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by

David R. Owen and Wan-Lee Yin

Abstract

Our attention is focused here on a class of materials each

of whose response to a particular motion is invariant under cer-

tain changes in time scale. We establish conditions on the given

motion under which this invariance can in principle be detected by

means of the following procedure: subject identical specimens to

motions which differ from the given one only by the appropriate

changes in time scale and measure the responses. In general, the

class of motions for which this procedure is feasible includes on-

ly certain accelerationless or circulation-preserving motions. How-

ever, for the special case of simple, incompressible materials in

homogeneous bodies, this restriction is not unduly severe.
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ON THE POSSIBILITY OF DETECTING INVARIANCE OF

MATERIAL RESPONSE TO CHANGES IN TIME SCALE

by

David R. Owen and Wan-Lee Yin

1. Introduction.

A constitutive relation represents an ideal description of

material response in some usually unspecified set of motions.

Such a relation is often formulated on the basis of measurements

taken in a set of motions smaller than the original set. In

some cases, if a motion yields a given measured response, then

certain time rescalings of the motion (performed on identical

specimens) will yield the original measured response modified

only by the corresponding time rescaling. In such cases we say

the response is invariant (under the appropriate set of rescalings).

It is often the case that constitutive relations, are tacitly as-

sumed to be invariant over the entire range of possible time re-

scalings. The theories of elasticity, placticity and hypoelas-

ticity are based on such an assumption. Actually, invariance of

material response to arbitrary rescalings, called rate-independence,

represents an extreme case. Generally, one finds by measurement

that materials are sensitive to at least some, if not all, changes

in time scale.
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It is natural to ask whether or not the response of a given

material in a given motion is invariant under a given time rescal-

ing, and whether or not such invariance or lack thereof may be de-

tected by means of some conceptually simple procedure. In this pa-

per, we attempt to evaluate the following, rather natural procedure:

subject identical specimens to motions which differ only by the giv-

en change in time scale and measure the response at each point of

the specimen in order to detect invariance or lack thereof. Our

main interest will be the feasibility of this procedure in the case

where some invariance exists. Regarding the procedure described

above, we note that invariance of response under a rescaling neces-

sitates a rescaling of applied surface tractions. This fact may

be useful in carrying out such a procedure in a laboratory situa-

tion.

For simplicity, we fix the body force field once and for all;

while we do take this field to be spatially steady, we make no oth-

er assumptions regarding it. Our main results, to be described

presently, apply to non-simple materials occurring in non-homogen-

eous bodies, as well as in the case of simple, homogeneous bodies.

Thus, we shall admit a broad class of materials and bodies in our

discussion.

The following results allow us to evaluate the procedure out-

lined above. First, suppose in a given motion the response at
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every point of an unconstrained body is invariant under one linear

and one non-linear change of time scale. It follows that (a) both

the given motion and the two rescalings are realizable if and only

if the given motion is realizable and is trivial (i.e. static), and

(b) both the given motion and the one linear rescaling are realizable

if and only if the given motion is realizable and is accelerationless.

Next suppose that in a given motion the response at every point of

an incompressible body is invariant under one linear and one non-

linear change of time scale. It follows that (c) both the given

motion and the two rescalings are realizable if and only if the

given motion is realizable and is irrotational, and (d) both the

given motion and the linear rescaling are realizable if and only if

the given motion is realizable and is circulation preserving.

Here, the term "realizable" means that the condition of bal-

ance of linear momentum is satisfied at every point in the body

at every time. In practical terms, we interpret the term "realiz-

able" to mean that a motion can be produced in a laboratory provid-

ed suitable surface tractions are applied to the body. With this

interpretation, we observe that our results (a) and (b) imply that

invariance of response, in a given motion, to even one or two re-

scalings can be detected by the procedure described above if and

only if the given motion is of a very trivial nature. Our results

(c) and (d) again show that the procedure generally will not enable
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us to detect invariance, but the class of motions for which the

procedure will be successful is expected to be larger for incom-

pressible bodies than for unconstrained bodies.

In this paper, we also evaluate the procedure in the ex-

treme case of rate-independent response. The results (a) and (b)

then are modified as follows. Suppose that in a given motion the

response at every point of an unconstrained body is invariant un-

der arbitrary changes of time scale. It follows that (a! ) the

given motion as well as all rescalings are realizable if and only

if the motion is realizable and is trivial, and (b! ) the given mo-

tion as well as all linear rescalings are realizable if and only

if the given motion is realizable and accelerationless. In par-

ticular , the motion and one linear rescaling are both realizable

if and only if the motion and all linear rescalings are realizable.

The analogous modifications of (c) and (d) in the case of rate-inde-

pendent response are obtained by replacing the words "trivial"

and "accelerationless", occurring in (a!) and (b!), by the words

"irrotational" and "circulation preserving". In particular, as is

the case of (b!), one finds that the motion and one linear rescal-

ing are both realizable if and only if the motion and all linear

rescalings are realizable.

We remark that the additional rescalings which are introduced

through the condition of rate-independence do not substantially
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affect the statements of the results (a)-(d). (Of course, the

class of realizable, (say) irrotational motions in an incompres-

sible body may be affected by varying the invariance properties

of the response functions.) Hence, invariance of response to

arbitrary rescalings of a motion can be detected in a rate-inde-

pendent body, using our suggested procedure, only for a limited

class of motions: trivial, realizable motions (if the body is

unconstrained) and irrotational, realizable motions (if the body

is incompressible).

It is worth noting that the class of realizable motions var-

ies with changes in the body force field. Thus, a motion for which

our procedure fails given one choice of body force field may be one

for which our procedure succeeds given some other choice of body

force field. Hence, the class of motions for which the procedure

fails, given a body force field, is not devoid of physical signifi-

cance.

The procedure we have described can be used to determine whe-

ther or not a simple, incompressible, homogeneous body,subject to

a conservative (not necessarily steady) body force, has rate-inde-

pendent response, i.e., response which is invariant under arbi-

trary rescalings of arbitrary motions. In fact, the Theorem on

Homogeneous Motions ([l],p.74) implies that every homogeneous,

isochoric, irrotational motion is realizable in such a body. This

class of motions is invariant under rescalings, and the Theorem of
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Determination ([l],p.75) implies that this same class of motions

can be used to determine the response function of every simple,

incompressible, homogeneous body. Thus/ given any motion in this

class, every rescaling of the motion is realizable in every body

of the above type. Hence, the procedure in question will enable

one to detect invariance or lack thereof.

We conclude this paper with a brief discussion of invariance

of mechanical and thermal response and establish restrictions on

thermal fields under which such invariance can be detected. In

particular, we show that a thermodynamical process which enables

us to detect existing invariance of response must proceed so as to

increase the entropy at each point of the body and to satisfy the

classical heat conduction inequality.
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2. Unconstrained Bodies.

In any realizable motion of an unconstrained body, the mass

density field p, the body force field b, the stress field T,

and the acceleration field x must satisfy the equation of bal-

ance of linear momentum for all times:

x = — div T + b.
~ p ~ ~

If the stress response at every point in the body is invariant un-

der some change of time scale, then the right hand side of this

equation also is invariant, since the body force is steady and the

density field is determined in an invariant way by the motion. If

we denote the change in time scale by <p and the acceleration field

for the rescaled motion by x , it follows from the chain rule that

. 2
^ = <p x + cpx,

where x and x are evaluated at time <p(t) whenever x , 0 and

are evaluated at time t. If the motion and the rescaled motion

both are realizable, then the left hand side of the equation of bal-

ance of momentum must be invariant since the right hand side is in-

variant, i.e.,

• • »•
x = x

(with x and x evaluated as explained above) . The last two

equations imply that for all times:

x{<£> -1} + x̂ 5 = 0.
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Thus, the given invariance of the stress response under <p and the

assumption that the motion and the rescaled motion are realizable

yield the above restriction on the motion itself. It follows

that if <p(t) = ct, with c ^ 1, i.e., if <p is a non-trivial

linear rescaling, then x = 0 for all times. If, in addition, the

above conditions hold when o is a non-linear rescaling, i.e. <p ̂  0

for all times, then we may also conclude that x = 0 for all times.

It is easily seen that if the stress response to a realizable

accelerationless motion is invariant under any set of linear re-

scalings, then each such rescaling of the motion is realizable. If

the stress response to a realizable trivial motion is invariant un-

der any set of rescalings (linear or non-linear),then each such re-

scaling of the motion is realizable.

These considerations establish the results (a), (b), (a*), and

(b1 ) stated in the introduction.
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3. Incompressible Bodies.

A motion of an incompressible body is realizable if the motion

is volume preserving (isochoric) and if there is a scalar field p

such that the following relation is satisfied for all times:

x + — grad p = — div S + b.
r*J p p r^J r»J

Here, S is the devLatoric stress field. If the deviatoric stress re-

sponse to a given realizable motion is invariant under some rescal-

ing <p, then in order that the last relation be satisfied by the re-

scaled motion, it is not necessary that the acceleration field be

invariant under the rescaling. Rather, it is necessary that for

some second scalar field p !, the relation

x + — grad p = x + — grad p1

be satisfied when the left hand side is evaluated at <p(t) and the

right hand side at time t. (The quantities p and p which ap-

pear on the two sides of the equation are identical, since one gives

the density at a point in space at time <p(t) for the original mo-

tion and the other gives the density at the same point in space at

time t for the rescaled motion.) The last relation may be re-

written in the form

2
px{0 -1} + px<p = grad(p'-p) ,

using the relation between x and x recorded in Section 2. More-

over, if p is spatially constant, we obtain:
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2

x{0 -1} + x# = grad £

where £ = (P!~p)/P* If this relation is valid for one non-trivial

linear rescaling, then it follows that

x = grad{£/(02-l)}.

In other words, in order that both the original motion and one lin-

ear rescaling of the motion (which leaves the deviatoric stress in-

variant) be realizable, it is necessary that the original motion be

circulation preserving. If a non-linear rescaling 0 also satis-

fies these conditions, it follows that

x = grad §

for some choice of scalar field ?. i.e. the original motion is ir-

rotational. In fact, if

x(<I)2-l} + xi/> = grad £*

then the condition that the motion is circulation preserving and the

non-linearity of 0 imply that

x = grad{(C*/$> - (C [#2-l]/tf [02-l]) } .

Hence, the original motion is irrotational.

It is easily seen that if the deviatoric stress response to a

realizable, circulation preserving motion is invariant under any

set of linear rescalings, then each such rescaling is also realiz-

able. Moreover, if the deviatoric stress response to a realizable,

irrotational motion is invariant under any set of rescalings (lin-

ear or non-linear), then each such rescaling is realizable. (In
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the verification of the second assertion, one uses the fact that

an irrotational motion is necessarily circulation preserving.)

These considerations establish the results (c), (d), (c1 ),

and (d1) stated in the introduction.
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4. Thermodynamic Considerations.

Let q be the heat flux vector, 8 the temperature, £ the in-

ternal energy, r the rate of supply of energy per unit mass of the

body, and let

D = ~[Vx + (Vx)T]

be the stretching tensor. The energy equation can then be written

as follows:

pi - tr(TD) = -div q + pr.

We consider materials for which £ , q and T are invar-

iant under simultaneous rescalings of the motion and the temperature

field and assume that the scalar field r (or pr) is steady. The

right hand side of the energy equation is invariant under such a re-

scaling, while the left hand side is never invariant under a non-

trivial rescaling. If a motion and a temperature history satisfy

the energy equation before and after a non-trivial linear re-

scaling, then both members of the energy equation must vanish:

-div q + pr = 0, p£ - tr(TD) = 0,

so that the heat flux and the energy supply have no net effect on

the internal energy.

We recall that the momentum equation imposes two conditions on

realizable motions whose rescalings are also realizable. The first,

in terms of the velocity or the acceleration field, is explicit.
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The second requires that the motion be quasi-equibrated. This im-

plicit condition is generally not independent of the above thermo-

dynamic conditions since the stress may depend on both the motion

and the history of the temperature field. But in the special case

of incompressible isotropic linear elastic materials satisfying

Fourier1 s law of heat conduction, every pair consisting of a spa-

tially steady and uniform temperature field and an isochoric irro-

tational motion with infinitesimal displacement gradient is reali-

zable and remains realizable after an arbitrary rescaling in a homo-

geneous body subject to a conservative body force and vanishing en-

ergy supply.

In the thermodynamics of materials with memory the entropy in-

equality is interpreted as a restriction on the constitutive func-

tionals to be observed in all dynamically possible histories satis-

fying the energy equation. Accordingly, we assume that the response

functions of the materials in question are such that the inequality

PV ;> (q-grad d/d2) + (-div q + pr)/9

is satisfied by every realizable motion-temperature pair. In partic-

ular, if a pair is realizable before and after a rescaling, it fol-

lows from this inequality and the last two equations that the spe-

cific entropy 77 can never decrease and the classical heat-conduc-

tion inequality

This condition means that the momentum equation is satisfied
when the inertia1 force term is ignored.
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q-grad 9 <^ 0

holds for that pair. It follows from our interpretation of the en-

tropy inequality that these last two conditions on the entropy and

the temperature field together with the condition that a pair be

rescalable provide the same information concerning the pair as the

condition that the pair be rescalable can alone provide.
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