeC[f].

Although the following proposition is a consequence of

subsequent theorems3 we present it here to demonstrate the

usefulness of the previous theorem and to illustrate the

techniques which we will be using.
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Proposition 2,17; There is a sequence x such that x is

not near recursive and for every fe£, xeC[f].

Proof; In order to construct a sequence x which is

not n.r. we must insure that $(x=r) ^ 1 for every

recursive sequence ro Let {cp.} be an effective

enumeration of all partial recursive functions.

We will arrange to know which cp • are in fact total

recursive 0-1 functions since these functions yield

the recursive sequences. Furthermore, we must manage

our construction process so that the number of re-

cursive functions which we are considering at any

given time is sufficiently small so that the amount

of information needed is extremely small.

Let y be a dense r.e. sequence and let fe£•

By Theorem 2.16, yeC[An.—JTJ • Also we know that

there are at most — ^ - O's occurring in yn. We

define the sequence 5 by, 6(n) = l4=$> cp is a total

recursive 0-1 valued function. Define t(i, j) = 2-'" + i« 2^

for every i J> 0 and j J> 1. Clearly Vn Hi 3j . t( i, j) = n

and t(i,j) = t(k, 1) implies that i = k and j = 1.

We define x as follows;

\ - cpj(n), if n = t(i, j) and n > 0 y ( j ) and 6(j)=l

y(n), otherwise.

x can be uniformly computed from yn and 6(j)

for each j such that 9 (j) <^ n. Therefore xn is

uniformly computable from yn and 6 ' so that
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Vn.K(xn;n) <; J6 f ( n ) / 3| + 2-K(yn;n) + c and

consequently xeC[f]•

We now show that $(x=r) ^ 1 for every

recursive r. Let r be a recursive sequence so

that for some j, r(n) = cp.(n). It follows that

x(t(i,j)) ± cpj(t(i,j)) for every t(i,j) > 9y(j).

Thus S (x=r) <^ n - 2"":).n + 9 (j) for every

n > 9 (j). Therefore $(x=r) <; 1 - 2~3 ̂  1.
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§3. Pseudo-Random Sequences

In this section we examine the relationship between

certain formulations of pseudo-random sequence and the

minimal-program complexity hierarchy.

Interpreting each binary sequence as the sequence of

outcomes of a coin tossing event, a subsequence selection

rule for a sequence x is a function f which selects

certain members of x in such a way that whether or not f

selects the nth member of x depends only on n and the

first n-1 outcomes, i.e. xn~ . We make this precise.

Let <•> be an effective bijection between X and N.

Definition 3.1; Let f : N X N~>{0,1} and x be a

binary sequence. We define the selection sequence y of

f for x by y(n) = £(n,<xn~1>). We call xol the

subsequence of x selected by f.

Definition 3.2; A sequence x is Church (I) random if and

only if for each infinite subsequence y of x,

selected by a total recursive function, $(y) = -z.

Definition 3.3; A sequence x is Church (II) random if

and only if for each infinite subsequence y of x,

selected by a partial recursive function, <£(y) = "x .
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The intuitive distinction between Church (I) random

and Church (II) random sequences lies in the observation

that Church (I) random sequences are "random" with respect

to all effective subsequence selection rules which are

defined for all sequences, wheareas Church (II) random

sequences must in addition be "random" with respect to

effective subsequence selection rules which may be undefined

for certain sequences.

Church (I) random sequences are the original sequences

proposed by Church [3] as a definition of random sequence.

Ville [15] showed that for any countable collection of

selection rules one can always construct a sequence x

(kollektiv) which is random with respect to these selection

rules and whose initial segments always possess more l!s

than 0?s, so that x does not satisfy the law of the iterated

logarithm. Thus there are Church random sequences ((I) and

(II)) which are not "truly" random.

The following theorem, which is due to Loveland, shows

that there are Church (I) random sequence with extremely low

minimal-program complexity.

Theorem 3.1: There exists a Church (I) random sequence x

such that for every fe£, xeC[f].

Proof; This proof relies strongly on the LMS algorithm,

which is a well known technique for producing pseudo-

random sequences by considering at each successive stage

of construction successively larger finite sets of
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subsequence selection rules and generating a sequence

which is "random11 with respect to each selection rule

in the set. Let {cp.} be an enumeration of all two

argument partial recursive functions. Since our

selection rules are total recursive functions we can

enumerate the selection rules effectively using {cp̂ }

by specifying which cp - are total recursive. We will

increase the cardinality of the sets of selection rules

at a rate slow enough to insure that the information

requirements will be extremely low.

Let y be a dense r.e. sequence and let fe£.

It follows that there are fewer than \ ; 0Ts occurring

in y and by Theorem 2.16^ yeC[An.—^J • We define

the sequence 6 by^ 6(n) = 1̂ =̂  cp is a total recursive

0-1 function. We construct x in stages. At each

stage m we define x(n) for ne(9 (m-l)^G (m)]. (Here

we use (ijj] to denote [k|keN and i < k j£ j}) . Our

construction process at stage m will use the set of

selection rules A = {cp | n<Jn and 6(n) = 1}. It

will follow that A is computable from 6m and
m

consequently x will be uniformly computable

from y
f ( n ) / 4

 a n d 6
f ( n ) / 4 , and so xeC[f].

We now give the LMS algorithm which we will use.

j V n ^ - S ) , if 5(i) = 1
z.(n) = <

(j3j otherwise

We define the patterns at stage m to be the following strings

ir of length m : ir = z1(n)...z (n) where ne(9 (m-l),G (m) ] .
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We say that the above pattern rr occurs at the

nth step in the construction of x. We note that

only stage m patterns can occur at the steps n

for ne(9 (m-l),0 (m) ] . We define x(n) = 1 <£=>

the pattern occurring at the nth step has occurred

at an even (or zero) number of earlier steps.

To show that x is Church (I) random let cp

be a total recursive 0-1 valued function of two

variables. Now cp = cp. for some j. Since for

each pattern T, X takes alternating values of O's

and lfs on each succeeding occurrence of ir, it

follows that for every step n at every stage m J

§ E 21 - 0V( j) <: Sn(xol §
j Y J „ J

oo 2 n 1
Therefore^ since Vn.0 (n) > 2 , *(xol ) = "o •

y Z ^

§ - E 21 - 0V( j) <: Sn(xol ) ̂  § + x 21 + 0 (j) .
i=j Y J i=J

Theorem 3.1 presents us with somewhat of a dilemma

at this stage of our investigation. One might argue that

such a result shows that there is very little relation

between information and randomness, or that such sequences

are very poor formulations of pseudo-randomness, or that

our complexity does not accurately reflect the information

content of sequences. Since it is our conviction that

there is indeed a relation between information and randomness

and that this complexity does accurately reflect information

content, we must view this result as a rather disturbing
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one. However, our investigations in a subsequent paper show

in essence we are able to keep our information requirements

low for the computation of such sequences only by making

the requirements of computation resources (time, memory, etc.)

non-deterministically large.

In several of the arguments to follow we will, in

addition to selecting members of a sequence x by some

selection rule, also want to guess by betting (according to

some betting strategy) the value of the selected member. The

following proposition shows that the Church random sequences

are "random" also with respect to these "betting11 schemes.

Proposition 3.2: Let f : N X N->{O,1} and g : N3->{0,1}

and let x be a binary sequence. Let y be the

selection sequence of f for x. Define the betting

sequence z relative to g by

z(n) = g(n, <y1^(n)>, <x 1y ( n )" 1». Define the

functions f^ and f2 by

1 and z(m) = 1, where n = 1f1(n,<x
n"1» = 14=̂  y(n) = 1 and z(m) = 1, where n = 1 (m),

f2(n,<x
n"1» = 14=»y(n) = 1 and z(m) = 0, where n = 1 (m) ,

If *(xol =z) ? ± then *(xol ) / i or *(xol ) ^ \ ,

where ẑ. and z^ are the subsequences of x selected

by f1 and f2 respectively.

Proof; The sequences z, and z^ simply select the

places where we bet lTs and 0!s respectively. The

proposition follows from the simple observation that
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if $(xol ) =~ and *(xol ) = ~ then *(xol = z) = -j •
zl z Z2 Y

We now show that in order for the LMS algorithm

construction used in Theorem 3.1 to be successful it is

necessary that the sequences used in the construction be

selected by total recursive functions.

Theorem 3.3: If x is Church (II) random then for some

constant c, x<£(3[An. log(n) -c] .

Proof: Let x be a sequence such that xeC[An. log(n) -3] .

We will construct a selection sequence y and a betting

sequence z such that $(xol = z) ^ -y . In fact we
y z

define y(n) = 1 for all n so that we will attempt

to guess each member of x. The strategy defining z9

which will rely strongly on the fact that XGC[An.log(n)-3]9

is as follows.

Let Kn = {w
n|K(wn;n) £ log(n) -3}, thenn

Let w- be the first sequence whose computation by

a program of length <£ log(n) - 3 terminates. We will

suppose that w.. is x , by setting z(j) = w(j),

unitl we discover otherwise, i.e. until we find the

first j for which x(j) / w(j). If and when we

discover that w1} is not xn, we find as before the

next member w^ of K and suppose until proven

otherwise that w£ is xn. We continue this procedure

until the real xn is found. Thus after at most -j
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incorrect guesses^ assuming x eK , we are certain

to find xn. Therefore^ S (x=z) ^> -j • n. We now

present the formal proof.

We define z in stages. At each stage m we

define z(n) for ne(e i'em]j where e = 2 9 by

z(n) = w(n), where w is the first (with respect to

time of computation) string of length e computable

by a program of length <^ log(e ) - 3 and which

extends x11"1. Since there are at most 2- 2 l o g^ e m^ "3 =

programs of length _£ log(e ) - 3, and since x G m is

computable by a program of length <^ log(e ) - 3
e

there can be at most -j^ values j, for ^G(e
m_i^

e
ml

for which z(j) ^ x(j). Hence

Se (ZHX) ̂ | - e m - f -em=f .em. Itfollcws
m

that $(z=x) ^> Q- ̂  ̂  • Clearly we can define z

v% TI — n
by z(n) = g(n^<ln>^<x >) for some partial recursive

function g^ since the procedure is recursive in the

chosen w and w can be found by a partial recursive

function. Therefore by Proposition 3.2 x is not

Church (II) random.

In order to see that this result is consistent with

Theorem 3.1 it must be observed that the above procedure

is not total recursive. Clearly if x is any sequence

such that x^C[An.log(n)-3] then for infinitely many

stages m there is some ne(e n^e ] for which we are
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e
unable to find a w (i.e. we have exhausted KQ and

m
so we will search forever unsuccessfully). Thus z(n) is

undefined and the procedure cannot be total recursive.

Thus we are able to make a strong distinction between

the class of Church (I) random sequences and the class of

Church (II) random sequences by using the minimal-program

complexity hierarchy. We now show that the lowerbound for

the complexity of Church (II) random sequences of Theorem 3.4

is nearly a tight lowerbound.

Theorem 3.5: There is a Church (II) random sequence x

such that for every fe£, xeC[An.f(n)•log(n)].

Proof: The proof is very similar to that given in

Theorem 3.1. Since we must be concerned with &11

partial recursive functions, to assure that the LMS

algorithm proceeds successfully we must specify

when a particular partial recursive function will

not be defined if we attempt to use it as a selection

rule. It does not suffice to specify which partial

recursive functions will eventually be so undefined

since by neglecting to consider them as selection

rules for the values for which they are defined will

in general alter the sequence which we are con-

structing.

We now proceed with the construction. Let y

be a dense r.e. sequence and let fe£. Then we

have y e C [ A n . ^ ^ - ] and # 0 ' s in y11 £ - ^ ^ . We
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construct x in stages. At each stage m we

construct x(n) for ne(9 (m-1)3 9 (m)]. For

each j <; m, let k. = |ak(k^9 (m) and cp. (k,<xk~1

is undefined) , where {cp.} is an enumeration of

all two-variable partial recursive functions. Let

k. = 9 (m) +1 if no such k exists. For
3 Y

each j ^ m define

, if n < k.

We say that IT = z-(n)...z (n), for ne(9 (m-1), 9 (m) ] ,

is a pattern at stage m and that IT occurs at the

nth step in the construction of x. We define x(n) =

the pattern IT occurring at step n has occurred at

an even (or zero) number of earlier steps.

We now show that x is Church (II) random.

Let cp be a partial recursive function of two

variables. Suppose that cp(n,<x " » is defined

for every n (otherwise cp does not select an

infinite subsequence of x) . Now cp = cp. for

some j. Since for each pattern IT X takes

alternating values of 0Ts and 1!s on each succeeding

occurrence of IT, we conclude as in Theorem 3.1 that

$(xol ) = — so that x is Church (II) random.

Clearly x is computable from yn and k.

for 9 (j) <^ n. Thus by lemma 1.9 we conclude,

K(yn;n) + 2 • (^f^-) • log(n) + c

f(n)-log(n)
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