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1. Introduction.

In the present paper we are concerned with linear

differential equations of the form

(1.1) y(n)(z) + qn_1(z)y
(n-1) (z) + ... + qo(z)y(z) = 0 ,

where the coefficients q.(z), j = O,...,n-1, are

assumed to be analytic in a given region R. In particular,

we shall be interested in the disconjugacy of such equations.

Equation (1.1) is said to be disconjugate in R, if the only

solution of (1.1) which vanishes at n (not necessarily

distinct) points of R is the trivial solution y(z) = 0.

In order to obtain sufficient conditions for disconjugacy

of equation (1.1) in a region R, we consider the implications

of the hypothesis that there exists a non-trivial solution

y(z) which vanishes at n points of R. In doing so, we shall

be led to the following question: Let f(z) be analytic in

the region R and vanish at n points of R. If I f ̂ n'(z)I < M ,

z e R, find upper bounds for |f^' (z) |, j = 0,...,n-l, z e R.
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The same question occurs in interpolation theory: Let

P(z) be analytic in the region R, and satisfy

|F^nMz) | £ M , z e R. Let p(z) be a polynomial of degree

at most n - 1, which coincides with F(z) at n points

of R, and denote by r(z) = F(z) - p(z) the remainder.

Clearly, r(z) vanishes at n points of R, and

|r(
n) (z) | = |F^

n' (z) | < M. . The problem of finding upper

bounds for \r^3' (z)\} j = 0 , ....,n-l, thus reduces to the

question stated above.

In section 2 we show that if R is a finite closed convex

region, and f(z) is analytic in R and vanishes at

ai e R, i = 1, ...,11, then upper bounds for | f ^ ( z ) | ,

j = 0, . ..,n-l, z e R, can be given in terms of

M = Max |f (C)I* C e R* a n d t n e distances |z - a.\,

i = 1,...,n.

In section 3 we obtain disconjugacy criteria for equation

(1.1) in a convex region, and upper bounds for the derivatives

to order (n - 1) of the remainder r(z) in the Lagrange

interpolation.

In section 4 we generalize the results of section 3.

Finally, in section 5, we consider the special case where the

convex region R is the unit disk.
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2. Bounds for the derivatives of a function with n zeros.

Theorem 1.

Let f (z) be_ analytic in a_ finite closed convex region

R> an<3 assume that f (z) vanishes at n (not necessarily

distinct) points a.,...ja of R. I_f_

(2.1) M. = Max |f(j) (C) |, j = 0, ...,n,
3

then, for z e R,

/A\ Mi I n-j
(2.2) | f a J ( z ) | < " ~ - £ ff lz " a i I* J =<>, . . . ,„_! ,

' 86Qn-j,n t=l t

where the summation in (2.2) is taken over the set Q . of
n-],n

all the increasing sequences s = (i,,...,i .) o_f n - j

integers 1 < i, < i o < ... < i . < n. Equality holds in (2.2), if
— j_ »̂ n —J ~~ "~~-w———— ————— _ _ _ _

n
(2.3) f(z) = c Tf (z - a.) , c = constant,

and arg (z - a.) = Q, i = l,...,n, , 0 <_ 8 < 2ir.
1 1 " ""

In particular for j = 0, (2.2) yields

(2.2)Q |f(z) | < JJS. ff |z - a j , z e R,
' i=l

and equality holds if f(z) is given by (2.3), while z and

a., i = l,,..,n, are arbitrary.

(If some of the a's coincide, say a,=a =...=a =a*, m < n

we assume that f(z) has a zero of multiplicity m at least at

a* € R- i.e. f(a*) = f' (a*) = ... = f(m"1)(a*) =0.)
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For the proof of Theorem 1, we require the following

lemma. (Cf. [5, Lemma 1])

Lemma 1.

If f (z) iss_ analytic in a_ region R and f (a) = 0, a e R,

then

(2.4)
(k)

a-z , . k+1 .-,(a-z) a
r k =

The integration in (2.4) may be_ carried out along any

curve in R joining the two points a and z.

In particular, if R i^ convex, then

(2.5) \

(k)

- k+1 Max , z € R, k = 0,1,..
Ce[a,z]

where [a,z] iŝ  the linear segment joining a and z.

(2.4) follows from the identity

Nk(z) -kl
j=0

f(a) = 0 implies that Nk(a) = 0, and since N k (z) = (a-z)kf

it follows that

N (z) = JZ(a-C)kf(k+1) (C)dC •

If R is a convex region, the integration on the right-

hand side of (2.4) may be carried out along the linear segment

[a,z] , and (2.5) follows in an obvious manner.

Proof of Theorem 1.

We prove the theorem by induction on n. If f(z) is

analytic in R and vanishes at a, e R, then clearly
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(2.6) |f (z) | < |z - a, | Max jf1 (0 |, z e R.
1 £eR

(This is the case k = 0, a = a, of (2.5) .) For n = 2, we

assume that f (z) vanishes at a.. and a and we set

(2.7) f(z) = (z - a2)g;L(z) .

It follows that g, (z) is analytic in R and g.. (a •) = 0.

(Note that this holds also if a, = a .) Therefore, according

to (2.6)

(2.6) ' |g. (z) | < |z - a | Max | g1 (£) | , z e R.
X X » j, X

Setting k = 1 and a - a_ in (2.5), we obtain

(2.8) \<3[(z) | < \ Max|f"(0 I = "J- , z e R.

(2.7), (2.6)' and (2.8) now imply that

| f ( z ) I < "T ff I2 " a i ' ' z e Ri

and

M_ 2
| f' (z) | = | (z-a2) g^ (z) + g± (z) | < — T | z - a i | , z e R.

Thus, (2.2) is established for n = 2.

Assume now that (2.2) has been established for n <_ m,

and let f(z) vanish at the points a,,...,a . of R. If

(2.7) ' f (z) = (z-

then gm(
z) is analytic in R and vanishes at a.,...,a

Hence, by our induction hypothesis



m-

(2.2)' | P ' l & I ^ |

j=O, . . . ,m-l, zeR.

In view of (2.7)', it follows by (2.5) that

*.

By ( 2 . 7 ) ' , ( 2 . 2 ) ' a n d ( 2 . 8 ) ' , we o b t a i n

m-j

n
m+l-j

(j-1) 1 y. «-["
s€Qm+l-j,m t=l

ff" | z - a . | , j = O , . . . , m , z e R.
1 o t
segm+l-jJm+l t=l

In the last step we made use of the following statement: If

s = (i1,.--,im+1_j) e Q m + 1_ j j m + 1 then, either im+1_. = m+1

and (i^...,^^) e Qm_jjin , or im+1_. < m+1 and then

(il'""inri-l-j) e Qm+l-j,m *

As the equality assertion is easily verified, this completes

the proof of Theorem 1.

We remark that inequality (2.21 is known. It can be

obtained from Hermite's formula for divided differences

(Cf. [9,p. 329], [3,Theorem 2]), or from the representation



J
Zl (a2-z2)

••a , (a -z J n •'an-1 v n n-1' n

n-1 (n)
f

(Cf. [1],[6jTheorem 3.2]), which is valid for a function f(z)

which is analytic in a region R and vanishes at a. e R,

i = l,...,n. All the integrations in (2.9) are carried out

along curves in R. (It is easily confirmed that (2.9) follows

from (2.4) by induction.)

We shall also require the following consequence of

Lemma 1.

Lemma 2.

Let f (z) be_ analytic in a_ convex region R. I_f the

(k)image of R given by fv \z) , k >_ 1, i_s_ included in a_ half

plane, (i.e., Re{elyf'k\z)} > 0, z e R, for some y, 0 < y < 2w,)

then f(z) is at most k-valent in R. (Cf. [13]).

Proof.

Without loss of generality we may assume that

Re{f*k\z)} > 0, z e R. We note that if f(z) takes the value

b m times in R, then f(z)-b has m•zeros in R, while

[f(z)-b]v ' = fv '(z) . Therefore, it is sufficient to show

that f(z) does not have more than k zeros in R. Assume now

that f(a.) = 0, a. e R, i = l,...,k, and set

k
(2.10) f(z) = fk(z) = fj(z) ff (z-a±), j = 0,l,...,k-l.
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We have to show that fQ(z) ^ 0, z e R. We first prove that

Indeed, by (2.4) and (2.10)

Re{f(k) (z) } > 0, z e R, implies that Re{f^£ 1 ) (z) } > 0, z € R.

z-a.

where 6 = arg (z-a, ) . I t now follows from (2.11) that if

Re{f(k)(z)} > 0, z e R, then Reff^jHz)} > 0, z e R. Since,

by (2.10), f j + i (
z ) = (z-aj+1) fj(z), J = 0, . . . , k - l , i t follows

similarly that Re{fP\z)} > 0 for z e R. Thus, we finally

conclude that Re{fQ(z)} > 0, and hence fQ(z) ^ 0 for z € R

We note that this result can also be derived from

Hermite's formula for divided differences.
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3. Disconjugacy and interpolation in a convex region.

In this section we apply Theorem 1 in order to obtain

disconjugacy criteria for equation (1.1) in a convex region R.

Estimates for the remainder r(z) (and its derivatives) in

Lagrange polynomial interpolation are also obtained. We

start with

Lemma 3.

Let f (z) be_ analytic in a_ finite closed convex region R

of diameter d. Assume that f(z) vanishes at n (not

necessarily distinct) points a ,...,a of R. Then,

(3.1) |fU)(z) | < Mj < I^n_j) , , z e R, j = 0, ...,n,

where M., j = 0,...,n, is defined by (2.1).

Since there are ( ) elements in the set Q ,

1 < r < k3 (3.1) follows from (2.2) .

Theorem 2.

Let the coefficients q. (z) , j = 0, ... ,n-l, of_ the

differential equation

(1.1) y(n)(z) + qn_1(z) y^'^z) + ... + qQ(z) y(z) = 0,

be analytic in a_ finite closed convex region R o_f diameter

d. if

n-1 |q. (z) Id""11

(3.2) E -•r}~-r; < 1> z e R,
j=o in-^-

then equation (1.1) i§_ disconjugate in R.
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Proof.

Suppose that equation (1.1) has a non-trivial solution

y(z) which vanishes at n points of R. Then, by Lemma 3,

... M dn"D

(3.1)' | y U ; ( z ) | < — , j = 0, ...,n-l, z e R,
(n-j) !

where M = Max|y' (£)| for £ e R. Since the maximum of

|y (C) I is attained at a point z* e R, we have M_ =1 1 n

(1.1) and (3.1)' now imply

, fn) , n-1 ... n-1 |q,(z*)
(3.3) M = yW(z*) < S q-(z*) ylD{z*) < M E — 2| y ( z ) | S |q,(z) | | y \ z ) | Mn

n ~ j=0 D n j=0 (n-j)

The number M must be positive. Indeed, by (3.1)',

M = 0 would imply that y(z) = 0 , z e R, which contradicts

our hypothesis that y(z) is a non-trivial solution. Hence,

it follows from (3.3) that

n-1 |q.(z*)|dn"j

Inequality (3.2) is thus incompatible with the existence of a

non-trivial solution of (1.1) with n zeros in R.

Remarks.(i). A special case of Theorem 2 was obtained by

Kim [6,Theorem 3.2]. Indeed, it was this result of Kim which

drew our attention to the problem of estimating |y (z)|,

j = 0,...,n-l, when y(z) is assumed to have n zeros in a

convex region.

(ii). If the strict inequality in (3.2) is replaced by a non-

strict inequality we obtain a sufficient condition for

disconjugacy of equation (1.1) in an open convex domain of

diameter d.
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In the next theorem we improve a disconjugacy criterion

given by Nehari [9].

Theorem 3.

Let q. (z) , j = 0, . . . ,n-l, be_ analytic in a_ finite closed

convex region R, whose boundary _i_s_ a_ piecewise smooth curve

CJ and whose diameter is d. I_f

(3.4) £ (n-J-D 1
J~ c

then the differential equation (1.1) i§_ discon jugate in R.

Proof.

Suppose that equation (1.1) has a non-trivial solution

y(z) which vanishes at n points of R. Then, by Lemma 3,

('\ M ,dn~-^
(3.5) |y(:i)(z) I < "n-j-1) I — ' z e R, j = 0, . . .,n - 1,

where M 1 = Max|y^
n" '(Z) | for £ e R. (We have used only

that y(z) vanishes at n-1 points.)

We next prove that if y(z) is analytic in R and

vanishes at n points of R, then

(3.6) Mn_1 < \ [|y
(n)(w)dw|,

C

[9,p. 330]. To establish (3.6) we first show that for every

z e R there exists a point £ e R (£ depends on z) such that

(J.7) |y (z)|<.|y (z) - y (C) I •

Indeed, suppose there exists z € R, such that for

every C e R
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(3.8) ly^Nzo) - y^-^Ol < ly^'^tao)!

holds. (3.8) would then imply that Re{elyy*n'*1) (£) } > 0

for £ e R and some y, 0 £ y < 27r. By Lemma 2, it would

follow that y(z) does not have more than n-1 zeros in R.

Hence, if y(z) vanishes at n points of R then (3.7) holds.

If z* e R is such that J y^11"1^ (z^) | = Mn_1, it follows from

(3.7) that there exists £* e R such that

(3.7)' Mn_1 = \ Y ^ ~ 1 \ Z * ) \ £ ly^-^z*) - y^"1* ( C*) | .

Combining (3.7)' with the inequality

j y(n-l) ( z # ) _ y(n-D ( c*,| £ 1 ||y<n)(w)dw|

C

[ 9 , p . 3 2 9 ] , we o b t a i n ( 3 . 6 ) .

Hence, if y(z) is a non-trivial solution of (1.1) which

vanishes at n points of R, it follows from (3.5) and (3.6)

that

2M - £ r|y(n>(w)dw| = H S qi(w)y
(j)(w)||dw| £

C C 3=°

/ j J|q.j(w)||y(j)(w)||dw| ̂ M n _ 1 \ £ - ! _ . J | qj(w)dw|

Since M , > 0, the last inequality implies that

Jj0 (n-j-l)J
J C

2 ,

which contradicts (3.4).
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Remark. As pointed out by Nehari [9], the assumption of analyticity

on the boundary C, as well as the assumption that the boundary

C is piecewise smooth can be relaxed.

We state now the analogous results for Lagrange polynomial

interpolation. We denote by p
n_i

 tlle s e t °f polynomials of

degree at most n-1.

Theorem 4.

Let F(z) b_e analytic in ja finite closed convex region R

of diameter d. Let p(z) be the unique polynomial in the set

P , which satisfies
n-1
J.y; p(a.j = F(a.)j a. e R} I = L,.,.,n.

r(z) = F(z) - p(z)

then

(3.10)

where M = Max|F^n)(£)
nn

If the boundary of R _is_ a. piecewise smooth curve C, then

(3.11) k ( j )(z)[ £ 2?n-j-l)l J i F ^ ^ ^ d w l , z e R , j = O,...,n-l.
C

In view of (3.9), r(ai) = 0 , a. e R, i = I,.,.,!), and

since p(n)(z) s o, it follows that Max|r ( n )(0 \ = Max|F(n)(£)|

Mn, Q e R. The results follow now from (3.1) and (3.6).

U8MRY
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4. Generalizations of disconjugacy and interpolation in a convex

region.

In this section we generalize the results of the previous

section. Our main concern is to obtain conditions which will

guarantee the strong disconjugacy of equation (1.1). Strong

disconjugacy, which is a more restringent property than disconjugacy,

has been recently introduced by London and Schwarz [8]. Equation

(1.1) is said to be strongly disconjugate in a given region R, if

for every choice of n (not necessarily distinct) points a.,...,a

of R, and every sequence of positive integers k, ,...,k such

that k,+...+k = n, the only solution of (1.1) which satisfies

y(a±) = ••• = y(
a
ki> = y (aki+1) = ••• = y <a

kl+k2> =

(4.1)
.. + ...+k .) (k+...+k n)

( a + l ) = '•• = Y ( a» } = 0}

is the trivial solution y(z) = 0, [8, p. 495].

Strong disconjugacy implies both disconjugacy (£=1, k = n )

and disfocality (-Ê n, k1=. . ,=k^=l) . (The differential equation

(1.1) is said to be disfocal in a given region R, if for every

choice of n points <• , ..,an of R, the only solution of (1.1)

which satisfies

(4.2) y( a i) = y'(a2) = ... = y
( n" 1 )(a n) = 0

is the trivial solution y(z) = 0. Disfocality has been considered

in various papers [10], [12], [4], [7].)

To obtain sufficient conditions for strong disconjugacy of

equation (1.1) in a con"«x region R of diameter d, we

consider the implications of the hypothesis that there
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exists a non-trivial solution y(z) of equation (1.1) which

satisfies ( 4.1). Applying Lemma 3, we shall find bounds for

|y^)( z)| in terms of the diameter d and M n = Max| y*
n^ (£) | ,

C e R.

The analogous problem in polynomial interpolation can be

stated in the following way: Let F(z) be analytia in a region

R, and let p(z) be a polynomial of degree at most (n-1),

(i.e. p(z)eP _,) which satisfies

F(a1) = p(ax), ... , F(ak ) = p(ak ),

(k ) (k ) (k ) (k )
F ^ l * = P ( a k P ( a } = P ^ a )

(4.3)

F L l~1 (a Alr A l l = p X ^"1;

)
(an) = p

 l l-X (an),

where a. = R, i = l,...,n, and k.j...,k. is a sequence of

positive integers such that k,+...+k = n. If

r(z) = F(z) - p(z)

is the remainder, find bounds for |r^'(z)|, z e R, j = 0, ...,n-l,

in terms of Max|F^n)(Q)\, C e R. (We note that the existence

and uniqueness of p(z) e Pn_1 satisfying (4.3) follow from the

fact that equatio:

the whole plane.)

fact that equation y*n)(z) = 0 is strongly disconjugate in
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Lemma 3' .

Let f(z) be analytic in .a finite closed convex region R of

diameter d. Let k.,,...,k be a sequence of positive integers

such that k, + ... + k, = n. Assume that f(z) satisfies (4.1)

(with y(z) replaced by f(z)) where a1,...Jan are points of

R. JEf k, + . . . + k. , <_ j < k, + . . . + k , 1 <̂  t <̂  I, then

(4.4) lf(j)(z)[ ^ M j £ (k + t < > + k
n _ j ) I k i...k i, z e R,

where

M. = Max|f(3'(^)|, j = 0, ...,n .
3 feR

Proof.

Consider the functions f(z), f (z),...,f (z).

t—1In view of (4.1), f ^ - (z), 1 ̂  t <^ I, vanishes at

k. points of R. Applying Lemma 3 to the function f \ > *

we find by (3.1) that for k, + ...+k , <^ j < k, + ...+k,,

«k,+...- <s k l +'" + V : i

(4.5) M. < -
(k1+...+kt-j)J

For j = kx + ... + kt_1, t = 1, ...,-t, (4.5) yield

<

T • J*-^ • J^-^ • • • • J\. # •

Combining (4.5) and (4.5) ' we obtain (4.4).
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Remark. For I = n, k, = k2 = ... = kn = 1, (4.5)'

yields

(4.6) MQ £ MLd £ . . . £ Mjd11 £ ... £ M nd
n .

We now state

Lemma 4.

Let f(z). R and the sequence k.,...,k, be as in Lemma

3'. JEf f(z) satisfies (4.1), where a. e R, i = l,...,n, then

(4.6) holds.

Proof.

We prove (4.6) for the case 1=1, k. = n. The proof for

the other cases will follow similarly. Since f(z) has n zeros

in R, we may replace n in (3.1) by any integer m such that

1 <̂  m _£ n. This leads us to

Mmd
m-3

( 4- 7 ) Mj £ (m-j) J > j = 0, ...,m, 1 £ m £ n.

Setting now j = m-1 and m = l,2,...,n in (4.7), we obtain

(4.6).

Theorem 21 .

L e t gj(z)j j = O,...,n-1, be analytic in a finite closed

convex region R £f diameter d. JEf

Iq | d n ^ < i, z e R
j=0 J

then the differential equation (1.1) is strongly disconiuaate in R.
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Proof.

Suppose that equation (1.1) has a non-trivial solution y(z),

such that for some sequence of positive integers k. ,...,k.,

k,+...+k, = n, y(z) satisfies (4.1) where a.eR, i = l,...,n.

Then, by Lemma 4

|y ( j )(z)| £ Mnd
n"j , j = O,...,n-1, z e R,

where M n = Max]y
(n)(£)| for £ e R. Since Mn = |y(n)(z*)|

for some z* e R and since M > 0, the result follows as in

Theorem 2.

Theorem 3 ' .

Let q.(z); j = 0,...,n-lj be analytic in a finite closed

convex region R, whose boundary is a^ piecewise smooth curve C,

and whose diameter is d. JEf

(4.9) Z d11^"1 f|q (w)dw| < 2 ,

then the differential equation (1.1) jijs strongly disconjugate

in R.

Proof.

Suppose that equation (1.1) has a non-trivial solution y(z)

which satisfies (4.1), where ai € R, i = 1,...,n, and k1,...,k

are positive integers such that k]_ + ••• + k, = n. Then, by Lemma

(4.6)' M. £ M
J

-d11"^1, j = 0,...,n-l, M . = Max| y( ̂  ( C) | .
3 CeR
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To complete the proof we now show that

(3.6) Mn_1 ̂ \ J|y(n)(w)dwl
C

remains true under our present assumptions. Indeed, by (4.1),
(n-k )

the function r\(z) = y * (z) (n-k^ = k;L+...+k^_1) vanishes

at k, (1 £ k £ n) points of R. Applying now (3.6) to. TJ(Z)

(with n replaced by k,), we obtain that

(V1} i r, ( V
rj * (C) £ i U (w)dw| .

Hence, if y(z) is regular in R and satisfies (4.1) for a. e R,

i = l,...,n, then (3.6) holds. It now follows from (4.6)' and

(3.6) that inequality (4.9) is incompatible with the existence

of a non-trivial solution of (1.1) which satisfies (4.1).

Remark. Sufficient conditions for disfocality of a similar

character have been established by Kim [4, Theorem 3.1] and

Schwarz [12].

We state now the analogous results for polynomial inter-

polations.

Theorem 4'.

Let F(z) be analytic _in a. finite closed convex region R

of diameter d. Let p(z) be the unique polynomial _in the set

Pn-1 w h i c h satisfies (4.3), where a i e R, i = l,...,n, and

-if. — sequence ££ positive integers such that k, + . . .+k = n.
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jrf r(z) = F(z) - p(z) is the remainder, then for j such

that k] + ...+kt_1 £ j < k^.-.+k^ 1 <> t £ I,

... N

(4.10) lr^}(2)l £ ( k +.. +

where M = Max| F ^ ( 0 \ .
n QeR

If the boundary of R _i§. ̂  PJecewise smooth curve C, then

(4.11) jr (^ ( z )| £ 2(ki+...+^_j)Ikt+i,..t(k^1), JlF(
n)(w)dwL 2£R.

Remark. Among all possible choices of the sequences k-,...,k ,

t - 1 and -t = n are the extreme cases. If t = 1, then k.. = n,

and we have the Lagrange interpolation. (4.10) and (4.11)

reduce in this case to (3.10) and (3.11) respectively, and the

right-hand sides of (4.10) and (4.11) attain their minimum values.

If I = n, then k, = k0 = ... = k = 1, and we have the Abel-

Gontscharoff [2, p.28] interpolation. (4.10) and (4.11) yield

(4.10)' |r(j)(z)| £ Mnd
n"j , z e R, j = 0,...,n-l

and

(4.11) > |r ( j )(z)| £ d ? f|F(r>)(w)dw|, z e R, j = o,...,n-l,

C

and the right-hand sides of (4.10) and (4.11) attain their maximum

values. Furthermore, (by Lemma 4), (4.10)' and (4.11)' hold for

all types of polynomial interpolations discussed in Theorem 4',

regardless of the choice of the k's and the a's.
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5. Disconjugacy in the unit disk.

In this section we consider the special case where the convex

region is the unit disk.

Lemma 5.

Let f(z) be analytic in Izl < 1 and let f(a.) = 0,
____ ___ __— _—— ____. _____ 2_

|a.| < 1, i = l,...,n, n _> 2. Let

(5.1) M n = Max|f
(n)(c)|,

where H(a.,...,a ) is the convex hull of a.,...,a , and assume

that M > 0.n

(i) If z is a point of the closed linear segment [a.a,],
—— — — — — — — — _______ ________ ____________ ^ K

I ^ k, <t,k = l,...,n, then

(5.2) |f(z)| <-iS

-*-' i N (n-j)In ' •> ~ «*•••>«--•

(ii) If z e H(a.,...,a ), then

where

, , n-1
K° ' o n n n J K n ' ' j n " n ( n - j ) J ' J " •••* • • • * « - ! •

(Cf. [1, p. 737] . ) .

Proof.

Assume that âĵ  ̂ a2, and let z e [a,a2] . We now apply

Theorem 1 to the closed convex region H(a_,...,a ) and find

upper bounds for -; ff | z-a |, j = o, ...,n-l, where
-. -• /"* X-'_J T -*-J_
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z e [a1,a2] and |a.J < 1, i = 1, ...,n. Since

]z-a| < 1 + |z|, |z| < 1, |a| < 1,

and by elementary geometry

z-a1||z-a2 z e

i t follows that

(5.5) j\ |z-aj J n ;> 2,

[9, Theorem 2], [3, Theorem 2]. (2.2) and (5.5) now imply (5.2)

for j = 0. In order to obtain upper bounds for Tt |z-a. |,
' tt=l r

where (i.,...,i , ) = s e Q _ . , 2 <̂  ;j <̂  n-2, we distinquish

four cases. We recall that (i1,...,i .) is an increasing

sequence of integers such that 1 £ i. < i~ < ... < i _ . <̂  n.

L2

i

<

(a) If i, = 1, i2 = 2 then, similarly to (5.5),

[f Iz-
t=l

There are n sequences of this type in Q

(b) If i± = 1, i2 ̂  2, then

t=l
z-a.

There are L , elements of this type in Q

(c) If i1 = 2, there are (j_-,; elements of this type in

n"2

a n d

< z-aJ (1+1 zl )n-j-1

t=l
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(d) If i, J> 3, there are ( • 2 ) elements of this type in

Qn-j,n a n d

i

t=l t

Using the trivial inequality

|z-a1| + |z-a2| < 2, z e

we find that for 2 _£ j <̂  n - 2

r jl(n-j-2)J

+ (j-l)i(n-j-DJ + (j-2) I (n-j) I

jJ(n-j)J

By (2.2), this leads to (5.2). For j = 1, n-1 the result

follows in a similar way.

(ii). We note that if a, = ao = ... = a = a* then
L z n

H(a1,...,an) = a*, and since f(a*) = f'(a*) = ... = f(n~1)(a*) = 0,

(5.3) is trivial. if H(a.,...,a ) is a linear segment [a,,a,],

l^\, 1 < I, k < m then (5.3) and (5.4) follow from (5.2) by

observing that

(1+p)' '
,

and

£ 3 2n~3, 0 £ p £ 1,
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If H(a1,...,a ) is a polygon then, by the maximum principle,

for every 1 _£ j £ n-1, there exists a point z. on the boundary

of H(a1,...,an) such that |f(j)(z.)| = Max|f(j)(z)| for

z e H(a , ...,a ). Since the boundary of H(a1,...Jan) consists

of segments of the type [a^a^], I ^ k, it follows that

z. e [a , a ] for some I and k, £^k. (5.3) and (5.4) now

follow from the above observation.

Remark.

If f(z) is analytic in the closed unit disk |z| _£ 1 and

vanishes at a., |a.| •£ 1, i = l,...,n, then Lemma 5 holds with

non-strict inequalities in (5.2) and (5.3). In this case the

~ (e^)results are sharp and equalities hold if f(z) =

where c is a constant and 0 _<£ y < 2TT.

In the next theorem we apply Lemma 5 to obtain disconjugacy

criteria in |z| < 1.

Theorem 5.

Let q.(z), j = O,...,n-1, be analytic in ]z| < 1.

(i) If

n-1 |q.(z)|(l+|z|)
n-='-1[n_(n

(5'6) l n(nj)l '

then equation (1.1) is disconiuqate in |zj < 1.

(ii) If

<
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where C. , j = O,...,n-1, are given by (5.4), then equation

(1.1) is disconjugate in |z| < 1.

Note that assumption (5.6) implies that the functions

q1(z),...,q _,(z) are bounded in |z| < 1, but this does not

necessarily hold for q (z).

Proof.

(i). Suppose that equation (1.1) has a non-trivial solution

y(z) which vanishes at a., |a.J < 1, i = l,...,n. If

z*eH(a.,...,a ) is such that

|y ( n )(z*)| = Max|y ( n )( C)| = «L ,
CeH(a1,...,an)

then z* is a point of some segment [a ,a ], t ̂  k. Hence,

we may apply (5.2) in order to obtain an upper bound for

|y -1 (z*)|, j = 0,...,n-l. Equation (1.1) and inequality (5.2)

lead us to

/*\ n-1 ,j x
tt =| y(n) ( z*)| £ T |q.(z*)

j=0 3

Since Mn > 0, the last inequality contradicts (5.6).

(ii). (5.7) follows in a similar way from (5.3).

Remarks.

(i). If we replace the non-strict inequalities (5.6) and

(5.7) by strict inequalities, we obtain disconjugacy criteria in

the closed unit disk |z| £ 1.
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(ii). Since C.R < 1/(n-j)i, j = O,...,n-l, it follows

that (5.7) is sharper than the restriction of (3.2) to the unit

disk.

(iii). Lemma 5 part (ii) can also be applied to estimate

the remainder r(z) in the Lagrange interpolation in the convex

hull H(a1,...,a ). Let F(z) be regular in a disk D of

radius o and let p(z) e P , satisfy p(a.) = F(a.), a. e D,

i = 1,...,n. If r(z) = F(z)-p(z), then

l~-̂  , j = O,...,n-1, z e H(a,,...,a )

where ^ n = Max| F
v"'( C) I for £ e Hfa^ ... ,a ) . (See also

(3.10).)

We conclude with the following corollary of Theorem 5.

Let q.(z), j = 0, ... ,n-l, nj> 3, b_§_ analytic in | z| < 1,

and assume that there exists ji positive constant A < a>, such

that

Then the differential equation (1.1) is, non-oscillatory in

|z| < 1, i.e., every non-trivial solution of (1.1) has a finite

number of zeros _in | z| < 1. (Cf. [3, Theorem 4] .)

I am grateful to Professors Z. Nehari and B. Schwarz for their

valuable remarks.
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