
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Cartesian Monoids

On Cartesian Monoids
b y

Rick Statman
April 1996

Introduction
We first learned about Cartesian monoids from
Dana Scott and Peter Freyd. Their connection to the
simply typed lambda calculus with surjective
pairing and the domain equation D = DxD is rather
transparent and forms the basis for [7]. In addition,
since these monoids always contain a copy of the
Freyd-Heller group (see below) there is a further
connection to lambda calculus ([6],[10]) . Finally,
such monoids come up in the study of type algebras
especially concerning Curry's subject reduction
theorem ([8],[9]). In short, Cartesian monoids are
important for typed lambda calculus.
It is the purpose of this note to collect in one
place our observations on Cartesian monoids
especially on the free Cartesian monoid. In
particular ,we shall solve the unification and
matching problems negatively for this structure
below. Our approach to treat the free
Cartesian monoid as an algebraic structure of
the sort we learned about in school. This is not
to say that we have anything against the Category
Theory approach; it is only to say that we are not

C28R competent to carry out such an approach.
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1.Cartesian Monoids
A Cartesian monoid is a structure C = (M,*,I,L,R,<>)
where (M,*,I) is a monoid with LeM and ReM,
<> : MA2->M, and
L*<x,y> = x
R*<x,y> = y
<x,y>*z = <x*z,y*z>
<L,R> = I.
Cartesian monoids were first introduced by Dana
Scott in [5],and independently by J.Lambek in [3].
The free Cartesian monoid on zero generators is here
denoted F. The members of F are denoted by
expressions built up from I,L,and R by * and <>.

2.Normal Forms
Each expression can be re-written uniquely in a
normal form consisting of a binary
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tree,whose nodes correspond to applications of <>,with
strings of L's and R's, joined by
*,at its leaves (here I counts as the empty string) and
with no subexpression of the form
<L*x,R*x>. This is accomplished by considering the
equivalent rewrite system
L*<x,y> —> x
R*<x,y> —> y
<x,y>*z —> <x*z,y*z>
<L*x,R*x> --> x
<L,R> --> I
I*x --> x
x*I --> x
modulo the associativity axioms.
This rewrite system is terminating because we can
interpert it in the integers with
rewrites decreasing as follows
L=R=I=2
x*y=x multiplied by y
<x,y>= x+y+1.
The rewrite system is obviously weakly
Church-Rosser therefore it is Church-Rosser.
The binary tree of a given expression is called its A.

3.Homomorphisms
For any two members of F,f and g, define fAg:M~>M by
fAg(x)= f*x*g (i.e.conjugation).
Given any two distinct normal forms hi and h2 there
exist f and g such that fAg(hl)=
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L and fAg(h2)=R. This can be seen as follows. We can
first assume that hi and h2 have
the same A by expansions of the- form x <— <L*x,R*x>
or I <—<L,R>. Indeed in this way normal expressions
can be transformed into various shapes such as one
where the binary tree is complete or all strings have
the same length. Thus there is an f such that
f*hl =/= f*h2 ,and, both of these reduce to <>-free
strings of L's and R's. We can also
assume that neither of these strings is a suffix of the
other since f could be replaced
by either L*f or R*f without loss.Thus there are
<>-free h3 and h4 and integers k
and 1 such that
f*hl*<I,I>Ak*<R,L>Al = h3*L and
f*h2*<I,I>Ak*<R,L>Al = h4*R and
there exist integers n and m such that
h3*L*<<I,I>An*L,<I,I>Am*R> = L and
h4*R*<<I,I>An*L,<I,I>Am*R> = R. Thus we can set
g = <I,b>Ak*<R,L>Al*«I,L>An*L,<I,I>Am*R>.
We conclude that there are no non-trivial
homomorphisms of F.

4.Finite Generation of F
The monoid F is finitely generated. We see this as
follows. Let X = {<X*L,<Y*L*R,Z*R*R» : X,Y,Z 8 {L,R,I}}
U {<I,<I,I»}. Now for any f,g,h o-free strings of L's
and R's the element <f,<g,h» can be generated from
X by a simple recursive proceedure. Now say that
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f is a derivation if it has the form «...<fl,f2>...>,fn>
for n>2 such that
fl=L
f2=R
f3=I and for j>3
fj= <fk,fl> for some k,l < j or

= L*fk for some k<j or
= R*fk for some k<j.

It is easy to see that every derivation can be
generated from £ using the previous observation.
It follows that all of F is generated from Z.
Any Cartesian monoid which is finitely
generated by fl,...,fn is generated by two
elements eO = <R,<fl,<...<fn,R>...»> and el = L.
For F we denote eO by E.

5.The Group
Let H be the submonoid of right invertible
elements and let G be the group of (doubly)
invertible elements of F. Clearly L and R
belong to H. If we begin with f in normal form
then it is easy to see that
feH <=> f can be expanded so that all of its

strings at the leaves have the same
length and none occurs more than

once
f has left inverse <=> f can be expanded so that

all of its strings have the
same length n and each of
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2An strings of this length
actually occur

feG <=> f can be expanded so that all of its
strings have the same length n and
each of the 2An strings of this length

occurs exactly once.
It follows that H = L*G = R*G. Let
Bn=<L,<...<L*RAn-l,<L*L*RAn,<R*L*RAn,RAn+l>»...>
C0=<R,L>
Cn+1 =<L,<.. .<L*RAn-1 <L*RAn+1 ,<L*RAn,RAn+2»>...
Clearly, both Bn and Cn are invertible and the
set of all of them generate G. Indeed observe that
if n<m then
Bn*Bm=Bm+l*Bn.
The group generated by the Bn alone is
(anti)isomorphic to the Freyd-Heller group [1].
It is generated by BO and Bl as a group. Thus it
is easy to see that G is generated by BO,B1,CO,
and Cl as a group.

6.A Wreath Product
Let J be the monoid of all number theoretic
functions of finite support so that s:N -> N
belongs to J if there exists n such that for m>n
s(m) = m. Suppose that t:N -> F so that for m>k
t(m) = I and s and n are as above; let l=max{n,k},
then the pair (t,s) can be represented by
<t(O)*L*RAs(O),<...<t(l)*L*RAs(l),RAl+l>...».
This representation gives an embedding of the
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wreath product of F with J into F (this should
be compared to [1]T6).
7. Representation
In [1] the authors give a faithful representation
of the Freyd-Heller group in the continuous
order preserving permutations of the real
numbers. Here we will generalize a modified
such representation to F. Let CS be Cantor
space ,here construed as the product of {0,1},
endowed with the discrete topology, along N.
The properties of CS are very well known; in
particular, CS is a totally disconnected compact
Hausdorf space. Among the continuous open
mappings A : CS -> CS are the shift operators
Z and O defined by
Z(f)(0) = 0 O(f)(0) = 1
Z(f)(n+1) = f(n) O(f)(n+1)= f(n)
We simply write Of for Z(f) and If for O(f). If
C is a collection of mappings A : CS -> CS we let
piecewise C be the closure of C under the
following kind of definition of A by cases from
A1 and A"

A(0f) = A'(f)
A(lf) = A"(f).

Indeed if all C mappings are continuous and
open then so are all piecewise C mappings. The
piecewise shift operators A can be explicitly
characterized by the following condition:
Whenever A(f) = g there exists basic open
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neighborhoods (f(O),...,f(r)) and (g(0),...,g(s))
containing resp f and g such that for any t>s
g(t) = f(t-s+r). We define a Cartesian monoid
structure on the piecewise shift operators as
follows;
1 = 1
L = Z
R = O
x*y = the composition z l-> y(x(z))

x(f) if f(0) = 0
<x,y>(f) =

y(f)iff(O)= 1.
It is not difficult to see that this (^artesian
monoid is isomorphic to F. Now let us order the
members of CS lexicographically and let G+ be
the order preserving members of G (under this
isomorphism). The G+ is precisely the Freyd-
Heller group.

8.The Polynomial Monoid F[x]
All of the principal results mentioned above
for F hold as well for F[x]. More generally, if
f(x) & g(x) are distinct normal expressions then
there exists an heF such that f(h) =/= g(h).
Indeed, if f(xl,...,xn) and g(xl,...,xn)
are distinct normal expressions in F[xl,...,xn]
then we shall find hl,...,hn such that f(hl,...,hn)
=/= g(hl,...,hn). The construction takes two
steps.In the first step n may be increased.We
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remove subexpressions of the form L*xi*h and
R*xi*h (for h possibly empty) by making
substitutions xi <- <y,z> and re-normalizing.It
is easy to see that this process terminates and
that the original f and g are recoverable by the
substitutions y <- L*xi and z <- R*xi. Thus we
can assume that the first step is completed and f
and g are normal,distinct, and have no
subexpressions of the above forms. Indeed
expressions like this can be recursively
generated as a string of xi's followed by a
string of L's and R's or a string of xi's followed
by a single < > of expressions of the same form.
Given such an expression e, if we evaluate each
xi,L, and R as 1,<> as max, and * as + ,then the
result is a positive integer #e (the "length of
the longest path in e").Let m=max{#f,#g}+l,and
k=m(m+n+l).For each positive integer i set hi=

«RAk,<.. .<RAk,I>.. » ,R A k>
\ /
m+i

We shall show that both f(xl,...,xn) and
g(xl,...,xn) are reconstructible from the normal
forms of f(hl,...,hn) and g(hl,...,hn) resp. and
thus f(hl,...,hn)=/=g(hl,...,hn). Toward this end
note that if t is a normal expression for a
member of F and #t<k then hi*t = e =

df
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m+i
where t' is <>-free and #e<#t + m+n+2.Now
consider either f(hl,...,hn) or g(hl,..,hn).The
normal form of this expression can be computed
recursively bottom-up as in the computation of
e from hi*t above.Observe that no subexpression
of the form <L*h,R*h> is introduced since each t'
begins with R. In order to reconstruct, say,
f(xl,...,xn) proceed top-down to find subterms e
as above with t1 o-free. By choice of m such a
subterm is not the "trace" ([2]pg 18) of a
subterm of f(hl,...,hn) disjoint from the hi.
Such subterms cannot overlap because their
left components have <>. Finally, consider any
of the pairs <> in e. Such a pair cannot be the
trace of a pair in f(hl,...,hn) disjoint from the
hi since the left component of hi contains <>.
Thus e = hi*t as above.

9.Integers in F
Let Int = { RAn : n=0,l,... } with n = RAn.
(i) feint <=> f*R = R*f

Indeed if f*R=R*f then, taking f in normal
form ,f cannot have a non trivial A. Thus f is
a string of L's and R's.
(ii) feF*L <=> f*<L,L> = f

feF*R <=> f*<R,R> = f
These can be proved by induction on normal
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forms.
(iii)We say that f is an n-sequence if f has the
form <fO*L,<fl*L,<...<fn-l*L,R>...>>>. For feH we
have f is an n-sequence <=> RAn*f = f. This can
be easily seen from paragraph (5).
(iv)Define
Copy(f,n) =
<f*L,<f*R*L,<. .<f*RAn-1 *L,R>.. .
Iterate(f,n) =
<fAn*L,<fAn-1 *L*R,<.. .<f*L*RAn-1 ,RAn>.. .
These are related in the following way.
g=Copy(f,n) <=> g is an n-sequence &

g = R*g*«L,L>,f*RAn-l*L,R»
g=Iterate(f,n) <=> g = Copy(f*L)*<I,RAn>*R*g*<I,<

f*L*RAn-l,RAn» .
Moreover, if feint then Copy(f*L,n)eH and
Iterate(f,n)e H.Finally,

g=fAn <=> g = L*Iterate(f,n)*<I,I>.
Now it follows from paragraph (5) and (i),(ii),
and (iii) above that for any Diophantine set
S of intgers there exists an F polynomial f(x,y)
and geF such that
neS <=> there exists heF such that f(n,h)=g.
Briefly, this is because for f,geH
f=g <=> there exists h,t such that

<f,h>*t = I & t*<f,h> = I &
<g,h>*t = I & t*<g,h> = I.

Thus by the famous theorem of Matiyasevich
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([4]) the matching problem for F is unsolvable.
With a bit more work it can be shown that every
RE subset of H is the set of projections of such a
matching problem. We do not believe that this
extends to the whole of F. In particular, we
conjecture that the set of simplicies { <I,I>An I n
a natural no. } is not the projection of a
matching problem. It is not hard to see that if
this set is such a projection then every RE
subset of F is as well.

lO.Finitely Generated Submonoids
We shall next show that any finitely generated
submonoid of F is the set of projections of an F
unification problem.This requires some definitions.
First we want to characterize n- sequences for f
not in H. Let Copy(n) = Copy(L,n),
then
f = Copy(n) <=> RAn*f = R & f = R*f*«L,L>,<L*RAn-l*L,

R »
and
f is an n-sequence <=> RAn*f = R &

Copy(n)*<I,L*RAn-l>*f = Copy(n)*<I,L*RAn-l>*f*<L,L>
Consider the first biconditional.
The direction <= can be seen as follows.If RAn*f = R
we can write f = <fl,<f2,<...<fn,R>...», and we can
compute
R*f*«L,L>,<L*RAn-1 *L,R»=
<f2*«L,L>,<L*RAn-1 *L,R>>,<...<m*<<L,L>,<L*RAn-l *L,R»
,<L*RAn-l*L,R»...»
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If this = f then for i=l,...,n-l fi = fi+l*«L,L>,<L*
R A n- l*L,R» and fn= L*RAn-l*L. Thus fi= L*RAi-l*L
and f = Copy(n). The direction => is obvious.
The second biconditional is proved similarly.As
above

g = fAn <=> g = L*Iterate(f,n)*<I,I>.
If s:N --> N let Copy(f,s,n) =

<f*RAs(O)*L,<...<f*RAs(n-l)*L,R>...>>
so Copy(f,n) = Copy(f,identity,n).In addition, let
Comp(f,s,n) =
<L*f*RAs(O)*L,<...<L*RAn-l*f*RAs(n-l)*L,R>...».
The point of these definitions is that Comp can
be expressed in terms of Copy and Comp effects
multi-ary compositions. Indeed for f = <fO,<...<
fn - l ,R> . .» and g = <gO,<...<gn-l,R>...» define
f#g = <fo*gO,<...<fn-l*gn-l,R>...». Then f#g=
Comp(f*L,identity,n)*<I,RAn>*g.
(i) There exists s such that g = Copy(I,s,n) iff

g is an n-sequence & g*<R,R> = Copy(R*L,identity,
n)*<I,RAn>*g

For <=, if g = <gO*L,<...<gn-l*L,R>...» we compute
Copy(R*L,identity,n)*<I,RAn>*g = <R*gO,<...<R*gn-l,R>.

g*<R,R> = <gO*R,<...<gn-l*R,R>..»
and if these are equal we have for each i=0,...,n-l
R*gi=gi*R.Thus by paragraph 8 (i) there is an s
such that gi = RAs(i).
(ii)g = Comp(f,identity,n) iff there exist hl,h2,h3

such that
a) hi is an n-sequence
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b) h2 is an nA2-sequence
c) there exists an s such that h3 = Copy(I,s,n)
d) f =hl*<I,RAn*f>
e) h2 = RAn*h2*<<L,L>,hl*<RAn-l*L,R>>
f) h3 = R*h3*«I,I>An+l*L,<RA(nA2-l)*L,R»
g) g = Copy(L*L,identity,n)*<L,RAn>*h3*<h2,R>

For => suppose that f= <fO,<...<fn-l,fn>...».Let hl=
<fO*L,<...<fn-l*L,R>...» so a) and d) are satisfied.
Let h2 = <fO*L,<...<fn-l*L,<fO*R*L,<...<fAn-l*R*L,<...
<fO*RAn-l*L,<...<fn-l*RAn-l*L,R>...»...».
so b) and e) are satisfied. Finally, we put h3=
<L,<RAn+1 *L,<RA2n+2*L,<.. .<RA(nA2-1) *L,R>...
so c) is satisfied by the function s defined by
s(i)= i(n+l),and f) and g) are satisfied as well.
For <= it is easy to argue that hl,h2,and h3
satisfying a)-g) must be as above in =>.
(iii)There exists an s such that g=Comp(f,s,n) iff

there exists s such that g = Comp(f,identity,n)*
<Copy(I,s,n),R>.

Now suppose that fl,...,fk are given. We will express
membership in the submonoid generated by fl,...,
fk. Let Fit(n) = {f: f = <fs(l)*L,<...<fs(n)*L,R>...» for
some s:[l,n] ~> [l,k] }. We say that f is an n-
permutation if f = Copy(L,s,n) for some permutation
s:[0,n-l] —> [O,n-1]. It should be clear that
(iv)f is an n-permutation iff there exists s and m

such that f = Copy(L,s,n) and (f*<I,RAn>)Am = I.
(v) feFit(n) <=> there exist integers ml,...,mk such

that ml+...+mk=n and there exists g
such that g is an n-permutation and
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f = g*<I,RAn>*Copy(fl,zero,ml)*...*
Copy(fk,zero,mk)

Finally we conclude that f belongs to the submonoid
generated by f l,...,fk if and only if there is an n
such that there exists an n+1-sequence h and ge
Fit(n) with f = L*h*<I,R> & h=((g*<I,R>)#(R*h))*
<L,<I*L,R».In particular the members of the sub-
monoid generated by fl,...,fk are the projections
of solutions to the above unification problem.
When f 1 = L and f2 = R we write Bit(n) for Fit(n),
and "n-string" for "a <>-free string of L's and R's
of length n."

ll.Godel Numbering
We define Binary(f,g) <=> for some m, f=RAm and g is a
<>-free string of L's and R's such that if bi is defined
by

1 if the ith element of g is L
bi =

0 if the ith element of g is R
when g is read from right to left and i=O,l,...,n-l then

m= (bn-l)2An-l+...+(bl)2+b0.
We assign to each member of F a non-unique
Godel number as follows. Let f = e(il)*...*e(ik)
as in the last sentence of pargraph 2 and let
m be as above (in binary) such that bj = 0 <=>
ij = 0 and bj = 1 <=> ij = 1; then m is a Godel number of
f provided bn-l = l. We can do the
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same with F[x]. Every member of F(F[x]) has
a Godel number since L*<I,I> = I. The following are the
key facts.
(i)Binary(f,g) <=> there are integers m and n and

hl,h2,h3,h4,h5 such that
(l)hleBit(n)
(2)h2 is an n+1-sequence
(3)h3 is an n-sequence
(4)h4 is an n-sequence
(5)h5 is an n+1-sequence
(6)g = L*h2*<I,R>
(7)h2 = ((hl*<I,R>)#(R*h2))*<L,<I*L,R»
(8)L*RAn-l*h3 = R*L
(9)h3 = ((R*h3*<I,R>)#h3)*<L,<R*L,R»
(10)h3 = Copy(L*L,identity,n)*<I,RAn>*h4
(ll)Copy(I,zero,n) =

Copy(R*L,identity,n)*<I,RAn>*h4
(12)h5 =

((((h3*<I,R>)#h4)*<I,R>)#(R*h5))*<L,<I*L,R»
(13)f = L*h5*<I,I>
(ii)f is the Godel number of g <=> there are integers
n,m and elements gl,hl,h2,h3 such that
(l)f = RAm
(2)gl is an n-string
(3)hleBit(n)
(4)h2 is an n+1-string
(5)gl = L*h2*<I,R>
(6)h2 = ((hl*<I,R>)#(R*h2))*<L,<I*L,R»
(7)h3 = ((hl*<<L,E>,R>)#(R*h3))*<L,<I*L,R>>
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(8)g = L*h3*<I,I>
Let us prove fact (i) first.<=.Suppose that
hl,h2,h3,h4,and h5 are as in (l)-(13).Then hl =
<Xn-l*L,<....<X0*L,R>...» for Xie{L,R}, i=0...n-l
by(l) and h2 = <Xn-l*...*X0*L,<...<X0*L,R>...»
by (2) and (7).Thus g = Xn-l*...*X0 by (6).Now
h3 = <rn-l*L,<...<rl*L,<R*L,R>>...>> by (3) and (8).
By (9) ri+l=ri*ri for i=0...n-2. Thus h3 =
<RA(2A(n-l))*L,<...<RA2*L,<R*L,R»...». Hence by (4) and
(10) h4 =

so (h3*<I,R>)#h4 = <sn-l*L,<...<sO*L,R>...» where
RA(2Ai) if ri = L

si =
RA0 if ri = R.

Now by (5) and (12) h5 =
<sn-l*...*sO*L,<...<sO*L,R>...>>

Thus by (13) f = sn-l*...*sO=
(bn-l)2A(n-l)+...+(bl)2+b0

R
where the bi are as above.This completes the proof of
<=.For => use the hl,h2,h3,h4,and h5 as in <=.Finally
(ii) is proved like (i).
We conclude that the set of pairs (f,g) such that
f is the Godel number of g is the projection of the set
of solutions to a (3 variable) unification
problem. A similar result holds for F[x].
Combining this with paragraph 8 gives the following
theorem:
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Every RE subset of F is the projection of the
set of solutions to a unification problem.A
similar result holds for F[x].
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