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1. Introduction. The systems to be considered in this

paper are of the form

(1) W (z) = A(z)W(z),

where W(z) = (w., (z)).. and A(z) = (a., (z)) are square matrices

2
of analytic functions. We assume that the n analytic functions

a., (z) are regular in a simply connected domain D not containing

z = oo ; it follows that the same holds for the elements w., (z)

of any matrix solution W(z) of (1) . The system (1) Jjs called

disconjugate in D jLf, for any fundamental solution W(z) = (w., (z))n

(JL.JB. , for any solution W(z) for which the determinant | w., (z) | n ̂  0

for all z £ £ D) , the determinant |w.,(z.) 11? ̂  0 for every

choice of n (not necessarily distinct) points z.,...,z c>f D.

It is easily seen that if this holds for one fundamental solution

of (1), then it holds for all of them. Disconjugacy of the matrix

differential equation (1) in D is equivalent to the assertion

that, for every choice of n points z.,...,z of D, the only

solution w(z) = [w,(z),...,w (z)] of the corresponding vector

differential equation

(2) w> (z) = A(z)w(z) ,
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so

(3)

that for all these paths

o

2

satisfying w.(z.) = 0 , i = l,...,n, is the trivial one

[10, Theorem 3].

In section 2 we consider line integrals of the maximal row

norm ||A(Z)|| . We prove that if every point z of D can

be connected with a given point z of D by a path in D

^ldCl < log 2,

then the system (1) is disconjugate in D (Theorem 1). We then

restate a beautiful result of Kim [3, Lemma 2.2] in terms of

the matrix equation (1),(Lemma 1) and show that every matrix

norm ||A(Z)|| is a subharmonic function in D (Lemma 2) . Using

these results we obtain that if the line integral of ||A(Z)||

along the boundary C of D is not larger than 2 log 2, then (1)

is disconjugate in D (Theorem 2 for the unit disk and Theorem

2' for any simply connected domain). We mention also a related

result of Kim [3, Theorem 2.7]. We conclude this section with

an analogous result for systems defined on an interval (Theorem 3)

and compare this with a recent sharp result of Nehari [8, Theorem 3.3].

In section 3, we obtain conditions which imply z -absolute

disconjugacy of (1) in D, z eD, and we thus start with the

definition of this property [7]. We mention already now that

z -absolute disconjugacy implies (ordinary) disconjugacy. In

this section we work with arbitrary matrix norms, however not of

A(z), but of a real majorant matrix P (x) . Our result (Theorem 4)
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follows from [7, Theorem 1], and the present paper, especially

section 3, is a continuation of this joint paper with D. London.

We have, however, tried to make it reasonably self contained.

We conclude this paper with applications of Theorem 4 to systems

and to linear n-th order differential equations in the unit

disk (Corollaries 1 and 2 ) .

As indicated |A| = |a., L denotes the determinant of the

n X n matrix A = (a. k),.
 F o r completeness we bring here the

definition of a matrix norm and also the basic properties used

in the sequel [2,9], A norm ||A|| is a real valued function,

defined for all n X n matrices A, satisfying

(I) A / 0 implies ||A|| > 0,

(II) ||CA|| = |C|||A||, C scalar,

(in) . IIA + B| | < | |A| | + | | B | | ,

(IV) | | | | | | | | | | | |

As we consider integrals of norms, we use the following consequence

of (I) to (III) :

(V) ||A|| = || (a. ) || is a continuous function of the elements

a i k of A.

(In our case, each element a., (z) of A(z) is a regular analytic

function of z; it follows that ||A (z) || is a continuous function

of z.) We denote the characteristic (proper) values of A by

, i = l,...,n. (I) to (IV) imply



If A is a nonnegative matrix, A >_ 0 (i.e., a., >.O,i,k=l,...,n),

we denote the maximal characteristic value of A by A(A) =

A((a.,)?). In this case (VI) can be replaced by

(VI') A (A) < HA|1, A > 0.

IIAII d e n o t e s t h e maximal row norm of A = ( a . , ) ! ? . T h i s norm
CO I K J.

i s defined by

(4) ||A|| = max E | a. | .
0 0 l<i<n k=l l K

2. Disconjugacy.

Theorem 1. Let D be_ â  simply connected domain not containing

z = CD and assume that the analytic functions a., (z), i,k = l,...,n,

are regular in D. Denote the maximal row norm of the matrix

A(z) = (a., (z)) by ||A(Z)|| , zeD. Let z eD and assume that
IK 1 ~^ CD O

for every zeD, z ft z , there exists a. path C(z ,z) jln D, from

z _to z, j3o that for all these paths

,z

zo

Then the differential system

(1) W (z) = A(z)W(z)

is disconjugate in D.

Proof. Let W(z) = (w., (z))" be the fundamental solution of

(1) satisfying the initial condition

(3) J l l A t O H ^ | d C | < l o g 2 .



(5) W(ZQ) = I ,

(I = (6.. )•,) . By the Peano-Baker method of so lu t ion , we have

for any zeD

W(z) - 1 = [ A ( C ) d C + f A(C) f A ( C 1 ) d C 1 d C +
J z J z °z L 1

o o o
(6) -

rz rc r 1

+ A ( C ) A ( C , ) . - r A ( C , ) d C o d C , d C + . . . .
«/ t) 1 V Z i lz z zo o o

The i n t e g r a l from z t o z i s taken along C(z , z ) ; C»C]»««»

are on C(z ,z) and the inner i n t e g r a l s a re taken along the c o r r e s -

ponding p a r t s of C(z ,z).

We use now p r o p e r t i e s (i) t o (V) of the maximal row nonn,

(6) thus impl ies

I|W(Z) - l l ^ < | | f A(adC| l o o + l l f A(C)J_ A

(7)

< f | A ( C ) I I I d e l + f A
" Jz °° Jz ~ z

o o o
But

JZ f»C n f»^

IIA (C) II IIA ICi) || d^. d ,̂ = -r-r(
z °°J1z X o o 1 2 l J z

o o o

and similar equalities hold for the following terms of the last

sum in (7). Using assumption (3) we obtain
• ~ - 2 '(8) ||w.(z) - l|l < log 2

J J ±
zo
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for all zeD. We choose now n, not necessarily distinct, points

z. in D. Definition (4) of the maximal row norm and (8) give

n
(9) S |wik(z±) - 6±k| < ||w(zj_> - ill^ < 1, i = l,...,n.

K.— JL

** nDenoting W = (w., (z.)) , and using again (4), we obtain
1JC X X

do) ||w - ill̂  < l.
/v

Property (VI) of norms gives | A. (W - I)| < 1, i = l,...,n. As

A±(W - I) = Ai(W) - 1, we obtain |Ai(W) - l| < 1 which implies

A. (W) ? 0, i = 1,...,n. Hence, Iwl = |w..(z.)|"^0. As the
1 JL3S. 1 1

points z..,...,z were arbitrary in D, we thus proved that the

system (1) is disconjugate in D.

We do not know whether the constant log 2 on the right-

hand side of (3) is the best possible constant. However,log 2 =

0.693 cannot be replaced by any number larger than TT/4 = 0.785.

This follows by considering the system (1) which corresponds to

the differential equation y^n* (z) + y^n"2^ (z) = 0 . The matrix

A(z) of (1) is now the constant matrix A = (a., ) n with
IK X.

a i i + 1 = 1, i = l,...,n - 1, ann_1 = -1 and a ± k = 0 for all

other elements. It follows that ||A|| = 1, but (1) is not discon-

jugate in any domain D containing the two points z = TT/4 and

z = -TT/4 [7,$4].

We remark that the assumption and the conclusion of Theorem

1 are invariant under conformal mapping. Indeed, let z = <p(w)

map the domain A of the w-plane onto the given domain D of



the z-plane, so that z = <p(w ) . (1) transforms into

(11) V (w) = B(w)V(w) ,

where V(w) = W(<p(w)) and B (w) = <p' (w)A(<p(w)) . The path

C(z ,z) in D B mapped onto the path F(w ,w) in A and

z w

( 1 2 ) J | | A ( C ) | | I d C | = J | | B ( C 4 | | | d c o | .
z w

o o

Assumption (3) is thus invariant under this mapping. On the other

hand, (1) and (11) are together disconjugate or not disconjugate

in their domains.

Our next result on disconjugacy will first be proved for the

unit disk (Theorem 2 ) , and we then use this invariance under

conformal mapping to obtain its validity for arbitrary simply

connected domains (Theorem 2 ' ) . We now bring some lemmas needed

for the proof of these theorems. The first lemma is a result of

Kim [3, Lemma 2.2],

Lemma 1. Let the analytic functions a. (z), i,k = l,...,n,

be regular in |z| < 1, and assume that the differential system

(1) W (z) = A(z)W(z)

(A(z) = (a.. (z))n) is not disconjugate in |z| < 1. Then there
XK X

exist a_ constant K, 0 < K < 1, and n points z. satisfying

| z.. | = | z_ | =. . .= | z I = K, such that for every solution

W(z) = (w., (z))n of (1) the determinant |w. (z.)|" vanishes.
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Using the obvious definition for 'disconjugacy on a line'

this lemma thus states that _if the system (1) JLS disconjugate on

every circle |z| = r, 0 < r < 1, then it is disconiuqate in

the unit disk. Kim brought this result in terms of the vector

differential equation (2).

For the proof of Theorems 2 and 2», it would be sufficient

to state the following lemmas only for the maximal row norm.

These lemmas do, however, hold for all matrix norms. Even more

is true: we do not use property (IV) of norms in their proof

and the lemmas hold therefore for Ostrowski's generalized norms.

These generalized norms, which we again denote by ||A||, are real

valued functions, defined for all n X n matrices A, satisfying

properties (I), (II) and (III) . We already stated that this

implies (V) (continuity) [9; 2, p. 60],

Lemma 2. Let the analytic functions a., (z) , i,k = l,...,n,

be regular in ji domain D. Every generalized norm ||A(Z) || ĉf_ the

matrix A(z) = (a., (z))" is a continuous subharmonic function

in D.

Continuity of ||A (z) || as function of z follows from (V) .

Let | z - z | < r , 0 < r < o o , b e a disk contained in D. Cauchy's

integral formula gives

A<Zo> = 27 \1T^zo+ « i V

o

This and (i) , (II) and (III) imply



which such holds for all z and r for which |z - z I <̂  r

belongs to D. ||A(Z)|| is thus subharmonic in D [6,

The integral mean of a subharmonic function over concentric

circles is a nondecreasing function of the radius. Lemma 2

thus yields

Lemma 3. Let the analytic functions a... (z) , i,k = l,...,n,

be regular in |z| < 1 and let ||A(Z)|| be a generalized norm of

the matrix A(z) = (a., (z))n. Then

.2TT
(13) I(r) = J ||A(re1(p)||d<p, 0 < r < 1,

is a. nondecreas ing function of r.

Having prepared everything for the proof of Theorem 2r

we bring now a few remarks in order to obtain a concise statement

of this theorem. We shall there assume that the elements a., (z)

of A (z) are of class H, in |z| < 1; this means each analytic

function a., (z) is regular in |z| < 1 and the nondecreasing

function I., (r) , defined by
2rr2ir .

(14) x i k ( r ) = J l a i k ( r e > \d<p, O < r <
I K : • • • • 'o

is bounded as r -£ 1, i,k = l,...,n. lim I., (r) is usually

denoted by |a (e ̂ ) |d<p. This, indeed, is more than a notation,
o

but all we need is that if a., (z) is regular in |z| < 1 and

continuous in \z\ <^ 1, then lim I. (r) = I. (1) and la. (e ̂ ) |d<p
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is then the Riemann integral of the continuous function

laik(el<P)l* We cal1 A(z) = (aik(z))i of class Hi in

|z| < 1 if each a., (z) is of class H. în |z| < 1. In this

case we use the analogous notation for the limit of the integral

I(r) of any generalized norm:

(15) lim I(r) = J
r-»l o

If each a., (z) is continuous in |z| <. 1, then lim I (r) = i (1)
1 K r-»l

and the right-hand side of (15) is again a Riemann integral.

To justify the notation (15) in the general case, it seems neces-

sary to add the following statement. For any generalized norm.
lim I(r) is finite if, and only if, A(z) is of class H, in
r-4 1 1

|z| < 1. We show this first for the maximal row norm. The

inequalities

i k

imply that

a i k ( z ) | < IJACz) | | o o , i , k = l , . . . , n , UWll^ < _ L_ | a ± k (z)
i, k=l

l im I (r) = lim f ||A (re1<P) || d<p
r»l °° r>l o °°

is finite if, and only if, A(z) is of class H, in |z| < 1.

But the validity of the italicized statement for one generalized

norm implies its validity for all generalized norms as the quotient

of two generalized norms of the same matrix A lies between

two positive constants which are independent of A [9, Satz IV;

2, p. 61] .

After all these preparations (and digressions) we state

now our next theorem.
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Theorem 2. Let A(z) = (aik(
z))? be of class H. .in

zl < 1 and assume that

(16) J Uie^W^dxp < 2 log 2.

Then the differential system

(1) W (z) = A(z)W(z)

is disconjugate in |z| < 1.

Proof. By the preceding remarks (16) is equivalent to

J
2ir i w

| |A(re ^) j | d<p < 2 l o g 2 .
o °°

Lemma 3 implies that for each r, 0 < r < 1,

J """llAfrê Jll̂ rd̂  = J ||A(0 11̂  |d£| < 2 log 2.
o C r

Here C denotes the circle | z | = r , 0 < r < l . We divide now

C into two arcs C and C ' both starting e.g. at z = r

and ending at re ™, where 0 = 0(r) , 0 < 0 < 2TT, is so chosen that

(3') J llAfOll^Idd < log 2, J HAfOll^ldCl < log 2.
C C' '
r r

Let W(z) = (w., (z))^1 be the fundamental solution of (1) satisfying

the initial condition W(z ) = W(r) = I. We choose now n, not

necessarily distinct, points z. on C . As each z., i = l,...,n,

lies either on C or on C'', we obtain, by using the series
(6) for W(z.) - I, that

n
f l wik ( zi J " 6ik' < 1' ' z i ' = r> i = 1>'-->n'
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This implies |w. (z.)|n ^ 0, which thus holds for any n points
XJC X X

on the circle |z| = r. As this holds for each r, 0 < r < 1,

it follows from Lemma 1 that the system (1) is disconjugate in

|z| < 1.

Using the invariance of the assumption and conclusion of this

theorem under conformal mapping (see (11),(12)), we can state it

for an arbitrary simply connected domain.

Theorem 2 » . Let the analytic functions a., (z) , i,k = 1,...,n,

be regular in the simply connected domain D not containing

z = co . Let C be the boundary of D and A(z) = (a.,(z))n. If
XK X —~~

(16') J ||ACC> HQO ldCl < 2 log 2,
C

then the system W (z) = A(z)W(z) ^s. disconjugate in D.

If each a., (z) is continuous in D and if C is piecewise
xk

smooth, then the integral on the left-hand side of (16') is a

Riemann integral. If not, then this integral has to be inter-

preted as the limit, for r—> 1, of integrals taken along the

level lines T , 0 < r < 1, of the function w = <p(z) which maps

D onto |w| < 1; and it is thus assumed that the limit of this

increasing function of r is not larger than 2 log 2.

We add a remark about the relation of Theorem 2' to Theorem 1.

If the constant 2 log 2 on the right-hand side of (16') is

replaced by (2 log 2)/n, then the corresponding weaker assertion

is a consequence of Theorem 1. This follows from a result of
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Fejer and Riesz [1], stating that for every function a(z) of

class H, in [z| < 1, a(z) f Q,

(17) J |a(reie) | dr < \ J ja(ei(p) | dp, 0 < 9 < 7 T .
-1 o

For a matrix A(z) of c lass H, in | z | < 1, A(z) f 0, i t thus

follows tha t

Jj|A(reie) ll̂ dr < £ . J= | a.k(re
ie) | dr < 1 J '̂̂  J= | a.^e^

< | J ]|A(ei<i0) || a^p, 0 < 9 < 2-rr,
o

Hence, if we replace the assumption (16) of Theorem 2 by the more

restringent assumption

(16") J ̂llAfe^H^dp < -| log 2,

o

then the assumption (3) of Theorem 1 is satisfied for the unit

disk (z = 0 and C(0,z) is now the segment from 0 to z, | z | < 1) .

Using the invariance of the line integrals, it follows that the

similarly weakened version of Theorem 2' is a consequence of

Theorem 1. If the analogue of the Fejer-Riesz inequality (17)

holds for the maximal row norm of matrices A(z) of class H,

in |z| < 1, or at least if

J ||Mreie)||mdr < ̂

is true, then Theorem 2< is a consequence of Theorem 1.

m ^ J ^ , 0 < 0- < 2TT ,

HUNT LIBRARY
CARNEGIE-MELLON UNIVEBSITY
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In [3] Kim obtained sufficient conditions for disconjugacy

by using the spectral norm ||A(Z)|L. (IIAIU "-= sup ||AW|L/||W|L,
w^O

where ||w|L is the Euclidean norm of the vector w = [w1,...,w ] .)£ JL n

For the unit disk he obtained that _if_, for all r, 0 < r < 1,

r J | | A ( r e i ^ ) | | 2 d ( P < 1,

then the system (1) _is d i s c o n j u g a t e i n | z | < 1 . [3, Theorem 2 . 7 ] .

By Lemma 3 , t h i s c o n d i t i o n can be s i m p l i f i e d t o

(18) f "Uie^lLdxp < 1.
J o 2

It follows that

(18-) J | |A(C) l l 2 | dC | < 1
C

implies the disconjugacy of (1) in the simply connected domain

D with boundary C. As for n x n matrices

(19) — I I A I I ^ < | | A | | 2 < \fa H A I I ^ ,

these results neither imply Theorems 2 and 2' nor are they implied

by them.

For systems defined on an interval the method of this section

yields the following result.

Theorem 3. Let the complex valued functions a., (x),i,k=l,...,n,

be continuous on (a,b) , -co <̂  a < b <; oo . Let W(x) = (w.v (x))n

be a^ fundamental solution of the differential system



15

(1 ' ) W (x) = A(x)W(x) ,

(A (x) = (a . . (x) ) n) , a < x < b . I f

(20) | 5 | | A ( x ) | | o o d x < 2 log 2 ,
cl

then |w. (x.) | n ̂  0 for every choice of n points x. xn. (a*k) •

Following a recent remark of Nehari [8], we avoid in this

case, of systems on an interval of the real line, the term

disconjugacy. For the proof, we remark that (20) implies the

existence of a point x in (a,b) such that

llAWH^dx < log 2, j llAWU^dx < log 2.
xo

nFor the solution W(x) = (w., (x)), of (I1), satisfying W(x ) = I,

we obtain, as before, |w., (x.) L ft o for every choice of n

points x. in (a,b). Theorem 3 should be compared with [3,

Theorem 2.1] and with a recent sharp result of Nehari [8, Theorem

3.3], implying that the condition

v

a

yields the assertion of Theorem 3. We do not know whether

Theorem 3 is sharp; the example brought after the proof of

Theorem 1 shows only that 2 log 2 on the right-hand side of

(20) cannot be replaced by any number larger than TT/2 .

3. z -absolute disconjugacy. This notion was defined as
o '—' '-

follows [7]: The system (1) is called z -absolute disconjugate
Q
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in D _if there exists a. point z
o e

D such that the solution

W(z) = (w., (z))n, determined by
XK. _L ~"~~~̂ -———-—

(5) W(zQ) = I,

satisfies

(21) M(|w i k(z i k) - 6ik|)J) < 1,
2

for every choice of n (not necessarily distinct) points z.,

in D. (The left-hand side of (21) is our notation for the

maximal characteristic value of the nonnegative matrix (|w., (z.,)

- 6., |)?.) As already mentioned, z -absolute disconjugacy of (1)

in D implies its ordinary disconjugacy there; the converse is,

in general, not true. In the following theorem ||p(x)|| will be

an arbitrary norm of the matrix P(x), satisfying conditions (I)

to (IV) .

Theorem 4. Let the bounded domain D be_ starlike with

respect to its point z , end assume that the analytic functions
__________ __̂ . _ _ _ ________ Q _____ _________ ______ _____ _____________ '

a., (z), i,k = l,...,n, are regular in D. Let r = suplz - z I,
IX O

zeD. For each x, 0 <. x < r, denote by C (x) the intersection of

the circle | z. - z | = x and D, and assume that

(22) m., (x) = sup |a,v(z) | < oo , i,k = 1, . . .,n, 0 < x < r.

l k zeC(x) 1]c

Let the nonneqative functions p., (x), i,k = l,...,n, be continuous

in 0 <_ x < r, and satisfy

(23) p i k ^ — mik^ x^ ' i:>k = 1' ' ' ' >n' ° — x < r*
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Let ||P(X) || be any norm of the matrix P(x) = (p., (x)),,

0 <. x < r. Tg

(24) J ||p(x)||dx < log 2,

then the differential system

(1) W' (z) = A(z)W(z)

(A(z) = (a., (z)).) is_ z -absolute disconjugate in D.

Proof. By property (V) ||p(x)|| is a continuous function of

x, 0 <_ x < r. We may disregard the trivial system W'(z) = 0,

and it then follows, by (22), (23) and (I), that ||p(x)|| > O

for 0 < x < r. The integral in (24) may have been an improper

one, but (24) is now equivalent to

(24t) f ||P(x)||dx < log 2, 0 < p < r ,
o

and ||p(x)|| is continuous on [0,p] . We consider the fundamental

solution U(x) = (u., (x))" 0 <. x < r, of the real differential

system

(25) U» (x) =P(x)U(x), 0 < x < r,

satisfying the initial condition

(26) U(0) = I.

The Peano-Baker series for this solution is

rP rP rt
(27) U(p) - I = J P(S)d£ + J P(4) J Pt^Jd^dS +..., 0 < p < r.
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Using properties (I) to (IV) of the norm, we obtain (cf. formulas

(7) to (8) in the proof of Theorem 1)

f [|lu(p) - l|| < J Jf
Jo Jo Jo

= exp(| ||p(4)l|d€) - 1, 0 < p < r.

This and (24') imply

(28) l|u(p) - l|| < 1, 0 < p < r.

By (27) the matrix U(p) - I, 0 < p < r, is nonnegative; (28)

and (VI') give

(29) A(U(p) - I) < 1, 0 < p < r.

For any zeD we set x = |z - z | and compare, term by term,

the series (6) for W(z) - I, where now all the integrals are

taken along segments, with the corresponding series (cf. (27))

for U(x) - I. Using (22) and (23) we obtain

(30) lwik^z) " 6ik' - uik*x) " 6ik' i'k = 1'*-«' n'
2

We choose now n points z.n in D, set x., = |z.n - z I,
* ik ' lk ' lk o' '

i,k = l,...,n, and denote p = max x-k« Using (30) and the
i,k=l, .. jix1

fact, following from (27} that each element u., (x) - 6 of
U(x) - I is a nondecreasing function of x, we obtain

(31) I

As for nonnegative matrices A = (a.,) n and B = (b.,)" the

inequalities a <v — ^>iv-> -̂̂ ^ = lj***j n^ imPly ^ (A) <_ A (B) , it
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follows that (2 9) and (31) imply (21) and Theorem 4 is thus

proved.

We remark that only the first part of this proof (up to formula

(29)) is new. If we replace in the statement of this theorem

the assumption (24) by assuming (2 9), or the equivalent inequality.

(29') A(U(p)) < 2, o < p < r,

then we obtain a minor modification of [7,Theorem 1]. Due to the

variety of easily computed matrix norms, the verification of

(24), involving only the majorant matrix P(x) and not the

solution U(x) of (25), is a convenient way to establish (29')•

We apply now Theorem 4 to systems in the unit disk.

Corollary 1. Let the analytic functions a., (z), i,k = l,...,n,

be regular in | z | < 1. Let the nonneqative function h(x) be

continuous in 0 <_ x < 1 and assume that

r1 i
(32) h(x)dx = -£ < co .

Assume that there exist constants b-],j i*k = l,...,n, such that

(33) |aik(z) | < bi]ch(|z|), i,k=l,...,n, | z | < l .

Let A (B) be the maximal characteristic value of the nonne.aa.ti.ve

matrix B = (b
ik)"* U .
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(34) A(B) < j8 log 2,

then the system W (z) = A(z)W(z), (A(z) = (aik (z))
 n) , j^. 0-

absolute disconjugate in |z| < 1.

Proof. The sets C(x) of Theorem 4 are now the circles

|z| = x, 0 <, x < 1, and, by (33) we may use as elements of the

majorant matrix P(x) the functions

(35) Pik^x* = bik

To assure the 0-absolute disconjugacy of (1) in |z| < 1 we have

to show that the present assumptions imply the existence of a

norm such that the inequality

r 1

(24' ') ||p(x) ||dx < log 2
Jo

holds. Property (II) and (35) imply that for every norm

(36) ||P(x)|| = h(x)||B||, 0 < x < 1,

and we are thus looking for norms whose value for the fixed

argument B is as small as possible, property (VI1) states that

A(B) is a lower bound for the set of values of all norms at B.

It is, however, known that this is the greatest lower bound: for

the given matrix B, B >_ 0, and any e > 0, there always exists

a particular norm such that ||B|| <_ A(B) + e, [2,p. 46]. This and

(34) give the existence of a norm such that

(37) ||B|| < j8 log 2

holds. (32), (36) and (37) imply now the validity of (24'') for

this particular norm and we thus proved Corollary 1.
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Choosing

(38) h(x) = T—-o, 0 < x < 1, O < jS < 1,
(1 - x ) 1 " ^

we obtain that the uniform growth condition

b
(39) |aik(z)|< j* 1_^, i,k=l,...,n, | z | < l , 0 < j8 <

and the inequality (34) imply O-absolute disconjugacy of the

system (1) in |z| < 1. We do not claim that for fixed /3,

0 < /S < 1, condition (34) for the coefficients b., appearing in

(39) could not be improved. However, these sufficient conditions

for O-absolute disconjugacy are approximately of the right order

of growth. Indeed, no condition of the form

b
|a (z)|< xK

 1 + , i,k=l,...,n, |z| < 1, e > 0,
(1 |z|

can possibly imply ordinary disconjugacy of (1) in |z| < 1,

however small the coefficients b., may be (if there exist two

distinct indices such ttoat b.,b . > o) . This follows from a
IK Xl

result of M. Lavie [4, Theorem 5] stating that

|a i k(z)a k i(z) | < 2 2'
 i'k = 1} ' ' ''n' i * k' lzl < 1»

is a necessary condition for disconjugacy of (1) in |z| < 1.

We also remark that the case /8 = 1 of (38), i.e., h (x) = 1,

was known previously [7, Theorem 2], The discussion there shows

also that the constant log 2 appearing on the right-hand side

of (34), and hence also of (24), is sharp (for z -absolute dis-
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conjugacy). For ordinary disconjugacy the former example shows

again that log 2 cannot be replaced by any number larger than

TT/4.

Relying on former results [1, ̂ 2], we conclude with an

application to n-th order differential equations. We repeat

here that strong disconjugacy of the equation

(40) y(n) (z) + an_1(z)y
(n-1) (z) +...+ ao(z)y(z) = 0

in a domain D implies both disconjugacy and disfocality of

(40) in D. Using that 0-absolute disconjugacy of the system

(1), corresponding to the equation (40), in the unit disk implies

strong disconjugacy of (40) there, we obtain from Corollary 1 the

following result.

Corollary 2. Let the analytic functions a.(z), £=0,...,n-l,

be regular in | z | < 1. Let the function h (x) be_ continuous

in 0 <̂  x < 1 and assume that

(41) h(x) >_ 1, 0 < x < ' 1,

and that

r1 i
(32) h(x)dx = 4 < co .

Jo P
Assume that there exist constants hf, I = 0,...,n - 1, such that

(33') \ai(z) I < b ^ h ( | z D . * = 0, ...,n - 1, |z| < 1.

If
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(34') bn_1(i3 log 2 )
n ~ 1 + \_2(P log 2) n~2 +...+ b Q < (B log 2)n,

then the differential equation (40) is strong disconjugate in

|z| < 1.

Using again (38), we obtain that

(39') | a. (z) | < i R , I = 0,...,n - 1, |z| < 1, 0 < ]8 < 1,
1 (1 - Iz l ) 1 " ^

and the inequality (34') imply strong disconjugacy of the equation

(40) in |z| < 1. These uniform growth conditions are probably

too restringent. In view of necessary conditions, recently

obtained by Lavie, both for disconjugacy [5, Theorem 2] and for

disfocality [4, Theorem 7] of the equation (40) in |z| < 1,

better sufficient conditions, perhaps of the form

\at(z) | < n I B> l = °>--->n ~ 1» |z| < 1, 0 < 0,

(1 - lz|)
may be expected to hold.
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