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Introduction.

In continuum thermodynamics a rigid heat conductor is

defined by constitutive relations giving the internal energy,

entropy, and heat flux as functions of the coldness' and cold-

ness gradient. COLEMAN and MIZEL [1963] have shown that the

second law of thermodynamics implies certain restrictions on

these constitutive relations. However there still remain two

important restrictions which physicists believe to be true but

which are not provable consequences of the second law. These

are the symmetry of the conductivity tensor and the positivity

of the heat capacity.

We here introduce a new notion, based on the requirement

that a certain functional have a weak relative minimum at equi

librium, which yields as consequences the above restrictions.

We conjecture that this requirement is intimately connected

with the notion of stability.

The coldness is the reciprocal of the absolute temperature
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An interesting feature of our study is that we nowhere

introduce the concept of entropy.



JL. Admissibility.

Throughout this paper the inner product space associated

with euclidean point space is denoted by the symbol V .

We consider a rigid homogeneous heat conductor which occupies

a compact regular' region G in euclidean space. A field on

the body is any function defined at all pairs (x,t) e G x [0,oo) >

where we interpret t as the !timef. As examples of fields

we have the (real-valued) internal energy e per unit volume

and the (vector-valued) heat flux q . If these fields are

of class C , they determine the heat supply r through the

energy balance equation

e = -div q + r , (1)

where • denotes d/dt . The coldness field 9 9 whose values

are strictly positive, is assumed to be of class C and we

write

g = grad 6 (2)

for the coldness gradient.

For the materials considered here the coldness field determines

the internal energy and the heat flux in the following way:

there are class C constitutive functions e>: (0,oo) X V -• (-00,00)

and q: (0,oo) X \s -• \s such that

e(x,t) = e(6(x,t),g(x,t))

q(x,t) = q(9(x,t),g(x,t))

(3)

'We use the term regular in the sense of KELLOGG [1929].



Equation (1) then defines the corresponding heat supply r(x,t) .

For brevity we refer to the ordered pair (e, q) as the material*

It should be noted that in terms of the coldness the heat capacity

is given by

c(e) = -e2efl(e,o) , (4)

while the conductivity tensor equals

K(9) = 92q (9,0) . (5)

Here and in the sequel the subscripts 0 and g denote

partial differentiation with respect to these variables•

Let 6 > 0 be any given coldness. Our aim is to determine

the restrictions imposed on the material by an assumption

about the behaviour of a certain functional on coldness fields

1 close1 to the constant field 8 . To formulate the assumption

we introduce the collection 0(9 ) of class C functions

co: G X [0,oo) - (-00,00) with the properties (i) 9Q + co > 0 ,

(ii) co(*,0) = 0 , (iii) there is a number T > 0 , depending

on co , such that co(#,t) = CO(*,T) for all t > T . Clearly

the constant function 0 e &(9 ) , and the set £2(9 ) has the

property that if co e 0(9 ) then there is a positive number 6 ,

depending on co , such that Aco e Cl(d ) for any A in

-6 < X < 1 . We define a real-valued functional F on

by setting

JOO p • «OO p .

9q-ndAdt - 9rdVdt (6)
0 JSG ^ ^ J0 JG

where

0 = 6O + co , (7)



q and r are given by (1) - (3), and n is the unit outward

normal to dG . By the first and second variations of F we

2
mean the real-valued functionals 6F and 6 F defined on

O ( 9 Q ) by

6F(co)
A=0

2 1 -2

6̂ F(CO) = i
A=0

The concept of admissibility of the material is phrased in

terms of the functional F : we say that the material is

admissible at the coldness 9 if and only if

6F(co) = 0 ,

(9)

62F(co) > 0 ,

for every co e 0(9 ) . The following theorem characterizes

admissibility.

Theorem• The material is admissible at the coldness 9 i£

and only if the results (I), (II), and (III) hold:

(I) the conductivity tensor K(9 ) is symmetric and

positive semi-definite;

(II) the heat capacity c(9 ) > O ;

* q(9 ,0) = qfi(9 ,0) = ^ ( 9 0) = 0 .

'The restriction (III) and the positive semi-definiteness
0)of K(0Q)

 a r© consequences of the second law as has been shown

by COLEMAN AND MIZEL [1963].



6F<40) « q(0^,O)-f f grad co dVdt (11)
~ ° J 0 JG

and

62F(co) = f f {-eQ(d ,O)co2 - e (0 ,0)-co grad cb
* r\ v n U O f* go**

(12)

+ qn(0^^O)'co grad co + grad co-q (0 ,0)grad co} dVdtẑ a o f* f5g o ***

We establish the necessity of the conditions (I) - (III)

by making special choices of functions co e 0(0 ) . If veU

is any vector the compactness of G enables us to choose a point

x_ , depending on v ,, such that v-(x - x ) > 0 for each xeG .

Now define co € O(0 ) by co(x^t) = f(t)v(x - x ) where f
O ** F* ** f*O

is any C2 function with f > 0 , f(0) = 0 and f(t) = 1 for

every t > 1 . Then (11) and the assumed admissibility of the

material imply

0 = 6F(co) = volume(G)vq(6 .0) .

But VGV is arbitrary and so q(0^.,O) = 0 which proves the

first part of (III) .

Next consider elements co e Q(d ) of the form

co(x, t) = f(t)exp(v(x - x )) ,

where x is any fixed point, v is any vector in V

f (t) > 0 and f (0) = 0 . For an element of this type grad co = ox

and (12) becomes
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)2F(oo) = -( f f2(t)dt)(f exp(2v(x-x ))dV)(efl(9 ,0) + e (9 ,0)-v)

+ (f f(t)f(t)dt)([ exp(2v(x-x ))dV)(qfl(9 .0)-v + vq"(8.0)v)

Since

exp(2v'(x-x ))dV > O ,
G ~ ~ ~o

admissibility requires that the inequality

-(Jf(t)2dt)(¥9(9o,0) + e (9o,£)-v)

+ (J f(t)f(t)dt)(q0(9Q,O). v + vq (9Q,0)V ) > 0

hold. Choosing f to be any non-negative C function with

f(0) = 0 and f(t) = 0 for t > 1 but which is not identically

zero we find that

ee(6 0) + e (6 ,0)-v < 0

O

for every vector v . Thus e (6 ,0) = 0 and c(0 ) =-9 egC0 ,

3 3

Again, if we choose f with f(t) = r - (t - r) for

0 < t < r and f(t) = r3 for t > r then f is of class C2

and the inequality (13) becomes

O ** t* r* *3g O ^ ^ ~



holding for all numbers r > 0 . Dividing throughout by

-gT and letting T -» oo gives the inequality

o
which can hold only if the conductivity tensor K(0 ) = 6 q (0 ,

fSJ

is positive semi-definite and q/%(0 ,0) = 0 .

It remains to be shown that K(0 ) is symmetric. To do

this let u , veV be any vectors, x any fixed point, and

let f,h be real-valued C functions on [0,oo) with

f(0) = h(0) = 0 , f(t) = h(t) = 0 for t > 1 and f(t)h(t)dt = 1
J0

Consider the sequence of functions

/•5 I ir -f"̂  = c ( f I j n 4- V» I—) V ^ • I "V — V

Taking e sufficiently small guarantees that co e Cl(6 ) and
n o

then a straightforward computation using (12) and the results

already proved yields

2 e
5 F(co ) -• ̂ 75— (vK(9 )u - u-K(0 )v) , as n -• oo

n / > 2 ^ O f * * * o ^

Thus the admissibility of the material implies that for all

vectors u,v

VK(9n)u > uK(9rt)

On interchanging u and v we find that equality must hold:

i.e. the conductivity tensor K(0Q) is sjonmetric and the necessity
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of the conditions (I) - (III) is established.

The sufficiency of these conditions follows immediately

on noting that if they do hold then, for any co e 1X0 ) ,

grad o>K(9 ^grad a; = ~[grad co-K(9 )grad co]
O £J O

and so

r°°r i -2
-±^(9 .0)to dVdt

J0 JG 92 ° ~
0 JG 9

o

+ h I ^o S r a d w(x,oo) #K(9 ) grad co(x,oo)dV > 0
2 is e^ ~ ° ^ ""

o

which completes the proof.

The result (III) of the theorem show that whenever the

material is admissible at coldness 8

e( Qg) = e<eo,o) -

(14)

g

If we consider coldness fields close to the constant coldness 9

in the sense that |9-8 | + Igl is small then equations (14)
O r«w

tell us that effects due to the coldness and the coldness

gradient uncouple; i.e. to within terms of order o(|9-9 | + |g|)

the internal energy e depends only on the coldness increment

6-6 and not its gradient g 9 whereas the heat flux q depends
O ** *w

only on g and not on 6-6 . In fact the second of (14) is, to
*** o
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within higher order terms, Fourier's law of heat conduction.

Another important consequence of the first of (III) is that

heat can flow at coldness 6 only in the presence of a non-

zero coldness gradient.
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<2. The Linear Material,

The linearized theory corresponding to the theory discussed

in section 1 results on considering the material with

o<e,g) - eQ - V<
0- eo> >

& O gZ O

° (15)

where e , c are constant scalars and K is a constant tensor.

In this case it follows from (11) and (12) that 6F = 0 and

F = 6 F and we deduce that the material defined in (15) is

admissible at some, and hence every, coldness 6 if and only

if F > 0 on £2(6 ) . One way of stating this conclusion— o

is

Theorem 2. For the linear material the heat capacity c is

non-negative and the conductivity tensor K is symmetric and

positive semi-definite if and only if F has a minimum at

0 e Q(eQ) .

The admissibility of a linear material can be characterized

in another way if we introduce the concept of a conduction

potential, by which we mean any class C function 0: V -* (-00,0]

with 0(0) = 0 .
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Theorem 3. A linear material is admissible if and only if

there exists a conduction potential 0 such that, for every

f 0(g)dV > - f 8q-ndA + f 8rdV , (16)
JG ~ ~ JdG ~ ~ JG

where 8 = 6 + 60 and q and r are given by (1) - (3) .

Proof. If 0 is a conduction potential then we conclude from

(6) that

0 <- 0(g)dV < F(co)
- JG ~

and hence the material is admissible. Conversely suppose the

material is admissible. Then

-f 6q.*ndA + f 8rdV = - 4 f (c82 + g-Kg)dV . (17)
JbG-~ G 8 2 JG ~8 2 JG

If we set

0(g) = -ig'Kg ,

the function 0 is a conduction potential since K is positive

semi-definite. In addition the symmetry of K tells us that

0(g) = -g-Kg

and this remark, when combined with (17) and the inequality

c > 0 , implies (16).

It should be remarked that the conduction potential 0
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of Theorem 3 is unique. In fact, for a rigid heat conductor

the production of entropy per unit volume is

g-Kg

and so the conduction potential is

Furthermore, in view of the symmetry of K , the constitutive

function for the heat flux can be written

s = -

It should be remarked too that there is an interesting

similarity in form between (16) and the Clausius-Duhem inequality

which reads

f sdV > -f Gq-ndA + f GrdV
\S OvJ VJ

where s is the entropy.
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