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O N S U B O B J E C T S I N C A T E G O R I E S

by Oswald Wyler

1, Introduction

Grothendieck fl] defined a subgadget (sous-true) of an object A of a

category ^ as an equivalence class of monomorphisms of c? with codomain A •

In operational categories f7]f a subobject of an object A is basically a sub-

set of the underlying set of A which, with operations induced by the operations

of A , becomes an object of the category. In many operational categories

(e.g. sets, groups, rings), subgadgets correspond bijectively to subobjects.

In others (e.g. topological spaces), there are subgadgets which do not cor-

respond to subobjects.

Various categorical remedies have been considered for this situation.

Isbell f2] introduced bicategories. These were generalized by the author in [6].

Sonner f5] introduced canonical categories, with extremal monomorphisms as sub-

objects. Other methods have been suggested by Isbell f3J and others.

None of these methods seem to be satisfactory for all situations. Thus we

propose in this note an axiomatic theory of categories with injections as a

common generalization, with subobjects represented by injections. This also

generalizes a situation encountered by the author in the study of operational
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categories [7]. We obtain the basic properties of categories with injections,

we consider the question whether monomorphisms obtained by limit constructions

are injections, and we discuss some related topics.

We shall use the language of jjltchell [4], with some modifications. For

instance, we use "map" as a synonym of "morphism", and we often identify objects

and their identity maps. We find it more convenient to write composition of maps

"from left to right11, and not "from right to left11 as in [4].

2. Categories with injections

Let ^ be a category, with composition of maps written "from left to right"*

We shall denote by Q C ^ the domain or left identity of a map u of h t and by

{!u the codomain or right identity of u , so that (<*u) u « u (/£u) = u .

For monomorphisms m and m1 with the same codomain, we put m1 < m if mf « x m

for a map x of *g , and we call m and mf equivalent, in symbols m ' ^ r n ,

if mf ̂  m and m ^m f
 f i.e. if m\ « x m for an isomorphism x of £f •

In particular, m£ /?m for any monomorphism m , and m Czfim if and only if

m is an isomorphism.

In many categories (example: topological spaces) there are monomorphisms

which one does not want to associate with subobjects of their codomains. This

leads us to the following definition.

2»I. Definition^ A category with injections is a pair ( *€, ̂  ) con-

sisting of a category *& and a subcategory £ of £? , subject to the follow-



ing conditions,

j i# Every map of ̂  is a monomorphism of *£ 9 and every isomorphism

jof *& is in

J 2. Whenever u v is defined in if, and u v and v are in 7> , then
•MMMWM*«B mmmmmm^mmmi^wm• • i • aril « • • • • • • • • • M M V I > ^ - w ^ — - ^ ^ — ^ — —

u v is in 5* •

J 3# For any map u c>f £f there is a map j .of ̂ with the following

properties, (i) u « p j for a map p of ̂  (ii) If also u « uf jf with

j1 G ̂  , then j ̂  j1 , i ^ . j = x j1 for a map x £f &.

We call the maps of ̂  injections of (%> ̂ ) f and we usually write

for ()ff %) • The map j of J 3 is called a £ -*JJSSS£»
 or 0 u s t an

of the map u . Examples will be given in (2.8).

2.2. We assume from now on that a category with injections (<?f^) is

given. If j £^0- is an image of u £ *& f then we call the factorization

u «s p j a decomposition of u , and the factor p a preimage of u .

In order to make our theory independent of the underlying axiomatic set

theory, and only for this reason, we impose the following condition on

J 0. There is a subclass ^\ SL ̂  such that every map .i of 3* is

equivalent to exactly one map of T. , and all identity maps of ̂  are in ̂  •

A map j of % will be called a subobject of its codomain fO> j . Every

object of ̂  is a subobject of itself.

2.3. Images are defined up to equivalence. Thus every map u of ^ has

exactly one image in 0. which we denote by im u . More generally, we put



ufjj « im (i u)

if j u i s defined in ^ and j G-£)~ • We note the following properties.

(2*3*l) imu^ufcxu] for any u <£ % , and imu£ru .if u

(2*3,2) If ufj] jand ufj1] are defined and j f ̂ j * then u f j ^ ^

This follows immediately from the definitions*

2.4* Injections form one half of a bicategory f2]} we replace the other half

by a definition. We call p £. ̂f a projection of (£\3-) if P *s & preimage

(2*2) of some map u of b • We shall denote by J* the class of all projections

of (^tO^) • This class has the following properties*

(2.4*1) A map v of ̂ f is in fP if and only if im v « /?

(2.4.2) If u v is defined in g and u v 6 ^ , then v

(2.4.3) ^ - n ^ is the class of all isomorphisms of (zf).

(2.4.4) I£ u n p j in ̂ , with p € 9 and j e.£ , then j is an

image, and p a preimage, of u .

Proof. If im v = ̂ v , then v g: Zr[• Conversely, let j be an image

of v j , and let v = vf j 1
 f with j f gQ- . Then v j = vf j 1 j , and hence

j ̂  y 0 . It follows that j f is isomorphic, and thus im v =

If v s vf 0 with j e^? . then im (u v) ̂  j • Thus im ( u v ) ^ i m v .

If im (u v) « jSv , it follows that im v = fiv • This proves (2*4.2).

A map u of 0> is in /^ if and only if ft u = im u r^ u 9 and hence if and

only if u is isomorphic. This proves (2*4.3).



If im u = i in (2,4.4), then ^ 4 j . If i « jf j and u = ^ $1 ,

then y C^ by J 2, and p « px j' . But then j1 > im p « ySp , and jf is

isomorphic. Thus j — J 1 f and j is an image of u •

2,5, Proposition, The following statements are logically equivalent,

(i) vfufj]] « (u v)fj] vhenever u v and ufj] are defined in &•

(ii) im (u v) » vfim u] whenever u v is defined in & 9

(iii) .If u g s f u1 • In ^ , and if u « p j and u1 « pf jf are deconn

positionst then there always is a map h în f̂ such that the diagram

• V V

Pf 3f

is commutative,

(iv) Projections form a subcategory of *& .

Proof, (i) *==> (ii) by putting j « <xu in (i).

In the diagram of (iii)f we always have im (f uf) •< j 1 • If (ii) is valid,

then im (fu') = im (u g) = gfj] = im (j g) f and it follows that j g = h jf

for a map h . But then p h jf « p j g « f pf jf
 t and hence p h » f pf #

Thus (ii) = > (iii) .

Consider now the diagram of (iii) with u « p i n ^ , 0 = ^ p t fs=<xpf

and uf = p g . If (iii) is valid, then g = h jf for a map h , and it follows

that im g ̂  im (p g) • If g £ !P , so that imgc /3g , this implies that

im (p g) s fig , and hence p g <£ 5^ , Thus (iii) —i> (iv) •



Finally, if u[j] = ^ and vfj^ « j 2 , with decompositions j u a p ^ j

and j v « p2 J2 f then j u v = p1 p2 j 2 is a decomposition, and (u v)f j]

* A2 - vfufj]] , if px P2 eP. Thus (iv) ~™> (i) .

2.6. Proposition. The following two statements are logically equivalent.

(*) Every map u .of & has a factorization u » e j with e epimorphic

IS ^ and j & > •

(ii) Every projection of £» is epimorphic in if\

Proof > If p = e j with p & J^f $ £3* f and e epimorphic, then

Sv = ini p -̂  j , and j is isomorphic. But then p is epimorphic, and thus

(i) «=^> (ii) • The converse is trivial.

2#7« Remarks• Definition (2.l) is easily dualized. We call the dual of a

category with injections a category with projections« A decomposition u = p j

in a category with projections defines a coimage p and a postimage j of u ,

and postiraages are injections of the category.

We have used J 2 exactly once, in the proof of (2.4.4). It is easily seen

that, conversely, J 2 follows from J 1, J 3, and (2.4.4)•

If \^At!P) is a bicategory in the sense of Isbell f2J, then (^f,^)

is a category with injections and -P the class of its projections. Conversely,

if (£?»<^)
 is a category with injections and 7* the class of its projections,

then the following three statements are easily seen to be logically equivalent.

(i) s is a subcategory of o and consists of epimorphisms of 5f .

(ii) (^,^) is a category with projections.



(iii) (itf^tP) is an Isbell bicategory*

Let now ^ be a category, J*C the class of its monomorphisms, and € the

class of its epimorphisnis. -A£ always satisfies conditions J 1 and J 2 of (2*l),

and ^At-itnages in our sense are images in the sense of Grothendieck flJt and of i4j•

jAC satisfies J 3 if and only if if has images, in the sense of IA]9 1.10.

Let us call ^ factored if every map u of if has a factorization u « e m

with e £ £ and m&J^C. If £f is factored, and if u » e m , then m is an

image of u in the sense of fl] and f 4] if and only if e is a coimage of u in

the sense of Sbnner fs]« In other words, the images and coimages of f5] are post-

images and preimages in our terminology* It follows that a canonical category,

in the sense of f5], is the same as a factored category V? such that (^/'O is

a category with injections, and (&9£) a category with projections*

If *€ is factored and (£f,/£) a category with injections, then the pro-

jections of {&fiM>) are the extremal epimorphisms (f3], f5}) of IP**

Examples* In a pointed category, the class of normal monomorphisms,

as defined e*g. in fa], satisfies J 1 and J 2, and in many Cases also J 3, but this

class is in general not a subcategoiy*

The injections of an operational category. & (see f7] for the definitions

and notations used in this paragraph) form a subcategoiy 1 of ^ which satisfies

J 1 and J 2. If ^ is an /2 -categoiy and all range functors R^ , U> €: f2 9

preserve intersections, then & also satisfies J 3« If these functors preserve

inverse images as well as intersections, then & has inverse images (see below),

and projections form a subcategoiy of (f7 *
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The categories of sets and of groups, with subsets and subgroups respectively

as subobjects, are categories with injectionsf with all monomorphisms as injections,

and all epimorphisms as projections• The categories of topological spaces and of

Hausdorff spaces can be considered as categories with injections in at least three

ways* We may regard just the closed subspaces, or all subspaces, of a space A as

subobjects of A f or we may regard all monomorphisms as injections*

In all examples of the preceding paragraph, inverse images exist, and P is

a subcategory* For topological spaces with closed subspaces as subobjects, all

epimorphisms are projections, but not all projections epimorphic. For Hausdorff

spaces, with all subspaces as subobjects, all projections are epimorphic, but not

all epimorphisms projections.

3» Limits in categories with injections

Let (^\y) be a category with injections* We consider the following

question* If a limit construction preserves, or induces, monomorphisms in any

category, does it preserve, or induce, injections in & ?

3*1* Proposition* Let (j^)v T be a family of injections with a common

codomain* If f J ^ is defined in & , then I Jj^ is an injection.

Proof* Let m » j | j ^ * Then m « x,\ j ^ , for a map x ^ , for every

A 6.1 * But then im m ^ j ^ for all A , and hence i m m ^ n i • Now m

in any case* Thus mc^im m , and m eS 0^ •



3* 2* Inverse images in fc> are defined by pullback diagrams

(3.2.1) 3,
V

u

with j , and hence j. , raonomorphic* We say that pullbacks in o preserve

injections if j- £.2 i** every pullback diagram (3*2.l) with 0 <£3 • We say

that (̂ f• 0 ) has inverse images if for any maps u of ̂  and j of 2- f with

the same codomainf there is a pullback diagram (3.2.1) in &t with O-**-^ •

A pullback diagram (3#2*l) is determined by u and j up to an isomorphism

in the upper lefthand corner* Thus if j €.1^ . we can determine j £~ 1>

exactly one way* We put

in

if i €.Q> and $1€.Q'O in a pullback diagram (3.2.1).

3.3. The following statements are valid whenever all their terms are defined.

(3.3.1) u f/Su] = CXVL .

(3.3.2) (u/ ^T^

(3.3.3) u^

(3.3.4) i f

(3.3.5) u f^j^j if and only if

(3.3.6) ufu^m] ^ j and u^fufu^fj]]] „ u«7j} •

(3.3.7) dj^ifTuf^]] and uFu^fur^]]] =ufj1] .
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We omit the simple proofs, (3.3.2) is a special case of the following result

(f4]» Prop* 1.7.2)• If the righthand square of the commutative diagram

u k
• ^

h g

is a poll back, .then the outer rectangle is a pullback if and only if the lef thand

square is a pullback. We shall use this result in (4*5) and (4.6)•

3»4» Proposition. Jf J^ is a subcategory of ig 9 then rollbacks in &

preserve injections. Conversely, jlf ( ̂ Y^) has inverse images, .then ̂ R jLs

a subcategory of *&.

Proof, Let «j & J- in a pullback diagram (3.2.l), and let im j « jf .

Then j ̂  y # If ̂ is a subcategory, then

ufjf] = im (^ u) B im (u j) < j

by (2.5), and thus jf u « uf j for a map u1 • Thus jf = x j , uf » x ML ,

for a map x • But then j- Or y 9 and j ^-/^ since j1 <£ 7^ •

Conversely, let (^t^) have inverse images. If v u » p j in ̂ f with

p, u, v in / and j in^/ f construct a pullback diagram (3.2.1), with

0, €^j/ • Then v *= x j , p «= x u , for a map x , and Av = im v ̂  j.

-1
But then j is isomorphic, and u s j u. j . Now Pu « i m u ^ j

x 1 1 * .

is isomorphic. Thus v u = p j is in *fi 9 and J^ is a subcategory.

and
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3.5* Proposition. Let (j x : A ^ — >
 k'\\<£i he a f a m i l y o f injections for

vhich a product X 0\ s X Ax ~ > X A,\ iB d e f i n e d i n & • 2L & is a sub-

category of & , then X j^ is in

Proof. Let px : X
A X ~ ^ A > a n d P\ : X AA>—^AX b e t h e Projections,

so that ( X 0\) P\ ~ Px ̂ A f o r a 1 1 ^<S I » and let X J\= Q 3 t e a ^com-

position. By (2.5.iii) there are maps r^ f one for each Afil » such that

pf « q xy , and *\ 5\~ A V\ • f o r a 1 1 ^ • T h e r e i s a maP r s u c h that

r Px f o r a 1 1 ^ f a n d t h e n ^ r Px ~ ̂  rA e P> f o r a 1 1 ^ ' a n d h e n c e

q r » (Xq • On the other hand, r q j p A » r q rx j x« r p^ jx « rx j x « j

for all X , so that r q o = j . But then r q «= ̂ 5q t and q is isomorphic.

Thus X J7\ « q 0 is in ̂  .

3«6» Proposition. If all projections of b̂ are epimorphisms^ then all

equalizers in ^ are injections. Conversely, jJT \P has equalizers, and all

equalizers are injections, then all projections are epimorphic.

Proof. If m is an equalizer of f and g in cP, then m is mono-

morphic. If m « p j is a decomposition, then m ̂  j , and p j f s p j g .

If p is epimorphic, then j f s j g follows. But then j ̂ m , so that

j.CrTm , and m &^\ .

Conversely, let p f - p g , with p €.j . If f and g have an equal-

izer j in b , then p = pf j for a map p1 • If i<S.^ t it follows that

p p s im p ̂ j • But then j is isomorphic, and f a g ,
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3.7. We shall denote by p1 and p2 , or just by p1 and pg , the

projections of a product AX B in *£ • If f : C — > A and g : C — > B are

maps of % with the same domain C , and if a product A X B is defined in {jf f

then we denote by -£f>g]r * c — ^ A X B the map of ^ characterized by

If *Q has finite products, then any pullback diagram

(3.7.1) I*'' I'
defines a monomorphic map {f,tfp J •

3»8» Proposition» If ^f has finite products, and if all projections of

are epimorphic in &9 then every map ^f ,gA obtained from a pullback diagram

(3»7*l) is an in.iection« Converselyt jlf ^f has finite products and pullbacksf

and if all maps {f^g^ obtained from pullback diagrams (3.7.l) are int1ectionst

then all projections of ^ are epimorphic in 6 •

Proof• If (3.7.1) is given> and if ^TtSjV88 ^ $ i s a decomposition, then

q 5 Pn g = q j P2
 f • I f q i s epimorphic, j p g = j p f follows. But then

j p. s x fj , j p = x g1 , for a map x of {? f and j = x -Jf.,r j = x q j

follows* But then x q as B q t and as q is epimorphic, it follows that q is

isomorphic, so that {f-î gnj s q j is i n y .

Conversely, let p be a projection with codoraain ^ p « A , and assime that
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all possible pullback diagrams (3*7,l) exist, with { f ^ g ^ in ̂  . Then

is in 1/ , since the square with four sides 1 is a pullback.

If p f = p g , construct a pullback diagram (3«7.l) for this f and g .

Then p « x f « x g for some map x of £f , and hence

As |l ,1 j £ *L , this is a decomposition, and thus \1A»1A j ̂ \fi>gii # T h i s

means that 1 s y f a y g for a map y ofif • But then
A i- J.

f « y gĵ  f B y f x g « g ,

and p is epimorphic.

4* Complements

We consider some functors, extremal monomorphisms and epimorphisms, coretrac-

tions, and pullbacks preserving projections.

4»1« Let Map & be the category with maps of 6 as objects and commuta-

tive squares in $ as maps, with composition defined by juxtaposition of squares*

If h is a category with injections, and J a subcategory of 5^ , then the dia-

gram of (2.5«iii), with j and jf in 1 , defines an image functor and a

preimage functor, both from Map if to Map & •

4^2. We call a category with injections (^•^0 locally small if, for

every object A of &, the maps in *L with codomain A , i.e. the subobjects
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of A , form a set. This is an ordered set; we denote it by A P • For a map

u . £ —j> B of *jg f v e define an order preserving mapping u P ; A P — > B P

by putting

j (u P) « ufj]

for j £ A P . If (^ft^) i s locally small and P a subcategory of &f this

defines a covariant direct image functor P t from £?,to the category of ordered

sets*

If (^t^) is locally small and has inverse images, then for any map u :

A — > B of ^ , we define a mapping u P* s B P — ^ A P by putting

j (u P») « u^fj] ,

for j <£ B P • This defines a contravariant inverse image functor P* f from ^

to the category of ordered sets*

4»3» Using the terminology of (2.7)» we have the following result.

Proposition* If a factored category & has images and inverse images* then

the extremal epimorphisms of ^ form a subcategory of %%

Proof* If fc is factored and has images, then (iP./f) is a category with

injections, with extremal epimorphisms as projections* If ^ has inverse images,

these projections form a subcategory of ^ f by (3«4)«

Ve note the dual result, in a somewhat weaker form*

Proposition* If a factored category ^ has coimages and pushouts, then the
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extremal monomorphisms of & form a subcategory of u •

4.4. We recall that a map u of ^ is called a coretraction of if if u

has a right inverse, i.e. if u v ~ c*u for some map v of ^.

Proposition. If all projections of ^ are epimorphic in ^ t then all

coretractions of ^ are injections. Conversely, JLf & has finite products and

all coretractions of ^ are injections, then all projections of ^ are epimorphic.

Proof, Let u v s= oCu , and let u « p j be a decomposition, so that

p (j v) = oCp • If p is epimorphic, it follows that (j v) p ~ 5̂p , so that p

is isomorphic, and u £ 0 .

Conversely, let p u « p v for p 6: J and u, v from A to B in Jf •

Using the notations of (3.7), we put f « /lAiul and g *= flA»vJ • Then

p f s p g and f p. » g p ss l # If coretractions are injections, then p f and

p g are decompositions of the same map* But then g » x f , p = p x , for an

isomorphism x of ^ • It follows that 1 = x 1 and v = x u • But then

x a l and v « u , so that p is epimorphic.
A

4»5« We say that pullbacks in a category with injections ^ preserve prcn>

.lections if f eP = ^ f 1 <£ P for every pullback diagram (3.7«l) in ^ •

Proposition. If (*£$Q>) has inverse images, then the following two state-

ments are logically equivalent.

(i) Whenever a pullback diagram (3.7.l) is given in ^ , and ff j] jLs

defined, ,then g^fffj]] » ^ f g ^ f j]] .



16

(ii) Pullbacks in 1b preserve projections«

Proof. If f <£ P in a pullback diagram (3.7*l), and if (i) holds, then

i m f i

and t (2.4.1). Thus (i) «#> (ii).

Conversely, consider diagrams

and

in which all squares are pullbacks* If a pullback diagram (3#7*l) is given and

ff j] is defined, and if j f « p1 j1 is a decomposition, then the three squares

not involving pf and p" are defined. Since g2 p
f j1 « 3^ ̂  6 t there is a

map p11 such that gp P1 - P11 gf and j f « pw j" . Thus the fourth square is

defined, and a pullback by the result of [4] quoted above in (3»3)# If pn £*/ ,

then j f « ptf j11 is a decomposition, and hence

if we assume, as we may, that j w & 9- • Thus (ii) ==̂ > (i) #

4#6* We say that inverse images in (o .p-) preserve projections if f <£ ̂P

sssr̂  f £ P in every pullback diagram (3*7«l) with g and g in 0> . In the

following result, the intersections exist as inverse images and are in 0- by (3»l)«

Thus we may, and do, assume that they are in
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Proposition* Jf ( ̂>J2-) has inverse images, then the following four state-

ments are logically equivalent•

(i) ffjnf^fg]] « f f j jng whenever ffj] and f^fg] are defined,

(ii) fff^fj]] » j niEi f whenever f^fj] is defined,

(iii) pfp*"fj]] CZ j whenever p & P .and p^fj] is defined.

(iv) Inverse images in (irV9) preserve projections*

Proof* Replacing j by o<f and g by j in (i), we have (i) »=^N (ii) •

Replacing f by p in (ii), with im p *= ftp 9 we have (ii) =^> (iii)*

In a pullback diagram (3*7.l), with g and g1 in Jf> and f in !P f

we have f^ fg]£^ g , and im (^ g) = ffg1] *= fff^fg]] ̂ g if (iii) holds.

But then g is an image of f. g , and f € -P • Thus (ii) =^> (iii) #

Now consider the two diagrams of the proof of (4*5). with g £ \> and

Pf £ ^ . If pP£ J* i then gg j f « P
ff (jf< g) is a decomposition, and

ffanf^fg]] « ffongj] « ffg2 j]" - j t tg - e n j f - enffj]

if we assume, as we may, that JM g is in 1 . Thus (iv) ***$> (i) •

4»7«. Remarks• In a bicategory, (4*4) and J 2 may be strengthened to the

dual of (2.4*2): JIf u v is defined in ̂  and in \ . then u ^ l • See f2]#

The category of Hausdorff spaces, with closed subspaces as subobjects, is a

bicategory in which inverse images do not preserve projections* This is easily

verified* The author does not have at present an example of a category with injec-

tions in which projections are preserved by inverse images, but not by arbitrary

pullbacks.
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