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(CP) Find U € V = {w : ft —• R2; w is continuous and piecewise linear} such that:

E(U)=b£E{w) (2.4)

and
U{x) = i ( F 0 + RFl)x x € 5 0 (2.5)

where E{.) is defined as (2.1) with W defined in (2.3).

3- SQUARE MESH

In this section we will investigate some numerical problems which occur when a uniform
square mesh is used to discretize the problem (CP) in section 2.

Denote by Uh : ft —• R2 a continuous piecewise bilinear vector valued function on a
uniform square mesh ft* of size h = l /n ,n € N, where

ilh = {Xij € R2 : xy = (ihjh),ij = 0, l ,2 , . . . ,n} .

Qij denotes the square element with corners Xy,xt+i$j,x,+ij+i and xf-j+i. Since Uh is
bilinear in each element fiy, the energy density function W(VUh) in (2.3) is an 8th degree
polynomial in x. To reduce the computational cost of integration of such a high degree
polynomial, the usual approach is to compute the energy E(Uh) approximately by calculating
VUh at the center of fly. This constant matrix, denoted by V[/£, can be obtained also by
averaging directional gradients of Uh on the edges of each element fly. We denote this
approximated energy by Eh(Uh):

Ek(Uh) = £ W{Wlj) x h2 (3.1)

where W is defined in (2.3).

Now we consider the following discretized problem:

(DP) Find Uh € Vh = {w : ft -* R2; w is continuous in ft and bilinear in fttj,

i , j = 0,1,...,n} such that:

2?A(t/fc) = winfhi?fc(w) (3.2)

and
Uh(x) = i(F0 + RF^x x € dn (3.3)

where Ek(.) is defined in (3.1).
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Using the boundary condition (2.5), if E(U) is relatively small we expect the gradient
distribution of U to have the structure illustrated in Figure 1. In the discretized problem
with the square mesh, the best numerical result to (DP) we can expect is a staircase structure
illustrated in Figure 2. The number of diagonal bands observed should be dependent on the
mesh size and should increase as the mesh is refined.

*

Figure 1 Figure 2

a = 5,/? = 1,*! = 10,fc2 = 3,fc3 = 10,A = 1/32
Eh(U

h) = 4.81, E(Uh) = 598.3

Figure 3

Figure 3 plots a computed gradient distribution (projected onto energy wells) of Uh

obtained by minimizing the energy Eh(Uh) in (DP). White colored squares denote well Fo

and black squares denote well RF\. Intermediate shades measure closeness to the wells.

While the solution depicted in Figure 3 appears reasonable, it is in fact a representation
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of a numerical artifact. To see this we can compute the exact energy E(.) for the bilinear
function Uh by using high order Gauss quadrature. We find that E(Uh) is not small at all.
It is only Eh(U

h) that is (relatively) small.

To explain this phenomenon, consider a bilinear vector valued function Uh = I , I 1

defined on an element £2,j. The energy function E(Uh) only depends on VUh = I Ux Uy J,

where each entry is a linear function since Uh is bilinear. On the element n t J , u and v
each have four (dependent) corner values which uniquely determine the bilinear function
Uh. In the energy Eh(Uh), VUh is approximated by its value at the center of the element.
Alternatively this matrix can be computed by averaging the horizontal and vertical slopes
on the boundary dilij since all entries in it are linear. This approximate gradient matrix,
denoted by V£/fc, does not change if Uh is symmetrically bent along a diagonal line of the
square. For instance, if u equals t*i, 112,1/3,1*4 on four corners over this square element (see
Figure 4), then ux is approximated by tZ7 = §(tt2][tt* + *a^tt1) and uy is approximated by
— = l^m-tt] + ti8^t*2). If ui and t/3 are simultaneously replaced by U\ +1 and tt3 + 1 , neither
ux nor uy are affected. This means that the skewing ('bending' along diagonals of squares)
of Uh does not affect Ek(Uh) at all since Eh(Uh) only involves VUh. The microstructure in
the Figure 3 was obtained in this way. Thus while Eh(Uh) for this example is 4.81, the exact
energy E(.) for the bilinear function Uh is 598.3. Figure 5 plots u(x,y) over part of ft. The
skewing is clear in this figure.

u(x,y)

Strict linear function Skewing

Figure 4
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Figure 5

The microstructure orientation is not the reason for the skewing. The skewing is gen-
erated by the method in which we compute Eh{Uh). If we rotate the domain by 45° to
align the mesh with the normal n the effect of skewing can be more serious. For instance,

letting Q = I . J ^ 1 , we expect to get a Uh which has roughly the following
V f in4 °°S4 )

microstructure (ignoring boundary layers) :

VU«RFXQ

Figure 6

Now consider Figures 7 and 8. In Figure 7 we plot u(x,y) over part of Q adjacent to the
boundary y = 0. Figure 8 is the projection of.VUh onto the energy wells. In this figure,
there should be a 'boundary layer' near y = 0, but it does not form. These figures suggest
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that the skewing allows VUh to be in a well, even though Uh itself is not likely to be a good
minimizer.

Figure 7

a = 5 ,0 = 1, Jfcj = 10, ik2 = 3, fc3 = 10, /i = 1/32
£^(1/*) = 0.501 ^(t/11) = 140.64

Figure 8

To check this hypothesis we introduced a penalty term in the energy function which
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penalizes skewing. It is as follows (restricted to one element):

p[(u2 - ui) - (u3 - u4)]
2 + p[(v2 - vi) - (t;3 -

where p is a constant weight. Minimizing Ek(Uh)+ penalty term produces a solution without
noticeable skewing. Next we formed bilinear vector fields Uh with the computed values and
computed the exact energy E(Uh) of these fields. The results are as follows

Exact E{Uh)
Approx. Eh{Uh)

Standard Approach
140.64
0.501

Penalized Approach
18.33
1.13

The energy E(Uh) of the skewed solution is relatively large, indicating that skewing
exacts a severe energy penalty, even though the discretized energy suggests that the skewed
solution is better.

Figure 9 shows the microstructure of the penalized solution. The microstructure is similar
to that of the skewed solution (Figure 8) except it exhibits a 'boundary layer'. Analogous
with Figure 7, Figure 10 plots the penalized u(x,y) over the same region in n. It is indeed
unskewed except near the boundary.

X;

a = 5, $ = 1, = 10, k2 = 3, *3 = 10, W - 1000, h = 1/32
Eh(Uh) = 1.13

Figure 9
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Figure 10

We emphasize that we are not advocating the penalty technique as a general approach.
It is merely a device to obtain an unskewed solution to compare with the skewed solution
for the particular test problem considered here.

4. TRIANGULAR MESH

In this section we will discuss the use of uniform triangular meshes for discretizing (2.1).

Consider a triangulation of Q:
Qh = {xy € R2 : xy = (ihjh),i,j = 0, l ,2 , . . . ,n} .

In Figure 11 mesh A, let f/Ty denote the upper triangle with vertices x t+ij, x,-+ij+i, xtJ+i
and LTij denote the lower triangle with vertices x t + 1 j , Xy, x,-j+i. Let Uh be a continuous
piecewise linear vector valued function defined on flh. In this case the constant gradient
matrix VUh can be computed exactly on each triangular element of (lh.

We solve the following discretized problem on Qh:

(DP-T) Find Uh € V* = {w : il —> R2; w is continuous in fi and linear in

lij and LTijViJ) such that:

E{Uh) = inf E(w) (4.1)
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and

where E(.) is defined in (2.1).

x € (4.2)

Mesh A MeshB

Figure 11

a = 5,0 = 1, *i = 10, k2 = 3, k3 = 10. Mesh size: 32x32

E(Uh) = 5.92 E{Uh) = 13.56

Figure 12 Figure 13

With Mesh A we obtained the expected microstructure (Figure 12) by minimizing E(Uh)
in (DP-T). Notice that the normal n = (1, l) t between Fo and RF\ matches the orientation
of Mesh A so that the alternating layers of Uh aligned with mesh lines are perpendicular to
n.

A difficulty arises if a triangular mesh whose orientation does not fit the expected mi-



Numerical Method* for a Nonconvex Optimization Problem Modeling M»rten«itic Ph**e Tr*n»ition* 1 2

crostructure is used in the discretization. Mesh B illustrated in Figure 11 is an example
of such case. If we try to solve (DP-T) by using this mesh, a continuous piecewise linear
function Uh with a small energy is found. But this Uh displays a fine structure which has
gradient layers aligned with the mesh instead of being perpendicular to the normal n.

Figure 13 plots the gradient structure of a such example. In this picture the gradient of
Uh forms alternating layers fitting the mesh with two matrices Go and Gi, which are totally
different from Fo and RF\. But Go and G\ are very close to the two energy wells SO2F0 and
SO2F1 respectively, in the sense that W(Go) and W(G\) are very close to zero and hence
the energy E(Uh) is relatively small. In fact, Go is very close to RF0 and Gi is very close to
Fi. We also find that

and

Go — G\ = b ® m, where m= ( - 1 .

In other words, Go and G\ satisfy the boundary condition in an average sense and are rank-1
connected with the normal m = (1,—I)1. An interesting fact is that RFo and F\ are also
on the energy wells and satisfy the rank-1 connection with the normal m, but their average
does not match the boundary condition. Figure 14 demonstrates these relationships. Circles
denote energy wells and lines between matrices represent rank-1 connections.

Gi

(F0*RFi)/2

Figure 14

The question now is whether a minimizing sequence to the problem (DP-T) can be
constructed using Mesh B. To answer this question, we form the following table which lists
minimized energy of functions Uh computed with same initial and boundary conditions in
Mesh A and Mesh B for different mesh sizes.
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Mesh Size

8
16
24
32
48
64
96
128
256

Mesh A
Energy E(Uh)

28.20
12.45
7.98
5.92
3.88
2.92
1.96
1.45
0.73

Rate of
Convergence

1.18
1.10
1.04
1.04
0.98
0.98
1.06
0.98

MeshB
Energy E(Uh)

33.47
18.94
15.22
13.56
12.13
11.46
10.82
10.52
10.03

Rate of
Convergence

1.36
1.26
1.22
1.11
1.08
1.06
1.00
1.16

First consider Mesh A. Since the orientation of this mesh matches the normal of the
rank-1 connection between Fo and RF\, Uh can be made from layers with gradient matrices
equal to them alternately such that the energy is close to zero in the interior elements of ft\
So the energy E(Uh) can be estimated by the total area of all boundary elements multiplied
by a constant C. This gives an upper bound for the energy density function W(Uh) on these
element, so that

E{Uh)*4nx(h2/2)xC =

The second and third columns of the table show that the minimized energy of Uh indeed
approaches zero approximately linearly in h. Thus Uh forms a minimizing sequence as h
approaches zero in this case. These functions all display the kind of microstructures shown
in Figure 12.

On the other hand when Mesh B is used, the minimized energy E(Uh) is not found
to converge to zero as the mesh is refined. Hence the functions Uh computed in Mesh
B in the table do not seem to be forming a minimizing sequence, although the gradient
distributions of these functions all display the fine structures similar to the one in Figure
13. In these structures the gradients of the functions equal Go and G\ alternately in the
fine bands. As stated earlier, Go and G\ seem in practice to satisfy the boundary conditions
in an average sense. Adopting this as a hypothesis, we are able to predict a limiting value
for the energies appearing in the table. This calculation is in Appendix A and gives the
limiting value 9.624747 which is reasonably close to the extrapolation of those energies in
the fourth column of the table. The convergence rates in the last column are calculated
from the differences between the energies and the above limiting value and they appear to
be linear in h. This supports our hypothesis and may suggest computational techniques to
eliminate these solutions from coarse mesh calculations.

The coarseness and orientation of Mesh B are the main reasons for occurrence of the
incorrect gradient structures. However, a minimizing sequence can still be constructed in
this kind of mesh provided it is sufficiently fine. To illustrate this, Figure 15 plots the
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distribution of VUh on a 256x256 mesh where E(Uh) = 8.08. The significance of this value
is that it is lower than the minimum energy to which the function with gradients Go and G\
in the alternating bands converges in Mesh B.

a = 5,0 = 1, fci = 10, k2 = 3, fa = 10. Mesh size: 256x256
E(Uh) = 8.08 Mesh B

Figure 15

In this kind of structure, the interface between any two bands contributes relatively large
amounts of energy because of the orientation of the mesh. Since narrower bands generate
more interfaces but with less energy in the boundary strip and wider bands involve more
energy in the boundary strip but use fewer interfaces, there exists a optimal width of bands
in this structure. In Appendix B, it is shown that if the width of the bands is O(\A), then
the energy approaches zero like yh.

An alternative way to solve the orientation problem is to use the more symmetric trian-
gular mesh illustrated in Figure 16. This mesh permits more freedom of orientation than
the two meshes in Figure 11. Using this mesh, we can get four kinds of microstructures with
four different normals. Figure 17 shows four possible microstructures in this mesh. Some
computed microstructures are shown in Figure 18. In fact a simple layered microstructure
of the types shown here with arbitrary orientation can be computed by a suitable choice of
the ratio between the mesh sizes of the x-axis and y-axis.
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I

a = = 10, Jfe2 = 3,Jb3 = 10, h = 1/32.

Figure 18

5 . MULTI VARIANTS

In this section we will use the symmetric type of mesh discussed in section 4 to compute
microstructures which involve more than two variants from two energy wells.
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We first consider a three variants case. The two matrices Fo and RF\ defined in section
2 are chosen as the first two variants. Then we look for a rotation Q € SO2 such that QF0

and (Fo + RFi)/2 are rank-1 connected:

(5.1)

QFQ is then chosen as the third variant. See Figure 19.

Solving the equation (5.1) gives :

/ c o s * - s i n * \Q j m

where
^ ( a - fi) (a - fi)2 _

Boundary
Condition

(QFo RFi)/2)/2

Figure 19

If the boundary condition is defined by

U(x) = \{QF0 + i(F0 + RFr))x x € ,

we expect a microstructure of the form shown in Figure 20.

Using a = 5 and 0 = 1, we get n = (1,1)* and m = (1,-2)*, where n is the normal
between Fo and iLFi, and m is the normal between QFo and (Fo + RFi)/2. For convenience
we rotated the domain by 45° to let n = (1,0)' and m = (1,3)'. The mesh will fit these
normals if we use hx = 3/iy, where hx and hy are mesh sizes in the x and y directions. Our
computed solution is shown in Figure 21.
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Figure 20

a = 5 ,0 = 1, Jfci = 10, k2 = 3, k3 = 10. Mesh size: 32x96
E(Uh) = 9.41

Figure 21

In the four variants case, we make use of the following rank-1 relations:
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where Fo, Fi and R are as in the section 2, and

Then we use FO,RFUFU and RF0 as four variants. It follows that Fo and RF\ are rank-1
compatible with normal n i while F\ and RF0 are rank-1 compatible with normal 112. Now
we define the boundary condition by

U(x) = I(F0 + RFX4
RF0)x x €

We rotate the domain by 45° so that four variants appear along boundary evenly. Using
a suitable initial approximation we obtained a function with the microstructure shown in
Figure 22.

a = 5, p = 1, h = 10, k2 = 3, ib3 = 10. Mesh size: 64x64
E{Uh) = 5.69

Figure 22

In conclusion, while a triangular mesh avoids the skewing problems caused by square
mesh, its orientation can cause problems if it is not reasonably aligned with the desired
microstructure. A symmetric triangular mesh is a suitable mesh for microstructures with
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several orientations. An alternative way to overcome the mesh orientation problem is to
allow wide band microstructures since they can be constructed on any kind of triangular
mesh. But the mesh needs to be very fine to insure a such structure, and the fineness is not
known a priori.

Appendix A

In this appendix we calculate matrices Go and G\ which are discussed in section 4. The
same result can also be derived by the asymptotic expansions [14].

Let B be a given 2x2 constant matrix, which represents the prescribed boundary condition
in the context of section 4. Consider two 2x2 constant matrices Go and G\ which are rank-1

connected with normal m = (-1,1)* and satisfy (Go + Gi)/2 = B. Let B = ( " ,12 ),
\ &21 &22 /

and Go = ( Ux Uy ) . Then it follows that\vx vy )

l~\2b2l-vx 2b22-vy ) •

Because of the rank-1 connection between Go and Gi, we also have

for some vector a = (^1,02)*. This implies

(26n - t/x) - ux = -((2612 - uy) - uy)

- vx) - vx = -((2622 - vy) - vy)

or

uy = frii + 612 - ux

Vy = 621 + &22 - Vx

Therefore Go and G\ depend only on two independent variables ux and vx:

r _ ( ux bn + 612 - ux \ r - ( 2&n""Ux bl2""bn + Ux\
0 "" V vx 621 + &22 - t;, ; ' Ul "" V 2621 - vx 622 - 621 + vx ) '

A continuous piecewise linear vector valued function Uh can be constructed in Mesh B
to have the uniform gradient distribution illustrated in Figure 23, where VUh equals Go and
G\ in alternate bands. This can be done because Go and G\ are rank-1 connected with the
compatible normal and satisfy the boundary condition in an average sense.



Numeric*) Method* for * Noneonves Optimisation Problem Modeling Mtrteniitic Phase Transitions 21

Figure 23

Let T = W(G0) + W(Gl), where W(.) is defined in section 2. Since Go and Gx are
constant matrices, the energy E(.) for I/* in each square is T times the area of each triangle,
h2/2. Thus the total energy E{Uh) in the entire domain ft equals T/2. Clearly T also
depends on ux and vx. So the energy E(Uh) can be minimized by solving the system

dT
dux

dT
dvx

= 0

= 0.

Using a = 5,£ = l,fci = 10,fc2 = 3, and fc3 = 10 in W(.), we found that the minimum
value of E(Uh) equals 9.624747 and it is achieved when

r / 0.4726 1.1940 \ r _ ( 2.194 -0.5274 \
0 V -1-1303 1.8756 ) ' u*~y -0.3604 1.1058 ) '

Numerically Go and G\ appear to correspond to RF0 and Fx in Figure 14.

- ( °-7

"" V - 0 .
7 4 5 4 L 4 9 0 7

6667 1.6667
2.2360 0.0000
0.0000 1.0000

Appendix B

This appendix gives an estimate of the optimal width of the bands in the wide band
microstructure shown in Figure 15. For more general results see [13].

We want to construct a function in Mesh B (see Figure 11 in section 4) whose gradient
distribution has the wide band structure illustrated in Figure 24. Since Fo and RFi are not
rank-1 connected with normal n = (1, — 1)*, interfaces with non zero energy must be formed
to separate them. The shaded area in Figure 24 indicates a relatively thick boundary strip in
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which the gradients are not expected to be on either energy well. This is because a function
with one constant gradient matrix in one wide band can not locally match the boundary
condition in a way that some components of the gradient of the function approach infinity
as the mesh size h goes to zero. So we expect the boundary strip to form in order to reduce
the high energy caused by this mismatch.

The construction of this function is as follows. First we make a function with gradients
being Fo and RFi alternating in the wide bands. Then the boundary layer of the function
within a given distance of the boundary is replaced by a piecewise linear function extended
smoothly to the boundary. The energy of this function concentrates in two parts: interfaces
and boundary layer. Let 6 be the thickness of the boundary layer, let w be the width of
bands in the horizontal direction and define n = l/h.

l
b

T

Boundary layer
with high energy

Interface
with high energy

Figure 24

The energy accounting is as follows:

Interface Energy Interfaces are elements separating Fo and RF\ bands, hence the
gradients of the function in the interface elements are constant. So the energy on each
interface element only depends on its area h2/2. The total number of elements in all interfaces
is O(n/w). Therefore the total energy of all interfaces Ei is:

Boundary Layer Energy Let us look at one typical piece of the boundary layer which
connects a Fo band to the bottom boundary. See Figure 25.



Numerical Methods for » Nonconvex Optimisation Problem Modeling kUrteniitic PkAie Transition* 23

Fo RFi

w

Figure 25

Assume the gradient of the function equals UX Uy\

VX Vy ) '
Clearly ux and vx are bounded,

but uy and vy depend on the variable x. By construction, uy = O(x/b) and vy = O(x/6),
where 6 is the thickness of the boundary layer. Using the energy function defined in section
2, we have

Altogether there are O(l/w) such pieces. So the total contribution from the boundary layer
EB i s :

EB = Epitct x 0(1) = 0{% + ^ + 6).
w

The optimal choice of w and 6 is that w = 0(6), so that the interface energy and boundary
energy are balanced. Then

h
Ei- EB=> 0(—) = 0(w) =* w = O(Vh).

In this case, the total energy is 0{y/h). The conclusion is that if both the width of bands
and the thickness of the boundary layer are O(y/h), then the total energy converges to zero
like y/h.
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