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I. Introduction; Consider a finite measure space (d, E,m), let

£.. be a subfleld of £ and let m.. be the restriction of m to

E1 . One can define a linear map 0:Ll(S,m) -• L'(2..,m..) by the equation

g0(f)dm = gfdm1, for all f in L'(£,m) and for all bounded g

in L'dl-^m-). The map 0 is called an expectation. The existence

of 0 follows from the classical Radon-Nikodym theorem and 0 has

the following properties: 1) 0 is linear and positive, 2) 0(gf) =

g0(f), 3) 0(f) = 0(f), and 4) 0 preserves the identity. The

notion of expectation was extended to von Neumann Algebras by such

authors as Dixmier [3] and Umegaki [9],

Let N and M be two von Neumann Algebras with N c M. An

expectation of M on N is defined to be a positive, linear, *-map

from M to N which preserves the identity and such that

0(ax) = a0(x) for all a in N and for all x in M. An

expectation 0 is called faithful if 0(x) = 0 and x is positive

implies x = 0. This notion of faithfullness can be extended to

define what is meant by a complete set of expectations. Existence and

properties of complete sets of expectations were studied by de Korvin [1],

and there the expectations were obtained in terms of a family of

states satisfying certain conditions. The expectations were obtained

in a manner similar to the Radon-Nikodym theorem above, where the

integral is replaced by a state and the functions by operators. The

purpose of this paper is to extend the above results to B*-algebras

<•- and the elementary properties used can be found in Dunford and

3s Schwartz [5] and Rickart [8], In order to obtain the expectations,
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a map similar to the map r- used by Dixmier [2] and [4] is

constructed. The main results of this paper are as follows:

Let N and M be B*-algebras with N c M. Suppose M is

generated by its unitary elements (such is the case for Banach algebras

with locally continuous involution [7]) . If enough states exist on

M which satisfy a continuity condition on the center of M, a

boundedness condition on the positive elements of N, if the states

diagonalize M, and further if the closure of the convex hull of the

collection of utu*, as u ranges over the unitaries of N, for each

t in N, is large enough, then there exist linear maps 0 of M

into certain subalgebras of N such that 0 (uvu*) = u0 (v)u* for

all unitaries u of N and for all unitaries v of M. The 0 's

could be thought of as linear Radon-Nikodym type derivatives for states.

Again if enough states exist on M which satisfy a continuity condition

on the center of M, a boundedness condition on the positive elements

of N, if the states diagonalize only N, and further if the closure

of the convex hull of the collection of all utu*, as u ranges over

the unitaries of N, for each t in N is large enough, then there

exist maps Y , not necessarily linear, of M to certain subalgebras

of N such that Y (xy) = xY (y)x* for all x in N and . y in M.

Moreover, if the union of the carriers of the states is the identity,

then the Y 's form a complete set. Here the Y 's could be

thought of as Radon-Nikodym type derivatives for states, where the

L's need not be linear.

II. Notation and Preliminaries; Let M and N be B*-algebras such

that N c: M. A scalar valued function p defined on M will be

called a state if p is linear, of norm one, positive in the sense

that p(x*x) > 0 for all x in M, and satisfies p(x*) = ~p(x) .
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A state p on M is said to diagonalize N if p(nm) = p(mn) for

all m in M and n in N. A state p is said to be faithful if

p(x*x) = 0 implies x = 0. A collection /p j of states is said

to be complete if p (x*x) = 0 for all a implies x = 0. By the

commutant, N 1, of N in M we mean all elements of M which commute

with all elements of N. By the center of N we will mean Z = N 0 N f.

Definition 2.1 We shall say that a state p defined on M is normal

on N, if

p(x*x sup q ) = sup { p(x*xq )}

for all increasing nets -fqQ } of projections in Z.T with sup qo in
*- p J N p

Z,T, and for all x in N.
N 7

Definition 2.2 A state p is defined on M will be called continuously

faithful on N, if there exists a projection q fi 0 in Z such that

p is faithful on N = {qaqra e N J and further, if whenever -(qft^ is

an increasing net of projections in Z , with p faithful of each

N , and if sup q e Z , then p is faithful on N

P P*

Definition 2.3 By the carrier, relative to N, of a state p defined

on M we will mean the maximal projection e in Z such that p

is faithful on N .
e

It follows that if the carrier exists it is unique.

III. Preliminary Results

Theorem 3.1 Suppose {p^} *-s a c o m P l e t e set of states on M and that

each p is normal on N. Then each p is continuously faithful on

N.

Proof; Let e = sup q where j q \ is an increasing net of
Q; up *• up ••

projections in ZN^ wi th PQ; faithful on N for each p and with
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sup q_ in Z . Consider e xe 6 N and suppose
p Qp « a a e

* Since ea e V Pa ^ ^ V = ° and by

normality sup p (x*xq ) = 0 and hence p (x*xq ) = 0 for all

Therefore since q ̂  e Z M and since o is faithful on each N
Tip N Ka

we have q^***^ = ° for a11 P» Hence, Py^c^**5"^) = ° for

all y an<* P, and again by normality p (e x*xe ) = 0. Since this

y cc cc
is true for all y, by completeness, we conclude that e xe = 0 .

Corollary 3.1.1 If p is a faithful normal state on N, then p is

continuously faithful on N.

Theorem 3.2 If p is a state defined on M which diagonalizes N,

is faithful on N , where q is any projection in Z , and which

satisfies the boundedness condition that for some k,

p(x*xy*y) < kp(x*x) p(y*y) for all x,y e N, then (N ,p) forms a

Hilbert algebra under (x,y) = p(xy*).

Proof; The fact that (x,y) forms an inner product follows

easily from the fact that p is a state. The property that

(y*,x*) = (x,y) follows from diagonalization and (xy,w) = (y,x*w)

for the same reason. We now must show that left multiplication is

continuous relative to this inner product. This follows from the

boundedness condition, since |xy| = (xy,xy) = p(xyy*x*) = p(x*xyy*) <

2
kp(x*x) p(yy*). Finally N is norm dense in K since q is the

identity in N .
q

For the rest of this paper, we will let U(N) denote the

collection of unitary elements of N and for each x e N, we will

denote the norm closure of the convex hull of all uxu*, u e U(N), by
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Theorem 3.3 If /p ] is a complete set of states of M which diagonalize

N and if C (x) fl Z £ 0, then the intersection consists of exactly

one point.

Proof; Consider u e U(N) and x 6 N. Since each p diagonalizes

and therefore by continuity p is constant on C(x). Now suppose that

y e CN(x) fl ZN and a e Z , then y is the limit in norm of elements of

type

SXUjXu^ , C^ > 0, m± = 1 , ui e U(N) .

By continuity ay is the limit in norm of

2CC.au.xu.* = Sa.u.axu.*

and so ay e C (ax) D Z . Since p is constant on C (ax),

= P^Cax) f°r a H a and for all a e Z . Let s be any

other element of C
N(X) H Z , then

pQjCay) = Pa(ax) = Pa(as)

and hence p (a(y - s)) = 0. Letting a = (y - s)* we conclude that

y = s.

Note; We will denote the unique point in C (x) fl Z , when it exists, by

Theorem 3.4 If {p } is a complete set of states on M which diagonalize

N, if C (x) fl Z jf 0 for each x e N, and if each p is normal on

Z , then each p is normal on N.

Proof; Since

x£ = lim E a.u.xu.*

where the limit is in the norm sense, then for a e Z

ax* = lim £ a.u.axu.*.
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Hence

pQ(axi"~) - lim T, a p (u.axu.*) = lim £ a p (ax)
p i p i i i p

= p fax), a e Z x e N.
P N

Now consider x e N and as increasing net -j qo "I of projections in
p J

ZXT, with sup q.. 6 ZXT. We have p (x*x sup q ) = p ((x*x)^ sup q )
N p N Cc p Q! p

= sup p ((x*x)^?-q ) = sup p (x*xq ) .

Note: We point out that the condition C
N(

X) fl Z^ ^ 0 would be

satisfied if any compact convex subset of C (x) is left invariant

by the collection of maps y -» uyu*, u e U(N), from the Reisz-Kakutani

fixed point theorem [7].

IV. The Existence of Expectation like Maps.

Theorem 4.1 Suppose M is generated as a vector space by its unitaries,

and that -/p 1 is a complete set of states on M. Suppose that each p

diagonalizes M, is normal on Z , and satisfies the boundedness

condition, that there exists a k such that p (x*xy*y) <

k p (x*x) p (y*y) for all x,y e N. Moreover suppose that for each

x e N, C (x) n Z $ 0. Then, if e is any projection in Z such

that p is faithful on N , there exist expectation like maps

0 :M -• N such that

1) PQ;(u*au) = PQ;(0(u)-a) , u e U(M), a e M, and

2) 0 fs are linear and satisfy 0 (u*vu) = u*0 (v)u, u e U(N),

v e U(M).

Proof; From the previous section, for each a, p is normal

on N, faithful on N , and (N ,p ) forms a Hilbert algebra under
ea ea a

(x,y) = p(xy*). Consider u e U(M) and for a,b e N, define

It follows that [a,b] is a bilinear hermitian form and |[a,b]| =
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|p (u*ab*u)| = |p (uu*ab*)| < p(uu*uu*) p (ab*ba*) by Schwartz's

inequality. Furthermore

pa(ab*ba) = pa(a*ab*b) < pa(b*b)

which says that [a,b] is bounded with respect to the inner product.

Hence, we may apply a Reisz representation theorem to obtain a bounded

operator 0 (u) defined on the completion of N such that

[a,b] - (0a(u)(a),b).

Now for d e N consider R, defined on N by R,(x) = xd. We have
ea d ea d

(Rd(x),y) = (x,Rd*(y)), and

(Rd(x),y) - (xd,y) = (d,x*y) = <y*x,d*) = (x,yd*).

Therefore R,*(y) = yd*. Also

),b) = (0a(u)(a), Rd*(b)) = (0a(u)(a),bd*)

Hence,

= pa(u*adb*u) = (0Q;(u)(ad),b).

0 (u)R/i an(^ ^ tlle commutation theorem 0 (u) must

be a left multiplication i.e.

0a(u)(a) = 0a(u)-a

where we denote the element of N by 0 (u). Now

pa(u*ab*u) = (0a(u)-a,b) = Pa;(0a(u)ab*)

and setting b equal to the identity, we obtain

pa(u*au) = Pa(0a(u)a).

Since M is generated by its unitaries, we extend 0 to M by

linearity. Now consider u e U(N), v e U(M), and a e M. We have

since p diagonalizes M, hence

0a(uv) = u0a(u)u*.

Similarily, one can obtain the identity

0a(vu) =
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and therefore we have 2).

Note; One could view the above 0 's as a collection of linear

Radon-Nikodym type derivatives for states.

Corollary 4.1 If Z has the property for each a, (whenever {q }

is an increasing net of projections in Z with p faithful on

each N , then sup q is again a projection in Z ), then the

carrier of each p exists and the above theorem holds where e

is the carrier of p . In the case that N and M are von Neumann

algebras, Z has the above property.

Theorem 4.2 Suppose N and M are B*-algebras of operators with

N c M and let fp 7 be a complete set of states on M. Suppose

that each p diagonalizes N, is normal on Z , and satisfies

the boundedness condition of Theorem 4.1. Also suppose that for each

x e N, C (x) D Z £ 0. Then there exist expectation like maps

Y :M -. N where e is any projection in Z with p faithful

on N , such that

1) pa(axx*) = Pa(Ya(x)-a), x e M, a € N

2) Ya(xy) = xYa(y)x*, x e N, y e M,

3) if Z satisfies the condition of Corollary 4.1, then the

above is true where e is the carrier of p for each a, and

4) in the case where the e 's are the carriers of the p 's,

if M has an identity e and sup e - e, then (y { is a complete

set on N.

Proof: The results 1), 2), and 3) follow as in the proof of

Theorem 4.1, where here for each x e M we define

[a,b] = pa(ab*xx*), a,b e N.

For 4), consider x e N and suppose Y (x*x) = 0 for all a. Then

p (ax*xx*x) = 0, a e N

a
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and in particular if a = e*e

Pa((eQ|x*x)(ecx*x)*) = 0.

By faithfulness of p on N , since x*xe e N
a ea a ecc

x*xe = 0 for all oc.

a
Now by normality and completeness

0 = sup Pp(x*xea) = Pp(x*x) for all p,

and hence • x = 0.

Remark: If N is a von Neumann algebra then the carrier e of each

p exists. Furthermore with the above hypothesis sup e = e.

Proof; Suppose q is a projection in Z and that q is

orthogonal to all the e . Then each p is not faithful on N f

where q' is any non-zero subprojection of q in Z . By Zorn's

lemma there would exist a set of orthogonal projections iq 1 such
(•pi

that Pa(qp) = 0 and sup q^ = q. Now PQ;(q) = Pa(sup q ) =

sup p (q ) = 0 for all a. and by completeness q = 0. Hence

a p
sup e = e.
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