NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making of photocopies or other reproductions of copyrighted material. Any copying of this document without permission of its author may be prohibited by law.

ON THE EXISTENCE OF EXPECTATION TYPE MAPS

FOR B*-ALGEBRAS
A. de Korvin and R. J. Easton

Report 68-38

University Libraries Carnegie Mellon Uniwersity Pittsburgh PA 15213-3890
by

## A. de Korvin and R. J. Easton

I. Introduction: Consider a finite measure space ( $\Omega, \Sigma, \mathrm{m}$ ), let $\Sigma_{1}$ be a subfield of $\Sigma$ and let $m_{1}$ be the restriction of $m$ to $\Sigma_{1}$. One can define a linear map $\phi: L^{\prime}(\Sigma, m) \rightarrow L^{\prime}\left(\Sigma_{1}, m_{1}\right)$ by the equation $\int g \phi(f) d m=\int g f d m_{1}$, for all $f$ in $L^{\prime}(\Sigma, m)$ and for all bounded $g$ in $L^{\prime}\left(\Sigma_{1}, m_{1}\right)$ : The map $\phi$ is called an expectation. The existence of $\phi$ follows from the classical Radon-Nikodym theorem and $\phi$ has the following properties: 1) $\phi$ is linear and positive, 2) $\phi(g f)=$ $g \phi(\mathrm{f}), 3$ ) $\phi(\overline{\mathrm{f}})=\overline{\phi(\mathrm{f})}$, and 4) $\phi$ preserves the identity. The notion of expectation was extended to von Neumann Algebras by such authors as Dixmier [3] and Umegaki [9].

Let $N$ and $M$ be two von Neumann Algebras with $N \subset M$. An expectation of $M$ on $N$ is defined to be a positive, linear, *-map from $M$ to $N$ which preserves the identity and such that
$\phi(a x)=a \phi(x)$ for all $a$ in $N$ and for all $x$ in $M$. An expectation $\phi$ is called faithful if $\phi(x)=0$ and $x$ is positive implies $x=0$. This notion of faithfullness can be extended to define what is meant by a complete set of expectations. Existence and properties of complete sets of expectations were studied by de Korvin [1], and there the expectations were obtained in terms of a family of states satisfying certain conditions. The expectations were obtained in a manner similar to the Radon-Nikodym theorem above, where the integral is replaced by a state and the functions by operators. The purpose of this paper is to extend the above results to $\mathrm{B}^{*}$-algebras $\sim$ and the elementary properties used can be found in Dunford and Schwartz [5] and Rickart [8]. In order to obtain the expectations,
a map similar to the map 4 used by Dixmier [2] and [4] is constructed. The main results of this paper are as follows:

Let $N$ and $M$ be $B^{*}$-algebras with $N \subset M$. Suppose $M$ is generated by its unitary elements (such is the case for Banach algebras with locally continuous involution [7]). If enough states exist on $M$ which satisfy a continuity condition on the center of $M$, a boundedness condition on the positive elements of $N$, if the states diagonalize $M$, and further if the closure of the convex hull of the collection of utu*, as $u$ ranges over the unitaries of $N$, for each $t$ in $N$, is large enough, then there exist linear maps $\phi_{\alpha}$ of $M$ into certain subalgebras of $N$ such that $\phi_{\alpha}\left(u v u^{*}\right)=u \phi_{\alpha}(v) u^{*}$ for all unitaries $u$ of $N$ and for all unitaries $v$ of $M$. The $\phi_{\alpha}{ }^{\prime} s$ could be thought of as linear Radon-Nikodym type derivatives for states. Again if enough states exist on $M$ which satisfy a continuity condition on the center of $M$, a boundedness condition on the positive elements of $N$, if the states diagonalize only $N$, and further if the closure of the convex hull of the collection of all utu*, as $u$ ranges over the unitaries of $N$, for each $t$ in $N$ is large enough, then there exist maps $\Psi_{\alpha}$, not necessarily linear, of $M$ to certain subalgebras of $N$ such that $\Psi_{\alpha}(x y)=x \Psi_{\alpha}(y) x^{*}$ for all $x$ in $N$ and. $y$ in $M$. Moreover, if the union of the carriers of the states is the identity, then the $\Psi_{\alpha}{ }^{t} s$ form a complete set. Here the $\Psi_{\alpha}{ }^{\prime} s$ could be thought of as Radon-Nikodym type derivatives for states, where the $\Psi_{\alpha}{ }^{\prime} s$ need not be linear.
II. Notation and Preliminaries: Let $M$ and $N$ be $B^{*}$-algebras such that $N \subset M$. A scalar valued function $\rho$ defined on $M$ will be called a state if $\rho$ is linear, of norm one, positive in the sense that $\rho\left(x^{*} x\right) \geq 0$ for all $x$ in $M$, and satisfies $\rho\left(x^{*}\right)=\overline{\rho(x)}$.

A state $\rho$ on $M$ is said to diagonalize $N$ if $\rho(n m)=\rho(m n)$ for all $m$ in $M$ and $n$ in $N$. A state $\rho$ is said to be faithful if $\rho(x * x)=0$ implies $x=0$. A collection $\left\{\rho_{\alpha}\right\}$ of states is said to be complete if $\rho_{\alpha}(x * x)=0$ for all $\alpha$ implies $x=0$. By the commutant, $N^{\prime}$, of $N$ in $M$ we mean a11 elements of $M$ which commute with all elements of $N$. By the center of $N$ we will mean $Z_{N}=N \cap N^{\prime}$. Definition 2.1 We shall say that a state $\rho$ defined on $M$ is normal on $N$, if

$$
\rho\left(x^{*} x \sup q_{\beta}\right)=\sup \left\{\rho\left(x^{*} \times q_{\beta}\right)\right\}
$$

for all increasing nets $\left\{q_{\beta}\right\}$ of projections in $Z_{N}$ with sup $q_{\beta}$ in $Z_{N}$, and for all $x$ in $N$.

Definition 2.2 A state $\rho$ is defined on $M$ will be called continuously faithful on $N$, if there exists a projection $q \neq 0$ in $Z_{N}$ such that $\rho$ is faithful on $N_{q}=\{q a q: a \in N\}$ and further, if whenever $\left\{q_{\beta}\right\}$ is an increasing net of projections in $Z_{N}$, with $\rho$ faithful of each $N_{q_{\beta}}$, and if sup $q_{\beta} \in Z_{N}$, then $\rho$ is faithful on $N_{\text {sup }} q_{\beta}$.

Definition 2.3 By the carrier, relative to $N$, of a state $\rho$ defined on $M$ we will mean the maximal projection $e$ in $Z_{N}$ such that $\rho$ is faithful on $N_{e}$.

It follows that if the carrier exists it is unique.

## III. Preliminary Results

Theorem 3.1 Suppose $\left\{\rho_{\alpha}\right\}$ is a complete set of states on $M$ and that each $\rho_{\alpha}$ is normal on $N$. Then each $\rho_{\alpha}$ is continuously faithful on N.

Proof: Let $e_{\alpha}=\sup q_{\alpha \beta}$ where $\left\{q_{\alpha \beta}\right\}$ is an increasing net of projections in $Z_{N}$, with $\rho_{\alpha}$ faithful on $N_{q_{Q \beta}}$ for each $\beta$ and with
$\sup _{\beta} q_{\alpha \beta}$ in $Z_{N}$. Consider $e_{\alpha} x_{\alpha} \in N_{e_{\alpha}}$ and suppose
$\rho_{\alpha}\left(\left(e_{\alpha} x e_{\alpha}\right) *\left(e_{\alpha} x e_{\alpha}\right)\right)=0$. Since $e_{\alpha} \in Z_{N}, \rho_{\alpha}\left(x * x e_{\alpha}\right)=0$ and by normality $\sup _{\beta} \rho_{\alpha}\left(x^{*} x q_{\alpha \beta}\right)=0$ and hence $\rho_{\alpha}\left(x^{*} x q_{\alpha \beta}\right)=0$ for all $\beta$. Therefore since $q_{\alpha \beta} \in Z_{N}$ and since $\rho_{\alpha}$ is faithful on each $N_{q_{Q \beta}}$, we have $q_{Q \beta} x^{*} x q_{Q \beta}=0$ for all $\beta$. Hence, $\rho_{\gamma}\left(q_{O \beta} x * x q_{Q \beta}\right)=0$ for all $\gamma$ and $\beta$, and again by normality $\rho_{\gamma}\left(e_{\alpha} x * x e_{\alpha}\right)=0$. Since this is true for all $\gamma$, by completeness, we conclude that $e_{\alpha} \mathrm{xe}_{\alpha}=0$.

Corollary 3.1.1 If $\rho$ is a faithful normal state on $N$, then $\rho$ is continuously faithful on $N$.

Theorem 3.2 If $\rho$ is a state defined on $M$ which diagonalizes $N$, is faithful on $N_{q}$, where $q$ is any projection in $Z_{N}$, and which satisfies the boundedness condition that for some $k$, $\rho\left(x^{*} x y * y\right) \leq k_{\rho}(x * x) \rho(y * y)$ for all $x, y \in N$, then $\left(N_{q}, \rho\right)$ forms a Hilbert algebra under $(x, y)=\rho\left(x y^{*}\right)$.

Proof: The fact that ( $x, y$ ) forms an inner product follows easily from the fact that $\rho$ is a state. The property that $\left(y^{*}, x^{*}\right)=(x, y)$ follows from diagonalization and $(x y, w)=(y, x * w)$ for the same reason. We now must show that left multiplication is continuous relative to this inner product. This follows from the boundedness condition, since $|x y|^{2}=(x y, x y)=\rho\left(x y y^{*} x^{*} *\right)=\rho\left(x^{*} x y y *\right) \leq$ $k_{\rho}(x * x) \rho\left(y y^{*}\right)$. Finally $N_{q}^{2}$ is norm dense in $N_{q}$ since $q$ is the identity in $\mathrm{N}_{\mathrm{q}}$.

For the rest of this paper, we will let $U(N)$ denote the collection of unitary elements of $N$ and for each $x \in \mathbb{N}$, we will denote the norm closure of the convex hull of all $u x u^{*}, u \in U(N)$, by $C_{N}(x)$.

Theorem 3.3 If $\left\{\rho_{\alpha}\right\}$ is a complete set of states of $M$ which diagonalize $N$ and if $C_{N}(x) \cap Z_{N} \neq \emptyset$, then the intersection consists of exactly one point.

Proof: Consider $u \in U(N)$ and $x \in N$. Since each $\rho_{\alpha}$ diagonalizes N ,

$$
\rho_{\alpha}(u x u *)=\rho_{\alpha}(x)
$$

and therefore by continuity $\rho_{\alpha}$ is constant on $C_{N}(x)$. Now suppose that $y \in C_{N}(x) \cap Z_{N}$ and $a \in Z_{N}$, then $y$ is the limit in norm of elements of type

$$
\Sigma \alpha_{i} u_{i} x u_{i} *, \quad \alpha_{i} \geq 0, \quad \Sigma \alpha_{i}=1, \quad u_{i} \in U(N)
$$

By continuity ay is the limit in norm of

$$
\Sigma \alpha_{i} a u_{i} x u_{i} *=\Sigma \alpha_{i} u_{i} a x u_{i} *
$$

and so ay $\in C_{N}(a x) \cap Z_{N}$. Since $\rho_{\alpha}$ is constant on $C_{N}(a x)$, $\rho_{\alpha}(a y)=\rho_{\alpha}(a x)$ for all $\alpha$ and for all $a \in Z_{N}$. Let $s$ be any other element of $C_{N}(x) \cap Z_{N}$, then

$$
\rho_{\alpha}(\text { ay })=\rho_{\alpha}(a x)=\rho_{\alpha}(a s)
$$

and hence $\rho_{\alpha}(a(y-s))=0$. Letting $a=(y-s) *$ we conclude that $\mathrm{y}=\mathrm{s}$.

Note: We will denote the unique point in $C_{N}(x) \cap Z_{N}$, when it exists, by $x^{\frac{t}{4}}$.
Theorem 3.4 If $\left\{\rho_{\alpha}\right\}$ is a complete set of states on $M$ which diagonalize $N$, if $C_{N}(x) \cap Z_{N} \neq \varnothing$ for each $x \in N$, and if each $\rho_{\alpha}$ is normal on $Z_{N}$, then each $\rho_{\alpha}$ is normal on $N$.

Proof: Since

$$
x^{\mathscr{F}}=\lim \sum \alpha_{i} u_{i} x u_{i} *
$$

where the limit is in the norm sense, then for $a \in Z_{N}$

$$
\operatorname{ax}^{\star}=\lim \sum \alpha_{i} \mathbf{u}_{i} \operatorname{axu}_{i}{ }^{*} .
$$

Hence

$$
\begin{aligned}
\rho_{\beta}\left(a x^{t}\right) & =\lim \sum \alpha_{i} \rho_{\beta}\left(u_{i} a x u_{i} *\right)=\lim \sum \alpha_{i} \rho_{\beta}(a x) \\
& =\rho_{\beta}(a x), a \in Z_{N}, x \in N
\end{aligned}
$$

Now consider $x \in N$ and as increasing net $\left\{q_{\beta}\right\}$ of projections in $Z_{N}$, with $\sup q_{\beta} \in Z_{N}$. We have $\rho_{\alpha}\left(x * x \sup q_{\beta}\right)=\rho_{\alpha}\left((x * x)\right.$ 有 $\left.\sup q_{\beta}\right)$ $=\sup \rho_{\alpha}\left(\left(x^{*} x\right)^{77} q_{\beta}\right)=\sup \rho_{\alpha}\left(x^{*} x q_{\beta}\right)$.
Note: We point out that the condition $C_{N}(x) \cap Z_{N} \neq \varnothing$ would be satisfied if any compact convex subset of $C_{N}(x)$ is left invariant by the collection of maps $y \rightarrow u y u^{*}, u \in U(N)$, from the Reisz-Kakutani fixed point theorem [7].
IV. The Existence of Expectation like Maps.

Theorem 4.1 Suppose $M$ is generated as a vector space by its unitaries, and that $\left\{\rho_{\alpha}\right\}$ is a complete set of states on $M$. Suppose that each $\rho_{\alpha}$ diagonalizes $M$, is normal on $Z_{N}$, and satisfies the boundedness condition, that there exists a $k_{\alpha}$ such that $\rho_{\alpha}(x * x y * y) \leq$ $k_{\alpha} \rho_{\alpha}(x * x) \rho_{\alpha}(y * y)$ for all $x, y \in N$. Moreover suppose that for each $x \in N, C_{N}(x) \cap Z_{N} \neq \emptyset$. Then, if $e_{\alpha}$ is any projection in $Z_{N}$ such that $\rho_{\alpha}$ is faithful on $\mathrm{N}_{e_{\alpha}}$, there exist expectation like maps $\phi_{\alpha}: M \rightarrow N_{e_{\alpha}}$ such that

1) $\rho_{\alpha}\left(u^{*} a u\right)=\rho_{\alpha}(\phi(u) \cdot a), \quad u \in U(M), a \in M$, and
2) $\phi_{\alpha}^{\prime} s$ are 1 inear and satisfy $\phi_{\alpha}\left(u^{*} v u\right)=u * \phi_{\alpha}(v) u, u \in U(N)$, $v \in U(M)$.

Proof: From the previous section, for each $\alpha, \rho_{\alpha}$ is normal on $N$, faithful on $N_{e_{\alpha}}$, and $\left(N_{e_{\alpha}}, \rho_{\alpha}\right)$ forms a Hilbert algebra under $(x, y)=\rho_{\alpha}\left(x y^{*}\right)$. Consider $u \in U(M)$ and for $a, b \in N$, define $[a, b]=\rho_{\alpha}(u * a b * u)$.
It follows that $[a, b]$ is a bilinear hermitian form and $|[a, b]|=$
$\left|\rho_{\alpha}(u * a b * u)\right|=\left|\rho_{\alpha}\left(u u^{* a b *}\right)\right| \leq \rho_{\alpha}\left(u{ }^{(u * u u *)}\right) \rho_{\alpha}(a b * b a *) \quad$ by Schwartz's inequality. Furthermore

$$
\rho_{\alpha}(a b * b a)=\rho_{\alpha}(a * a b * b) \leq k_{\alpha} \rho_{\alpha}(a * a) \rho_{\alpha}(b * b)
$$

which says that $[a, b]$ is bounded with respect to the inner product. Hence, we may apply a Reisz representation theorem to obtain a bounded operator $\phi_{\alpha}(u)$ defined on the completion of $N_{e_{\alpha}}$ such that

$$
[a, b]=\left(\phi_{\alpha}(u)(a), b\right)
$$

Now for $d \in N_{e_{\alpha}}$ consider $R_{d}$ defined on $N_{e_{\alpha}}$ by $R_{d}(x)=x d$. We have

$$
\begin{aligned}
& \left(R_{d}(x), y\right)=\left(x, R_{d} *(y)\right), \text { and } \\
& \left(R_{d}(x), y\right)=(x d, y)=(d, x * y)=(y * x, d *)=(x, y d *) .
\end{aligned}
$$

Therefore $R_{d} *(y)=y d *$. Also

$$
\begin{aligned}
\left(R_{d}^{\prime}\left(\phi_{\alpha}(u)(a), b\right)\right. & =\left(\phi_{\alpha}(u)(a), R_{d}^{*}(b)\right)=\left(\phi_{\alpha}(u)(a), b d *\right) \\
& =\rho_{\alpha}(u * a d b * u)=\left(\phi_{\alpha}(u)(a d), b\right) .
\end{aligned}
$$

Hence, $R_{d} \phi_{\alpha}(u)=\phi_{\alpha}(u) R_{d}$ and by the commutation theorem $\phi_{\alpha}(u)$ must be a left multiplication i.e.

$$
\phi_{\alpha}(u)(a)=\phi_{\alpha}(u) \cdot a
$$

where we denote the element of $N_{e_{\alpha}}$ by $\phi_{\alpha}(u)$. Now

$$
\rho_{\alpha}(u * a b * u)=\left(\phi_{\alpha}(u) \cdot a, b\right)=\rho_{\alpha}\left(\phi_{\alpha}(u) a b *\right)
$$

and setting $b$ equal to the identity, we obtain

$$
\rho_{\alpha}(u * a u)=\rho_{\alpha}\left(\phi_{\alpha}(u) a\right) .
$$

Since $M$ is generated by its unitaries, we extend $\phi_{\alpha}$ to $M$ by linearity. Now consider $u \in U(N), v \in U(M)$, and $a \in M$. We have

$$
\rho_{\alpha}\left(\phi_{\alpha}(u v) a\right)=\rho_{\alpha}\left(u \phi_{\alpha}(v) u * a\right)
$$

since $\rho_{\alpha}$ diagonalizes $M$, hence

$$
\phi_{\alpha}(u v)=u \phi_{\alpha}(u) u^{*} .
$$

Similarily, one can obtain the identity

$$
\phi_{\alpha}(v u)=\phi_{\alpha}(v)
$$

and therefore we have 2).
Note: One could view the above $\phi_{\alpha}$ 's as a collection of linear Radon-Nikodym type derivatives for states.

Corollary 4.1 If $\mathrm{z}_{\mathrm{N}}$ has the property for each $\alpha$, (whenever $\left\{q_{\alpha \beta}\right\}$ is an increasing net of projections in $Z_{N}$ with $\rho_{\alpha}$ faithful on each $N_{q_{Q \beta}}$, then $\sup _{\beta} q_{Q \beta}$ is again a projection in $Z_{N}$ ), then the carrier of each $\rho_{\alpha}$ exists and the above theorem holds where $e_{\alpha}$ is the carrier of $\rho_{\alpha}$. In the case that $N$ and $M$ are von Neumann algebras, $\mathrm{Z}_{\mathrm{N}}$ has the above property.

Theorem 4.2 Suppose $N$ and $M$ are $B^{*}$-algebras of operators with $N \subset M$ and let $\left\{\rho_{\alpha}\right\}$ be a complete set of states on $M$. Suppose that each $\rho_{\alpha}$ diagonalizes $N$, is normal on $Z_{N}$, and satisfies the boundedness condition of Theorem 4.1. Also suppose that for each $x \in N, C_{N}(x) \cap Z_{N} \neq \varnothing$. Then there exist expectation like maps ${ }^{\psi} \alpha: M \rightarrow N_{e_{\alpha}}$ where $e_{\alpha}$ is any projection in $Z_{N}$ with $\rho_{\alpha}$ faithful on $\mathrm{N}_{\mathrm{e}}$, such that

1) $\rho_{\alpha}\left(a x x^{*}\right)=\rho_{\alpha}\left(\Psi_{\alpha}(x) \cdot a\right), x \in M, a \in N$
2) $\Psi_{\alpha}(x y)=x \Psi_{\alpha}(y) x^{*}, x \in N, y \in M$,
3) if $Z_{N}$ satisfies the condition of Corollary 4.1, then the above is true where $e_{\alpha}$ is the carrier of $\rho_{\alpha}$ for each $\alpha$, and
4) in the case where the $e_{\alpha}{ }^{\prime} s$ are the carriers of the $\rho_{\alpha}{ }^{\prime} s$, if $M$ has an identity $e$ and $\sup e_{\alpha}=e$, then $\left\{\psi_{\alpha}\right\}$ is a complete set on $N$.

Proof: The results 1), 2), and 3) follow as in the proof of Theorem 4.1, where here for each $x \in M$ we define

$$
[a, b]=\rho_{\alpha}(a b * x x *), a, b \in N
$$

For 4), consider $x \in N$ and suppose $\Psi_{\alpha}(x * x)=0$ for all $\alpha$. Then

$$
\rho_{\alpha}(a x * x x * x)=0, a \in N_{e}
$$

and in particular if $a=e_{\alpha}^{* e} \alpha$

$$
\rho_{\alpha}\left(\left(e_{\alpha} x *_{x}\right)\left(e_{\alpha}^{x * x}\right) *\right)=0
$$

By faithfulness of $\rho_{\alpha}$ on $N_{e_{\alpha}}$, since $\quad$ **xe ${ }_{\alpha} \in N_{e_{\alpha}}$,

$$
x *_{\alpha e}=0 \quad \text { for a11 } \alpha
$$

Now by normality and completeness

$$
0=\sup _{\alpha} \rho_{\beta}\left(x * x e_{\alpha}\right)=\rho_{\beta}(x * x) \text { for all } \beta
$$

and hence $\cdot x=0$.

Remark: If $N$ is a von Neumann algebra then the carrier $e_{\alpha}$ of each $\rho_{\alpha}$ exists. Furthermore with the above hypothesis $\sup e_{\alpha}=e$.

Proof: Suppose $q$ is a projection in $Z_{N}$ and that $q$ is orthogonal to all the $e_{\alpha}$. Then each $\rho_{\alpha}$ is not faithful on $N_{q}$ : where $q^{\prime}$ is any non-zero subprojection of $q$ in $Z_{N}$. By Zorn's lemma there would exist a set of orthogonal projections $\left\{q_{\beta}\right\}$ such that $\rho_{\alpha}\left(q_{\beta}\right)=0$ and $\sup q_{\beta}=q$. Now $\rho_{\alpha}(q)=\rho_{\alpha}\left(\sup q_{\beta}\right)=$ sup $\rho_{\alpha}\left(q_{\beta}\right)=0$ for all $\alpha$ and by completeness $q=0$. Hence $\sup e_{\alpha}=e$.

## BIBLIOGRAPHY

1. A. de Korvin, Complete sets of expectations on von Neumann algebras, submitted Journal of Functional Analysis, 1968.
2. J. Dixmier, Applications $\not \subset$ dans les anneaux d'operateurs, Comp. Math. 10 (1952), 1-55.
3. $\quad$ Formes lineaires sur un anneau d'operateurs, Bull. Soc. Math. France 81 (1953), 9-39.
4. Les algebres d'operateurs dans l'espace Hilbertien, Paris' (1957).
5. N. Dunford and J. Schwartz, Linear Operators, Vol. I and II, Intersicence, New York (1958).
6. M. Loeve, Probability Theory, D. Van Nostrand Co., Inc., New Jersey (1963).
7. S. Kakutani, Two fixed point theorems concerning bicompact convex sets, Proc. Imp. Acad., Tokyo 14, (1938) 242-245.
8. C. E. Rickart, Banach Algebras, D. Van Nostrand Co., Inc., New Jersey (1960).
9. H. Umegaki, Conditional expectations in an operator algebra, Tohoku Math. Journa1, 6. (1954) 177-181.
