
NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:
The copyright law of the United States (title 17, U.S. Code) governs the making
of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.



Ranks and Pregeometries in Finite Diagrams

by

Olivier Lessmann
Department of Mathematical Sciences

Carnegie Mellon University
Pittsburgh, PA 15213

Research Report No. 97-197$
April, 1997



RANKS AND PREGEOMETRDES IN FINITE DIAGRAMS

OLIVIER LESSMANN

ABSTRACT. The study of classes of models of a finite diagram was initiated by
S. Shelah in 1969. A diagram D is a set of types over the empty set, and the class
of models of the diagram D consists of the models of T which omit all the types
not in D. In this work, we introduce a natural dependence relation on the subsets
of the models for the No-stable case which share many of the formal properties
of forking. This is achieved by considering a rank for this framework which is
bounded when the diagram D is No-stable. We can also obtain pregeometries
with respect to this dependence relation. The dependence relation is the natural
one induced by the rank, and the pregeometries exist on the set of realizations of
types of minimal rank. Finally, these concepts are used to generalize many of the
classical results for models of a totally transcendental first-order theory. In fact,
strong analogies arise: models are determined by their pregeometries or their
relationship with their pregeometries; however the proofs are different, as we do
not have compactness. This is illustrated with positive results (categoricity) as
well as negative results (construction of nonisomorphic models).

0. INTRODUCTION

The problem of categoricity has been a driving force in model theory since
its early development in the late 1950's. For the countable first-order case, M. Mor-
ley in 1965 ([Mo]) introduced a rank which captures No-stability, and used it to
construct prime models and give a proof of LoS conjecture. In 1971, J. Baldwin
and A. Lachlan [BILa] gave an alternative proof using the fact that algebraic clo-
sure induces a pregeometry on strongly minimal sets. Their proof generalizes ideas
from Steinitz's famous 1910 theorem of categoricity for algebraically closed fields.
Lo§ conjecture for uncountable languages was solved in 1970 by S. Shelah [Sh 70]
introducing a rank which corresponds to the superstable case. Later, Shelah dis-
covered a dependence relation called forking and more general pregeometries, and
since then, these ideas have been extended to more and more general first-order
contexts, each of them corresponding to a specific rank: N0-stable, superstable,
stable and simple.

The problem of categoricity for non-elementary classes is quite consid-
erably more involved. In 1971, H. J. Keisler (see [Ke]) proved a categoricity
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2 OLIVIER LESSMANN

theorem for Scott sentences tp £ LWl{JJ, which in a sense generalizes Morley's
Theorem. To achieve this, Keisler made the additional assumption that xp admits
Ni -homogeneous models. Later, L. Marcus, with the assistance of Shelah (see
[MaSh]), produced an example of a categorical \p £ Lm(JJ that does not have
any Ni -homogeneous model, so this is not the most general case. Since then,
many of Shelah's hardest papers in model theory have been dedicated the cate-
goricity problem and to the development of general classification theory for non-
elementary classes. Among the landmarks, one should mention [Sh 4] about sen-
tences in L^uiQ) which answers a question of Harvey Friedman's list (see [Fr]).
In [Sh 87a] and [Sh 87b] a version of Morley's Theorem is proved for a special
kind of formulas xp G Luiu; which are called excellent. It is noteworthy that to deal
with these non-elementary classes, these papers introduced several crucial ideas,
among them stable amalgamation, 2-goodness and others, which are now essen-
tial parts of the proof of the "Main Gap" for first-order, countable theories. Later,
R. Grossberg and B. Hart completed the classification of excellent classes and gave
a proof of the Main Gap for those classes ([GrHa]). H. Kierstead also continued
the study of sentences in LuluJ{Q) (see [Ki]). He introduced a generalization of
strongly minimal formulas by replacing "non-algebraic" by ''there exists uncount-
ably many" and obtained results about countable models of these classes using
[Sh 4]. In [Sh 300], Shelah began the classification theory for universal classes
(see also ICM 1986/videotape) and is currently working on a book entirely dedi-
cated to them. He also started the classification of classes in a context somewhat
more general than PC(Ti, T, T), see [Sh 88], [Sh 576] and [Sh 600]. In a related
work, Grossberg started studying the classification of Mod (xp) forxp £ £A+U/ under
the assumption that there exists a "Universal Model" for xp and studied relatively
saturated substructures (see [Gr 1] and [Gr 2]). This seems to be a natural hypoth-
esis which others have made as well (for example [Sh 88], [KISh] and [BISh 3]).
As a matter of fact, it is conjectured that if an abstract class of models K, is categor-
ical above the Hanf number, then K has the //-amalgamation property for every JJL
(this implies the existence of /x+-universal models, under the General Continuum
Hypothesis).

There are several striking differences between the problem of categoricity
for first-order and the non-elementary case. First, it appears that classification for
non-elementary classes is sensitive to the axioms of set theory. Second, the meth-
ods used are heavily combinatorial: there is no "forking" (though splitting and
strong splitting are sometimes well-behaved), and the presence of pregeometries
to understand systematically models of a given class is scarce. (A nice example of
pregeometries is hidden in the last section of [Sh 4] and only [Ki] has used them to
study countable models.) However, stability was not developed originally for first-
order. In 1970, Shelah published [Sh 1], where he introduced some of the most
fundamental ideas of classification theory (stability, splitting of types, existence of
indiscernibles, several notions of prime models etc.). In this paper, Shelah con-
sidered classes of models which omit all types in D(T) - D, for a fixed diagram
D C D(T). This class is usually denoted EC(T, T), where T stands for D(T)-D.
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He made assumptions of two kinds (explicitly in his definition of stability): (1) re-
striction on the cardinality of the space of types realizable by the models, and (2)
existence of models realizing many types. In fact, the context studied by Keisler
in his categoricity result for LUlUJ, turns out to be the N0-stable case in the above
sense. This is made precise by the following results. (C.-C. Chang:) The class of
models of a sentence tp e LulUJ is equal to the class PC(Ti ,T,r ) , which is the
class of reducts to L(T) of models of a first-order countable theory T\ containing
T, and omitting a set of types T C D{T{). (Shelah:) The number of models of a
Scott sentence ip 6 LWl(l, is equal to the number of models of EC(T, T), for some
countable T, where T the set of isolated types of T.

In retrospective, it seems that what prevented the emergence of a smooth
theory for No-stable diagrams is the absence of a rank like Morley's rank. Consid-
ering the success of the use of pregeometries to understand models in the first-order
No-stable case, if one hopes to lift these ideas to more general contexts, it appears
that No-stable diagrams constitute a natural test case. This is the main goal of this
paper. We try to develop what Shelah calls the structure part of the theory for the
class EC(T, F), under the assumption that it is No-stable (in the sense of [Sh 1]). In
fact, as in [Sh 2], we assume that EC(T, T) contains a large homogeneous model
(which follows from Shelah's original definition of stability for EC(T, F), see The-
orem 3.4. in [Sh 1]), so that the stability assumptions only deal with the cardinality
of the spaces of types. This hypothesis allows us to do all the work in ZFC, in
contrast to [Sh 4], [Sh 87a], [Sh 87b] or [Ki] for example.

The paper is organized as follows.

Section 1: We describe the general context.
Section 2: We introduce a rank for this framework which captures No-stability

(it does not generalize Morley rank, but rather generalizes what Shelah calls
R\p, Ly 2]). This rank differs from previously studied ranks in two ways: (1)
it allows us to deal with general diagrams (as opposed to the atomic case or
the first-order case) and (2) the definition is relativized to a given set (which
allows us to construct prime models). By analogy with the first-order case,
we call D totally transcendental when the rank is bounded. For the rest
of the paper, we only consider totally transcendental D, and we make no
assumption on the cardinality of T. We study basic properties of this rank,
and examine the natural dependence relation that it induces on the subsets
of the models. We are then able to obtain many of the classical properties of
forking, which we summarize in Theorem 2.21. We also obtain stationary
types with respect to this dependence relation, and they turn out to behave
well: they satisfy in addition the symmetry property, and can be represented
by averages.

Section 3: We focus on pregeometries. Regular types are defined in the usual
manner (but with this dependence relation instead of forking, of course), and
the dependence relation on the set of realizations of a regular type yields a
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pregeometry. We can show that stationary types of minimal rank are regu-
lar, and this is used to show that they exist very often. We also consider
a more concrete kind of regular types, which are called minimal. They
could be defined independently by replacing "non-algebraic" by "realized
outside any model which contains the set of parameters" in the usual defini-
tion of strongly minimal formulas. (This can be done for any suitable class
of models, as in the last section of [Sh 4].) We could show directly that the
natural closure operator induces a pregeometry on the set of realizations in
any (JD, No)-homogeneous model. We choose not to do this, and instead
we consider minimal types only when the natural dependence relation co-
incides with the one given by the rank. This allows us to use the results
we have already obtained and have a picture which is conceptually similar
to the first-order totally transcendental case (where strongly minimal types
are stationary and regular, and the unique nonforking extension is also the
unique non-algebraic one). Another reason is that the proofs are identical to
those which use the rank, and this presentation permits us to skip them.

Section 4: Here, we give various applications of both the rank and the prege-
ometries to the class K of (jD,No)-homogeneous models of a totally tran-
scendental diagram. We introduce unidimensionality for diagrams. We are
able to adapt techniques of Baldwin-Lachlan (see [BILa]) to our context for
the categoricity proof. In fact, we obtain a picture strikingly similar to the
first-order totally transcendental case. (l)If X> is totally transcendental, then
over any .D-set there is a prime model for K (this improves parts of Theo-
rems 5.3 and 5.10 of [Sh 1]). (2) If D is totally transcendental, then K is
categorical in some X > \T\ + \D\ if and only if K is categorical in every
X > \T\ + \D\ if and only if every model of K is prime and minimal over
the set of realizations of a minimal type if and only if every model of K of
cardinality > \T\ + \D\ is D-homogeneous. (3) If I? is totally transcenden-
tal and if there is a model of K of cardinality above \T\ + \D\ which is not
J9-homogeneous, then for any \T\ + \D\ < \i < A, there exists maximally
(D,/i)-homogeneous models in K of cardinality A (see the definition be-
low). If T is countable this implies, in particular, that for each ordinal a the
class K has at least |a | models of cardinality Na. When \T\ < 2K°, the cat-
egoricity assumption on K implies that D is totally transcendental, if D is
the set of isolated types of T. As a byproduct, this gives an alternative proof
to Keisler's theorem which works so long as \T\ < 2N° (whereas Keisler's
soft LU1U; methods do not generalize).

Using regular types and prime models, we could also give a decomposition theo-
rem, but we do not include it here since it is a particular case of a more general
abstract decomposition theorem, part of a joint work with R. Grossberg.
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1. THE CONTEXT

Let T be a first-order theory in the language L(T). Let M be a very large
saturated model of T. All sets are assumed to be subsets of M. As usual,

tp(c, A) = { 4>{x, a) | M t= flg, a],€(c) = /(*), <f> € L(T)}.

We say that p(x) is a complete type over A in n variables if £(x) = n and there is
c in M such that p(x) = tp(c, A). The diagram ofT, denoted by D(T), is the set
of complete types over the empty set. Sn(A) is the set of all complete types over
A in n variables. Sl {A) is written S(A). Given a set of formulas p, we let dom(p)
be the set of parameters appearing in the formulas of p. We say that p is over A if
dom(p) is contained in A. Finally, given a type p and a model M, we denote by
p{M) the set of realizations of p in M.

The following notions of diagram D were defined by Shelah in [Sh 1].

Definition 1.1. (1) For any set A, let D{A) = {tp(c, 0) | c e A } C D(T);
(2) For a model M of T, let £>(M) = £>(|M|).

Definition 12. Let D C D(T).

(1) A is called a D-sef if D(A) C D;
(2) A model M of T is called a D-model if D(M) C JD;
(3) Define SD(A) = {pG 5(A) | if c f= p then A U c is a P-set }.

Remark 1.3. |5j9(A)| = |S£>(A)| provided both are infinite, so we will usually
not write the superscript.

Here, we follow [Sh 2].

Definition 1.4. Let D C D{T).

(1) The diagram D is called stable in X if for any D-set A of cardinality at most
A, we have \SD{A)| < A;

(2) The diagram D is called stable if there is A such that D is stable in A, and
we say that D is unstable if D is not stable;

(3) A D-model M is called (Z), \)-homogeneous if M realizes every type p €
SD{A) over subsets A of \M\ of cardinality less than A;

(4) A Z)-model M is D-homogeneous if M is (JD, ||M||)-homogeneous.

The following definition is due to Grossberg and Shelah in [GrSh 2].

Definition 1.5. We say that D has the oo-order property if for every A, there is a
formula <j>(x, y, z), a sequence c and a set of sequences / = { a» | i < A }, such
that the following two conditions hold:

(1) / U c is a £>-set;
(2) f= <£[oi, aj;, c] if and only if i < j < A.
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Theorem 1.6. [GrSh 2] D has the oo-order property if and only if there is a for-
mula <f>{x,y,z), a sequence c and a set of sequences / = {5j | t < 3(2ir|)+ },
such that the following two conditions hold:

(1) lUcisaD-set;
(2) f= <f>[ai, a j , c ] if and only ifi < j < 3 ( 2 i r i ) + .

Definition 1.7. Let D C D(T) and let T = D{T) - £>. Define

EC(T, r ) = { M f= T | M omits every type in T }.

Equivalently,

EC{r , r ) = { M f= T | M is aP-model }.

For the rest of the paper, we will study the class EC(T, T), where T =
D(T) - D for a fixed diagram D C D(T), under the following hypothesis.

Hypothesis 1.8. There exists a (I?,x)-homogeneous model C e EC(T,T) for
some x larger than any cardinality mentioned in this paper.

This implies that all D-models can be assumed to sit inside C, and that
model satisfaction is with respect to C In this context, Shelah proved the following
results.

Theorem 1.9 (The Stability Spectrum). [Sh 1] One of the following conditions must
hold:

(1) D is unstable;
(2) There are K(D) < X(D) < 23/2irh+ such that for every }it D is stable in fi

if and only if> > X(D) and fi<K^ = /i.

Theorem 1.10 (The Homogeneity Spectrum). [Sh 2]
There is a D-homogeneous model of cardinality A if and only if A > \D\ and D is
stable in A or A<A = A.

For an alternative and self-contained exposition of above two theorems,
see [GrLe].

In the same paper, Shelah proved the following theorem. We will make
use of a particular case which we will prove using the rank.

Theorem 1.11. [Sh 2] Let D be stable. If (M{ | i < a) is an increasing se-
quence of (D,fi)-homogeneous models and the cofinality of a is at least K(D),
then Ut<a ^ is (D, n)-homogeneous.

The next theorem will be used to show the symmetry property of the rank.

Theorem 1.12. [Sh 5] D is unstable if and only ifD has the oo-order property.
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Using [Sh 1] together with the method of [Sh a] Theorem 2.12 and Theo-
rem 1.12, one can easily show:

Theorem 1,13. If D is stable in A, A is a D-set of cardinality at most A, and I
is a D-set of finite sequences of cardinality at least A+, then there is J C I of
cardinality A+, such that J is an indiscernible set over A.

We will use the following properties of K(D) in the case when K(D) = No>
and we will actually provide alternative proofs to these facts using the rank.

Definition 1.14. Suppose D is stable, J is a D-set, which is a set of indiscernibles
and A is a Z?-set. Define

AvD(J, A) = {0(x,a) | a G A,<f>(x,y) G L(T) and \<f>(I,a)\ > K(D) }.

Lemma 1.15. [Sh 2] Suppose D is stable, I is a D-set, which is a set of indis-
cernibles and A is a D-set Then

(1) AvD(I,A)eSD(A);
(2) There exists J a subset of I with \J\ < |A|+ + K{D) such that I - J is

indiscernible over A U J;
(3) If\I\ > \A\+ + K{D), then there is a in I realizing AvD(I, A).

2. RANK, STATIONARY TYPES AND DEPENDENCE RELATION

We first introduce a rank for the class of D-models (see Definition 1.2)
which generalizes the rank from [Sh 87a], We then prove basic properties of it
which show that it is well-behaved and is natural for this class.

Definition 2.1. For any set of formulas p(x, b) with parameters in 6, and A a subset
of C containing 6, we define the rank RA\P\- The rank RA\P] will be an ordinal,
—1, or oo and we have the usual ordering — 1 < a < oo for any ordinal a. We
define the relation RA\P] > « by induction on a.

(1) RA\P] > 0 if p(x, b) is realized in C;
(2) RA[P] ̂  8> when S is a limit ordinal, if RA\P] > & for every a < 8\
(3) RA\P) > a + 1 if the following two conditions hold:

(a) There is a G A and a formula </>(x, y) such that

RA\P U 4>(X, a)] >a and RA\p U - ^ ( z , a)] > a;

(b) For every a e A there is q(x, y) € D such that

We write:

RA\p] = —1 if p is not realized in C;
RA\P] = OL if RA\P\ > a but it is not the case that RA\P] > <* -f 1;
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RA\p] = oo if RA\P] > <* for every ordinal a.

For any set of formulas p(x) over A C C, we let

RA\p] = min{ RA[q] \ q C p \ B, B C dom(p), B finite }.

We omit the subscript A when A = C.

We need several basic properties of this rank. Some of them are purely
technical and are stated here for future reference. Most of them are analogs of
the usual properties for ranks in the first-order case, with the exception of (2) and
(3). The proofs vary from the first-order context because of the second clause at
successor stage, but they are all routine inductions.

Lemma 22. Let A be a subset of£.

(1)
(2) Ifp is over a finite set orp is complete, then RA\p] > 0 if and only if there

isB CA and q G SD{B) such thatp C q.
(3) If A is (I), No) -homogeneous and tp(a,0) = tp(6,0) (for a,b e A), then

RA\p(x,b)) = RA\p(x,a)].
(4) (Monotonicity) Ifp h q andp is over a finite set, then RA\p] < RA[Q]-

(5) Ifp is over B CAandf G Aut(C) then RA\p] = Rf(A)[f(p)l
(6) (Monotonicity) Ifp C q then RA\p] > RA[Q]-

(7) (Finite Character) There is a finite B C dom(p) such that

= RA\P\B}.

(8) IfRA\p] = ex and(3 < a, then there is q over A such that RA[Q) = P-
(9) IfRA\p] > (\A\ + 2lTl)+ then RA\p] = oo.

Moreover, when A is (D, #o)-homogeneous, the bound is (2lTl)+.

Proof (1) Trivial

(2) Suppose p Cq€ 5p(B), and B C A. Since C is (D, x) -homogeneous,
and q G SD{B), then q is realized in C Hencep is realized in C and RA\P] > 0.

For the converse, ifp is over a finite set, and RA [p] > 0, then there is c € C
realizing p. Thus tp(c, dom(p)) extends p and tp(c, dom(p)) € 5£>(dom(p)).

Ifp is complete, then there is B C A such that p G S(B). Now let c
(not necessarily in C) realize p. For every b G B, i^fp f 6] > 0, and so there is
& eC realizing p f 6. But tp(c, b) = p f 6 = tp(c/, 6) since p is complete. Thus
tp(c6,0) G A sop G S C )

(3) By symmetry, it is enough to show that for every ordinal a,

RA\P{X,1)] > a implies RA\P(X,Q>)] > OL.

We prove that this is true for all types by induction on a.
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• When a = 0, we know that there is c G C realizing p{xya). Then, since
tp(d, 0) = tp(6,0) and A is (D, No)-homogeneous, there is d G A such
thattp(ca,0) = tp(d6,0). But then p(z, 6) C tp(J,6). Hencep(z,6) is
realized in C, so RA\P{X, b)] > 0.

• When a is a limit ordinal, this is true by induction.
• Suppose RA\P(X, a)] > a + 1. First, there is c G A and <f>{x,y) G Fml(T)

such that both

(X, a) U <£(x, c)] > a and il.4[p(z, a) U ̂ <j){x, c)] > a.

Since A is (D, ̂ o)-homogeneous, there is d E A such that tp(ca, 0) =
tp(d&, 0). Therefore by induction hypothesis, both

RA\P{X, b) U <f>{x, d)] > a and RA\p(x, b) U ̂ ( x , d)] > a.

Second, for every d G A, there is c G -A such that tp(ca, 0) = tp(d6,0).
Thus, since RA\P(X, a)] > a+1, there is q(x, y) G I?, suchthat RA\P{X, a)U
g(x,c)] > a. Therefore, by induction hypothesis, J?>i[p(x,6)Ug(x,(i)] > a.
This shows that RA\P{X, b)] > a + 1.

(4) Suppose p h g. By definition of the rank, we may choose ?o Q 9 over
a finite set, such that i2>i[go] = jRyifa]- Hence, since p h gq» it is enough to show
the lemma when q is over a finite set also. Write p = p(x, b) \- q = g(x, a). We
show by induction on a that for every such pair of types over finite sets, we have

i?A[p(x,&)] > a implies RA[q{x,b)] > a.

• For a = 0, this is true by definition.
• For a a limit ordinal, this is true by induction.
• Suppose RA\P(X, b)] > a+1 . On the one hand, there is c G A and <j>(x, y) G

Fml(T) such that both

RA\P{X, b) U 4>{x, c)] > a and RA\P(X, b) U -K/>(X, C)] > a.

But

p{x, b) U <f>(x, c) h g(x, a) U <f>(x, c)

and similarly

p(x, b) U -»^(i, c) h ?(x, d) U -»^(x, c),

so by induction hypothesis, both

RA[q{x, a) U </>(x, c)] > a and .RA[9(^? O) U -»<^(X, C)] > a.

On the other hand, given any c G A there is r(x,y) G -D, such that
RA\P{X, b) U r(x, c)] > a. But

p(x, b) U r(x, c) h ?(x, a) U r(x, c),

so by induction hypothesis, RAMX, d)Ur(x, c)] > a. Hence i?>i[g(x, a)] >
a + 1.
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(5) First, choose q(x,a) C p, such that RA[Q] = RA\P] (this is possible
by definition of the rank). Similarly, since f(q)Qf(p), we could have chosen q
so that in addition Rf(A)[f(<l)] = Rf(A)[f(p)]- Now> by symmetry, it is enough to
show that if RA[q] > a then Rf(A)[f{q)] > <*•

• For a = 0 or a a limit ordinal, it is obvious by definition.

• Suppose a = (3 + 1. First, there exists <f>(x, b) such that

RA[qU<f>fab)]>0 and RA[qU^cf>(x,b)) > p.

Thus, by induction hypothesis, we have

Rf(A)[f(q) U <£(*,/(&))] > /? and i ? / w [ / ( g ) U -.*(*, /(&))] > p.
Second, notice that for every b e f(A), there is c G A, such that /(c) = b.
Since i^fa] > P + 1, there exists r(x, y) G D, such that RA[q U r(x, c)] >
p. Hence, by induction hypothesis, Rf(A)[f(<l) U r(x, 6)] > p. This shows

[ ( ) ]

(6) This is immediate by definition of the rank.

(7) By definition of the rank, let B G dom(p) and q C p \ B be such that
RA[q] = i k W- Now, clearly 9 C p \ B C p, so fi^fg] > B^[p f B] > RA\p] by
Lemma 6. So ^ [ p f B] = R\p].

(8) Suppose there is c*o such that i?,4[p] ^ ao for every p. We prove by
induction on a > ao, that for no type p do we have RA\P\ = «.

• For a = ao, this is the definition of ao.
• Now suppose that there is p such that RA\P] = a + 1 . By 7, we may assume

that p is over a finite set. Then there isc £ A and </>(x, y) G Fml(T) such
that both

RA\PU <t>{x, c)] > a and RA\p U i^(5, c)] > a.

But by induction hypothesis, neither can be equal to a, so we must have
both

RA\p U <£(z, c)] > a + 1 and RA\p U -«^(x, c)] > a + 1.

Similarly, given any c G 4 , there is q(x, y) G /?, such that RA\pUq(x, c)] >
a. But, by induction hypothesis, we cannot have RA\P U q(x,c)] = a, so
-R^[PU9(^>^)] ^ cr+1. But this shows that RA\P] > a + 2 , a contradiction.

• Suppose a > ao is a limit ordinal. Then a > ao + 1, so as in the previous
case, there is c G A and <p(x, y) G Fml(T) such that both

RA\P U <(>{x, c)\ >a0 and RA\p U -•<£(£, c)] > a0.

But by induction hypothesis, for no P such that a > p > ao can we have
-R>i[p U </>(x, c)] = P or -RA[P U - ^ ( X , C)] = )9, so necessarily since a is a
limit ordinal, we have

RA\P U ̂ ( i , c)] > a and ^ [ p U -.^(5, c)] > a.
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Similarly, for any ce A, there is q(x, y) e D, such that RA\P U q{x, c)] >
c*o and hence by induction hypothesis RA\P U q(x, c)] > /3 for any ao <
(3 < a so since a is a limit ordinal, we have RA\P U q(x, c)] > a. But this
shows that RA\P\ > a + 1, a contradiction.

(9) By the previous lemma, it is enough to find ao < (\A\ + 2lT')"f, (re-
spectively < (2lT ')+ if A is a (D, N0)-homogeneous model) such that

(*) RA\P] ¥" ao for every type over A,

We do this by counting the number of possible values for the rank. By 7 it is enough
to count the values achieved by types over finite subsets of A. But there are at most
|-A|<No < \A\ + No finite subsets of A, and given any finite subset, there are only
2lTl distinct types over it. Hence there are at most \A\ + 2'TI many different ranks,
and so by the pigeonhole principle (*) holds for some ao < (\A\ + 2 ' r ' ) + .

When A is a (D, No)-homogeneous model, the bound can be further re-
duced by a use of 3, since only the type of each of those finite subset of A is
relevant. •

The next lemma shows that the rank is especially well-behaved when the
parameter A is the universe of a (I?, No)-homogeneous model. This is used in
particular to study (D, No)-homogeneous models in the last two sections.

Lemma 2.3. (1) Ifp is over a subset of a (D, Ho)-homogeneous model M, then
RM\P\ = R\p}-

(2) If p is over Mi n M% with Mi (D, Ho)-homogeneous, for I = 1,2, we have

(3) If q(xyai) are sets of formulas, withai € Mi for I = 1,2 satisfying tp(ai,0) =
tp(a2,0), then RMl[9(^,^1)] = RM2[q{x,a2)].

Proof (1) First, by Finite Character, we may assume that p is over a finite set. Now
we show by induction on a that

#M fa] ̂  <* implies R\p] > a.

When a = 0 or a is a limit, it is clear. Suppose RM\P] > a + 1. Then there is
be M and <f>(x, y) such that both

RM\P U <I>{X, b)] > a and RM\p U -^(z , b)] > a.

By induction hypothesis, we have

R\p U <f>(x, b)] > a and R\p U -«</>(x, b)] > a.

Further, if b G C, choose V E M, such that tp(6,a) == tp(6',a). Since RM\P] >
a + 1, there is q{x,y) G D such that J?M[p U q{x,br)] > a. Thus, since C is
(D, Mo)-homogeneous, by induction hypothesis we have R\p U q(x, b')] > a, and
so by Lemma 2.2 3 R\p U q{x, b)] > a. Hence R\p] > a + 1.
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For the converse, similarly by induction on a we show that

R\p] > <* implies -RMW ^ a-

Again, for a = 0 or a a limit, it is easy. Suppose R\p] > a + 1. Then there is
b G C and <f>(x, y) such that both

R]p U <f>(x, b)] > a and R\p U -u£(x, 6)] > a.

Since M is (D, No)-homogeneous, there exists V G M, such that tp(6, a) =
tp(6', a). By Lemma 2.2 3, we have

R\p U <j>(x, b')] >a and R\p U -.<£(£, 6')] > «•

Hence, by induction hypothesis, we have (since bf G M)

RM\P U 4>(X, b')] >a and RM\p U -i^(2,6')] > <*.

Also, for any 6 E M, since b € C there is <j(x, y) £ D such that i?[pUg(x, 6)] > a.
By induction hypothesis, we have RM\P U 9(^,6)] > o:, which finishes to show
that RM\P] > a + 1 and completes the proof.

(2) By (1) applied twice, RMl\p] = R\p] = RM2\P\-

(3)SinceRMl[g{xiai)] = fl[g(«,Si)] = R[q(x,a2)] = ^M2[?(^a2)].
D

We now show that the rank is bounded when D is Nn-stable.

Theorem 2.4. If D is stable in Xfor some No < A < 2H° then RA\P] < 00 for
every type p and every subset A ofC

Proof. We prove the contrapositive. Suppose there is a subset A of C and a type
p over A such that RA\P) = 00. We construct sets Av C A and types p^, for
77 e <UJ2, such that:

(1) Pr,
(2) pr, C p,, when r? < */;
(3) A,; is finite;
(4) Prf 0 and p^i are contradictory;
(5) RA\PT,] = 00;

This is possible: Let \i = (2lTl)+ if A is a (D, Ho)-homogeneous model,
and /x = (\A\ + 2lr')"1" otherwise. The construction is by induction on n = £(r]).

• For n =_0, by Finite Character we choose first b G A, such that RA\P] =
^ b r ]̂ = 00. Since i?>i[p \ b] = 00, in particular -R>i[p f 6] > /i 4-1
so there exists q(x, y) G I>, such that RA[(P [b)V g(^, b)) > H- But then
p\bC q(x, 6), ̂ (x, 6) G 5^(6) and ̂ [ g ( x , 6)] > /i, so ̂ [ ^ (2 ,6 ) ] = 00
by Lemma 2.2 9. Therefore, we let A<> = b and p<> = q(x, b) and the
conditions are satisfied.
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• Assume n > 0 and that we have constructed pn G SoiA^) with t,{rj) = ra.
Since -RA[P*?] = oo, in particular /^[p,,] > (/x + 1) + 1. Hence, there is
av G A and <£(z, y) such that

(*) RA\PV U 0(2, a,,)] > /x + 1 and / f c ^ U -.0(2, a,,)] > fi + 1.

Let A^o = >Vi = -A77 U d,, C A Both A^Q and A^i are finite, so (*) and
the definition of the rank imply that there are qi(x, y) G D for / = 0,1, such
that

A\PV f ( , v) U
and

RA\PT) U -«0(2, a,,) U qi(x, Av^)] > /x.

Define p ^ 0 := Pr? U <f){x, av) U go(^, A^o) and p^ i := p,, U -.</>(£, a,,) U
( ) (). Thenprfj € 5j9(A^) since ft(^5^/) e S ' D ( A ^ ) and A^/ is

finite for / = 0,1. Moreover, p^o andp^i are contradictory by construction.
Finally RA\P^I] = oo, since i?A[?Vf] ^ A4- Hence all the requirements are
met.

This is enough: For each r? € W2, define A^ := Un€u; A t n and PT? := Une^^rn-
We claim that pv € 5£>(Ar?). Certainly p^ e ^(A^), so we only need to show that
if a f= p^, then AT, U C is a D-set (c is not assumed to be in C). It is enough to show
that tp(cd, 0) € I) for every finite d G A^. But, if d G -A ,̂ then there is n G a; such
that d G A^n. ^ince c |= pv\n andp^fn G ̂ (A^fn) , then cUA^n is a £>-set, and
therefore tp(cd, 0) G -D, which is what we wanted. Now that we have established
that pv G 5p(Ar?), since C is (D,x)-h o m°g e n e o u s> there is c^ G C such that
c^ \= pv. Now let C = |J € <o;2 Ai|. Then |C| = «0 and if ry ^ i/ G W2, then
tp{5n,C) ^ tp(c,y,C), since p^ and py are contradictory. Therefore | 5 D ( C ) | >
2Ko, which shows that D is not stable in A for any No < A < 2K°. D

Remark 2.5. Recall that in [Sh 1], D is stable in A if and only if there is a (£>, A+)-
homogeneous model and |SX)(J4)| < A for all D sets A of cardinality at most A
(this is Definition 2.1 of [Sh 1]). The proof of the previous theorem shows that if
D is stable in A for some No < A < 2K° in the sense of [Sh 1] then RA\P\ < oo for
all D-set A and J9-type p. In other words, we do not really need C for this proof.

By analogy with the first-order case (see [Sh a] definition 3.1), we intro-
duce the following definition:

Definition 2.6. We say that D is totally transcendental if RA\P) < oo for every
subset A of C and every type p over A.

For the rest of the paper, we will make the following hypothesis. We will
occasionally repeat that D is totally transcendental for emphasis.

Hypothesis 2.7. D is totally transcendental.
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In what follows, we shall show that when D is totally transcendental, the
rank affords a well-behaved dependence relation on the subsets of C We first focus
on a special kind of types.

Definition 2.8, A type p is called stationary if for every B containing dom(p)
there is a unique type ps G SD(B), such that PB extends p and R\p] = R\PB]-

Note that since our rank is not an extension of Morley's rank, one does
not necessarily get the usual stationary types when the class is first-order. The
argument in the next lemma is a generalization of Theorem 1.4.(l)(b) in [Sh 87a].
Recall that p G SD{A) splits over B C A if there exists <f>(x, y) and a,c€ A with
tp(a, B) = tp(c, B)y such that <f>(x, a) G p and -K/>(X, C) G p.

Lemma 2.9. Suppose there isd G C realizing p(x, 6) 0/nia (£>, No)-homogeneous
model M such that

=/2b(s, 5)] = a.

77*£n, /(?r any A C C containing b there is a unique PA G Sp (-4) extending p(x, 6),

Moreover, PA does not split over b.

Proof. We first prove uniqueness. Suppose two different types PA and qA G SD(A)
extend p(x, b) and

Then there is </>(xy c) G p,4 such that -«0(x, c) G qA- Thus, by Monotonicity,

fl[p(x, b) U < (̂x, c)] > RA\p] = a and ^ ^ ( x , 6) U -^(x,c)] > i?^[p] = a.

Further, for every c E C, there is c' G M such that tp(c, 6) = tp(c/, 6) since M is
(D, Ho)-homogeneous. Now write q(x, c') = tp(rf, ̂ ) , and notice that

R\p(x, b) U q{x, &)] > i?[tp(J, b U c7)] > i?[tp(d, M)] = a.

But ?(x, y) e Dby definition and so by Lemma 2.2 (2) R\p{x, b) U q(xy c)] >
a since tp(c6,0) = tp(c'6,0). But this shows that Z?[p(x,6)] > a + 1, which
contradicts (*).

We now argue that PA does not split over 6. Suppose it does, and choose
a formula <£(x, y) G Fml(T) and sequences Co, c\ e A with tp(co, 6) = tp(ci, b)
such that <f>(x, CQ) and -»^(x, ci) both belong to PA- Then by Monotonicity,

R\p{xyb) U^(x,co)] > J?>i[p] = a and R\p(x,b) U ̂ ( x , c i ) ] > i?^[p] = a.

But tp(co, b) = tp(ci, fe) so by Lemma 2.2(3) we have

An argument similar to the uniqueness argument in the first paragraph finishes to
show that R\p(x, b)] > a + 1, which is again a contradiction to (*).
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For the existence, let PA be the following set of formulas with parameters
in A:

{<f>{x, c) | There exists & eM such that tp(c, b) = tp(c/, b) and \= <f)[d, &]}.

By the non-splitting part, using the fact that M is (D, No)-homogeneous, we have
that tp(d, M) does not split over 6. Hence PA € Sp{A) and does not split over
6. We show that this implies that R\PA] = R[tp(d, M)] = a. Otherwise, since
PA extends p(z,6), by Monotonicity we must have R\J>A] < a, and therefore
R\PA] < <*• Let us choose V e A such that b C V and R\pA] = -R[PA f &']. For
convenience, we write q(x, b1) := p,4 f &', and so #[<?(£, 6')] < a. Now since M
is (D, HQ)-homogeneous, we can choose 6" G M such that tp(6", 6) = tp(6', b).
Hence

But by definition of PA, we must have q{x,b') C tp(J,M), so by Monotonicity
we have R[q(x, b')] > /J[tp(d, M)] = a, which contradicts (**). •

Corollary 2,10. The following conditions are equivalent:

(1) p G 5/>(yl) w stationary.
(2) 77iere w a (£), Ho)-homogeneous model M containing A and d G C reafe-

/ / i?[t(J, M)] = R\p).

Definition 2.11. A stationary type p G 5^(A) is based on B if R\p] = #[p f B].

Remark 2,12. (1) If p is stationary, there is a finite B C dom(p) such that p is
based on B.

(2) If p is based on B, then p f JB is also stationary and p is the only extension
of p \ B such that R\p] = R\p \ B].

(3) If p is stationary and dom(p) Q AC B, then PA = P B f A.
(4) Suppose tp(a,0) = tp(a',0). Then p(x,a') is stationary if and only if

p(^, a) is stationary. (Use an automorphism of C sending a to a'.)

Stationary types allow us to prove a converse of Theorem 2.4.

Theorem 2.13. IfD is totally transcendental then D is stable in every A > \D\ +
|T|. In particular K(D) = N0-

Proof. Let A > \D\ + |T|, and let A be a subset of C of cardinality at most A. Since
A > \D\ + |T|, by using a countable, increasing chain of models we can find a
(Dj No)-homogeneous model M containing A of cardinality A. Since |5D(>1) | <
\SD(M)\, it is enough to show that \SD{M)\ < A. Suppose that \SD(M)\ > A+.
Since M is (JD, ^0)-homogeneous, eachp G SD{M) is stationary. Hence, for each
p G SJD(M), we can choose a finite Bp C M such that p is based on Bp. Since
there are only A many finite subsets of M, by the pigeonhole principle there is a
fixed finite subset B of M such that A+ many types p G SD{M) are based on
B. Since A+ > |S£>(B)| = |£>|, another application of the pigeonhole principle
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shows that there a single stationary type q E SD(B) with A+ many extensions in
SD{M) of the same rank. This contradicts the stationarity of q. Hence D is stable
in A.

For the last sentence, let A = X ( | 7 ) | + |T|). By Zermelo-Konig, XH° > A,
hence by Theorem 1.9 K(D) = Ko. •

The following results show that stationary types behave nicely. Not only do
they have the uniqueness and the extension properties, but they can be represented
by averages. Surprisingly, it turns out that every type is reasonably close to a
stationary type (this is.made precise in Lemma 4.8).

Definition 2.14. Letp E SD(A) be stationary and let a be an infinite ordinal. The
sequence 7 = { c* | i < a } is called a Morley sequence based on p if for each
i < a we have c* realizes p ^ , where Ai = A U {CJ \ j < i}.

Lemma 2.15. Let p E SD {A) be stationary. If I is a Morley sequence based on p,
then I is indiscernible over A.

Proof. By stationarity PA{ Q PAj when i < j , and by the previous lemma each
PAi does not split over A. Hence, a standard result (see for example [Sh a] Lemma
1.2.5) implies that 7 is an indiscernible sequence over A. •

Definition 2.16. (K(£>) = No) For 7 an infinite set of indiscernibles and A a set
(with IUACC), recall that

AVD(7,J4) = {<£(£,a) | a E A,<j>(x,y) E L(T) and |0(7,a)| > No}.

Lemma 2.17. Suppose p E SD (A) is stationary and I is a Morley sequence based
on p. Then for any B containing A we have that ps = Avp (7, B).

Proof Let B C C and write 7 = {ci \ i < a } . Choose C{ eC for a <i <a
realizingpBt, where Bj = BU\J{aj \ j < i}. Since AVD(7,7?) E SD(B) extends
p, it is enough to show that .R[AvD(7,B)] = R\p], Suppose .R[AVD(7,B)] ^
R\p], Then, by Monotonicity, we must have # [AVD(7 , J5)] < R\p). We can find a
finite C C B such that p is based on C and by Finite Character, we may assume in
addition that

(*) #[AvD(7,B)] = i?[AvD(7, Q] < R\p].

But, since C is finite and K(D) = Ho, by Lemma 1.15 there is c* E 7 for a <
i < a + u realizing AVD(7, C), and since C C B, we must have tp(cj, C) =
AVD(7, C) = p c (since Ci realizes p^ ) - But then, by choice of C we have
7l[AvD(7, C)] = J?2[pc] = #[p] w h i c h contradicts (*). D

Lemma 2.18. Let I be an infinite indiscernible set, A be finite andp = AVD (7, A)
be stationary. Then for any CD Awe have pc = AVD(7, C).



RANKS AND PREGEOMETRIES IN FINITE DIAGRAMS 17

Proof. Write / = {c, | i < a} , for a > a; and let C be given. Choose Ci e C
for a < i < a + u realizing p^ , where d = C U (Jity | j < i}- L^ ^ =

{ci | i < a + u} and notice that necessarily Av^(I,B) = A VD ( / ' ,£) for any
B. Suppose pc 7̂  AvD(/ ,C), then since AVD(I , A) C AvD(J,C), we must
have JR[AV D ( / ,C) ] < #[p], so R[A\D{I\C)] < R\pc}- Choose C" finite, with
A C C ' C C , such that /J[AvD(J',C)] = ^ [ A V D C / S C ' ) ] . NOW there i s J C f
finite such that J' - J is indiscernible over C;. Choose c* € / ' - J with i > a.
Then Q realizes AVD(/'VC"), SO AVD( / ; , C1) = tp(cj, C") C p c . by choice of c*.
But then

> R\pCi] = R\p) > i?[AvD(J,C)] = R[AvD(I',C%

a contradiction. •

It is natural at this point to introduce the forking symbol, by analogy with
the first-order case (see for example [Bl] or [Ma]). We do not claim that the two
notions coincide even when both are defined.

Definition 2.19. Suppose A , B , C C £, with B C A W e say that

if fi[tp(a, B)] = i?[tp(a, BUC)] , for every a € A

As in many other contexts, the symmetry property can be obtained from
the failure of the order property.

Theorem 2.20 (Symmetry), (f tp(a, B) and tp(c, B) are stationary, then

if and only if c^a.
BB

Proof First, D is stable by Theorem 2.13, and therefore does not have the oo-order
property by Theorem 1.12. Suppose, for a contradiction, that

i?[tp(c,B Ua)] < #[tp(c,B)\ and #[tp(a,BUc)] = R[tp{a,B)].

Let A = 3/2|Th+ and let \i = (2A)+. We use Theorem 1.6 to show that D has the
oo-order property, by constructing an order of length A. Choose p(x, y, b) G 5x>(6)
with b€B, such that

i?[tp(a, BUc)] = R\p{x, c, 6)] = U[tp(a, B)}

and

fl[tp(c,BUa)] = i?b(c,»,6)] < flltpfeB)].

Let aQ, ca € C for a < /x and Ba = U{«0? ^ | ft < a} be such that:

(1) Bo = B;
(2) aQ realizes tp(a, B) and il[tp(aa, Ba)] = ii[tp(a, B)];
(3) cQ realizes tp(c, B) and .R[tp(ca, 5 Q U da)] = i?[tp(c, B)].
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This is achieved by induction on a < /i. Let Bo := B, CLQ := a and
Co := c. At stage a, we let first Ba := \J{ap,cp \ p < a] which is well-
defined by induction hypothesis. We then satisfy in this order (2) by stationarity of
tp(a, B)y and (3) by stationarity of tp(c, B).

This is enough: First, notice that cQ does not realize p(a, y, 6), otherwise

R[tp(caiBa USO)] <

contrary to the choice of ca . Similarly, since tp(aa,2?) = tp(a, J5) and b € B,
then

so cQ does not realize p(ap, y, 6) when a > /?.

Now suppose a < /?. Then a/? realizes p(x, c, 6) since by stationarity, we
must have tp(a^, AUc) = tp(a, J5 U c). Further, since tp(a a , Ba) does not split
over B and tp(cQ, B) = tp(c, B) we must have p(x, c a , 6) C tp(a a , B a ) . So a^
realizes p(x,c a , 6).

Let da = caaa and let 9(^1, y\, ^2? y2,6) •= p(^i? y2, &) (we may assume
that g is closed under finite conjunction). Then, above construction shows that

(*) dadp ^=q{xuyux2jj2,b) if and only if a < /3 < /z,

i.e. we we have an order of length /i witnessed by the type q.

We use (*) to obtain an order of length A witnessed by a formula as follows.
On the one hand, (*) implies that for any 0(£i,X2,yi, j/2>£) G q, the following
holds:

(**) f= <p[da, d/j, 6] whenever a < p.

On the other hand, if a > /?, by (*) again, there is 4>a^ {x\, #2 > yi, J/2,5) Eg, such
that (= ~i^a,/?[rfa,d0,&]. Hence, by the Erdos-Rado Theorem, since \q\ < |T|, we
can find S C /u of cardinality A and ̂ (£1, ̂ 2, yi, t/2, &) G g, such that

(***) ^ -,^[JQ| ̂ ? 1] whenever a > /?, a,(3eS.

Therefore, (**) and (***) together show that we can find an order of length A,
which is the desired contradiction. •

We close this section by gathering together the properties of the forking
symbol. They are stated with the names of the first-order forking properties to
which they correspond.

Theorem 2.21. (1) (Definition) A X C if and only ifAsLBuC.
B B

(2) (Existence) A X B
B

(3) (K(D) = No) For all a and C, there is a finite BCC such that aXC.
B
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(4) (Invariance under automorphisms) Let f € Aut(C).

AXC if and only if f{A) d, f{C).
B f(B)

(5) (Finite Character)

AXC if and only if A'vLC",
B B

for every finite A1 C A, and finite C ' C C .
(6) (Monotonicity) Suppose A' and C" contain A and C respectively and that

Br is a subset ofB, Then

' AdC implies Ar <±,C'.
B B'

(7) (Transitivity) IfB C C C D, then

and AXD ifandonlyif AXD.
B C B

(8) (Symmetry) Let M is a (D, No)-homogeneous model

AsLC ifandonlyif CXA.
M M

(9) (Extension) Let Mbea (D, ^^homogeneous model For every A, C there
exists A1 such that

tp(;l, M) = tp(A', M) and A1 sL C.
M

(10) (Uniqueness) Let Mbea (D, Mo) -homogeneous model If A, A1 satisfy

tp(A,M)=tp(A' ,M) and both AdC and A'XC
M M

then tp(A, MC) = tp(A', MC).

Proof (1) This is just by Definition 2.19.
(2) Immediate from Definition 2.19.
(3) By Finite Character of the rank and Definition 2.19.
(4) Follows from Lemma 2.2 5.
(5) Immediate by finite definition and finite character of the rank.
(6) Assume C ^y A. Then, by Finite Character, there is c € C, such that

M
i2[tp(c, M)] < #[tp(c, Af)]. Also by Finite Character , there exists a € A
such that jR[tp(c,MUa)] = #[tp(c,M)]. Hencecsj^a. But, by Corollary

M
2.10, both tp(a,M) and tp(c,M) are stationary, so by Theorem 2.20 we
must have a ̂  c. By Finite Character, this shows that A^C.

M M
(7) Let a € A. Then, by Finite Character, a vL C, and a vL I?, so by Definition

2.19B[tp(a,C)] = R[tp(a,B)] and i?[tp(o,D)] = R[tp(a,C)). Thus
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i2[tp(a,B)] = i2[tp(a,£))], s o o X D . Hence, by Finite Character, we
B

must have A X D. The converse is just by Monotonicity.
B

(8) Immediate by Theorem 2.20 and Corollary 2.10.
(9) Follows from Corollary 2.10 and Definition 2.19.

(10) Follows from Corollary 2.10 and Definition 2.19.

•

3. REGULAR AND MINIMAL TYPES

In this section, we prove the existence of various pregeometries for totally
transcendental diagrams. First, we make the following definition (a similar defini-
tion appears in [Sh 4]).

Definition 3.1. (1) Let a be in M and q(x, a) be a type. We say that q(x, a) is
big for M if q(x, a) is realized outside M;

(2) We say that q(x, a) is big if q(x, a) is big for any M containing a;
(3) A type q G SD(A) is big (for M)ifq f a is big (for M) for every a e A.

In presence of the compactness theorem, big types are the same as non-
algebraic types. Even in the general case, we have a nice characterization of big-
ness when the types are stationary.

Lemma 3.2. Let q E SD{A) be stationary. The following conditions are equiva-
lent:

(1) q is big for some (Z), No) -homogeneous M containing A;
(2) R[q] > 1;
(3) q is big.

Proof (1) =$• (2): Since M is (D, No)-homogeneous, by Lemma 2.3, R[q] =
RM[Q\> S O ^ is enough to show RM[Q] ^ 1. Let a G Abe such that RM[Q] =
RM[Q \ 5]. Since q \ a is big for M, there exists c & M realizing q \ a. Also,
since M is (Z?, HQ)-homogeneous, there is c' 6 M realizing q \ a. Hence

Rht[{q \ S) U {x = #}] > 0 and RM[(q f 3) U {x ? c7}] > 0.

Moreover, for every b € M, (q \ a) U tp(c, 6) is realized by c, and so

and tp(c, 6) € ^ ( 6 ) . This shows that RM[Q \ a] > 1.

(2) =̂  (3): Suppose g is stationary, ii[g] > 1 and M containing a are
given. By taking a larger M if necessary, we may assume that M is (D, No)-
homogeneous. Since q is stationary, there exists qu € So{M)y such that i?[gM] =
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R[q] > 1. Let c realize ^M • If 5 € M, then {re = c } G ?M> so

0 = R[x = g] > i?[gM] > 1,

which is a contradiction. Hence c £ M, so q is big for M.

(3) =-, (l): Clear by definition. •

Definition 3.3. Let p G SD(A) be a big, stationary type.

(1) We say that p is regular for M if AC M and for every B C M w e have

^ imply asLBUft, for all a, 6 ep(M).
A A A

(2) We say that p is regular ifp is regular for C

Lemma 3.4. Lef p G Sx>(A) fee a fc/g, stationary type based one £ A. Ifp \ c is
regular, then p is regular

Proof. First notice that stationarity and bigness are preserved (bigness is the con-
tent of Lemma 3.2). Suppose p is not regular. We will show that p f c is not regular.
Let a,b\=p and B be such that

and yet a
A A A

Therefore tp(a, A U B ) = PAUB and so by choice of c we have tp(a, A U B) =
(p \ C)AUB> i.e. a^LAUB. Now since iJ[p] = R\p \ c],

c

#[tp(6, A U B)] < #[tp(5, A)] implies J?[tp(6, A U 5)] < il[p f g],

i.e. 6 ̂  A U B. We show similarly that a^AUBUb, which shows that p f c is
c c

not regular. •

Remark 3.5. If p(x,a) is regular and o! € M is such that tp(a,0) = tp(a ;,0),
then p(x, a') is regular.

Definition 3.6. Letp 6 SD{B), B C M and M̂  = p(M) - B ^ 0. Define

a G d ( C ) if a^LC, fora € W andC C W.
B

Theorem 3.7. Let M be (D, Ho)-homogeneous containing B andp € SD(B) be
realized in M. Ifp is regular then (W, d ) is a pregeometry.

Proof We need to show that the four axioms of pregeometry hold (notice that

(1) We show that for every CCW9CC d(C).
Let c G C, then {x = c} G tp(c, ̂ 4 U C), hence

so CvĴ  C and thus c G d{C).
B
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(2) We show that if c G cl(C)y there is C" C C finite, such that c G cl{C).
Let c G c/(C). By Definition 3.6 c^C so by Theorem 2.21 5 there

B
exists C CC finite, such that c ̂  C", hence c G cZ(C")-

(3) We show that if a G cl(C) and C C d(£), then a G cl(E).
Write C = {c{ \ i < ct}. Then a ^ c * | i < a}. Suppose a X E. We

£ B
show by induction on i < a that a X -E? U {CJ; | j < i}.

B
• For i = 0 this is the assumption and for i a limit ordinal, this is true by

Theorem 2.21 5.
• For the successor case, suppose it is true for i. Then a J^ E U {Q |

J3
/ < i}. Since C C cl(E), we have (H^E, so by Theorem 2.21 6

B
\l <i}. Hence, since p is regular, we must have a vL E U

5

Thus a vL E U C, and since C C C u £ , w e must have a vL C. Hence

a £ c/(C), which contradicts our assumption.
(4) We show that if c € cl(Ca) - d{C), then a € d((7c).

Since symmetry has been shown only for stationary types, this statement
is not immediate from Theorem 2.20.

Suppose that c ̂ t Ca and c sL C Then c^L,a> since
£ B C

i2[tp(c, B U Ca)] < i?[tp(c, B)] = i?[tp(c, B U C)].

Therefore c realizes PBUC* so tp(c, B U C) is stationary. If a vĵ  C, then by

Theorem 2.21 6 we must have a ̂  Ccy and we are done.
B

Otherwise, a sL C. Hence a realizes PBUC and so tp(a, B U C) is sta-

tionary. Therefore by Theorem 2.20 we must have a ̂  c, a contradiction.
C

Hence by Theorem 2.21 6, we have a ̂  Co, i.e. a G cl(Cc).
B

•

We now show the connection between independent sets in the pregeome-
tries, averages and stationarity.

Lemma 3.8, Letp(x, c) be regular. Suppose I is infinite and independent inp(C, c).
Then I is indiscernible and for every B containing c we have ps = A V D ( / , B).
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Proof, Write J = {o» | t < a} . Then since / is independent, a»+i \= PA{* where
Ai = c U {% \ j < i}. Thus / is a Morley sequence based on p, so the result
follows from Lemmas 2.15 and 2.17. •

Now we turn to existence. In order to do this, we need a lemma.

Lemma 3.9. Let M be (JD, #Q)-homogeneous, andp(x, c) over M be big and sta-
tionary. Then p(ir, c) is regular if and only i/p(£, c) is regular for M.

Proof If p(x, c) is regular, then p(x, c) is clearly regular for M. Suppose p(x, c)
is not regular. Then there are B C C, and a, b realizing p(x, c), such that

and
c c c

First, we may assume that B is finite: choose Bf C B such that

i?[tp(a, £ ' U c6)] = ii[tp(a, J3 U cb)]

and then choose B" C B finite, such that b ^ PB \ B". Hence, for Bo =
B' U B" C J5, we have

Now, since M is (D, Ho)-homogeneous and c G M, we can find J5i,ai and 6i
inside M such that tp(Boa6,c) = tp(Biai6i,c). Therefore, by invariance we
have:

avLBi, 6^J5i , and a ^ B i b .
c c c

This shows that p is not regular for M. D

The following argument for the existence of regular types is similar to
Claim V.3.5. of [Sh a]. However, since our basic definitions are different, we
provide a proof.

Theorem 3.10 (Existence of regular types). LetM C Nbe(D, ^-homogeneous.
IfM 7̂  N, then there exists p(x, a) regular, realized in N — M. In fact, ifp{x, a)
is big and stationary, and has minimal rank among all big, stationary types over
M realized in N — M, then p(x, a) is regular.

Proof The first statement follows from the second. To prove the second statement,
we first choose d € N - M, be such that tp(c/, M) has minimal rank among all
types over M realized in N - M, say i?[tp(c/, M)] = a. We then choose ae M
such that R[tp{c', M)] = R[tp(d,a)] = a. Write tp(c',a) = p(rr,a) and notice
that p is stationary and big for M, hence big, by Lemma 3.2.
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By the previous lemma, to show that p(x, a) is regular, it is equivalent to
show that p(x, a) is regular for M. For this, let a, be p(M) and B CM such that

a sL B and
a a

We must show that a vL Bb. Suppose, by way of contradiction that this is not the

case. Then, by definition, we have jR[tp(a, Bab)] < a. We now choose c,d £ B
such that

R[tp(a, Bab)] = R[tp(a, cab)] < a and i?[tp(6, Ba)] = R[tp(b, da)] < a.

Since N is (D, No)-homogeneous and </, a, 6, a,c,d € iV, there is bf E N such
that tp(a6, acd) = tp(a'6', acd). Now, tp(6', ad) = tp(6', ad), so

U[tp(6',M)] < i?[tp(6',ad)] = i*[tp(6, ad)] < a.

By minimality of a, we must have b' G M. This implies that i?[tp(a', M)] <
Rltpia'^cab')], so ^ ^ ( a ' , cab1)] = a. Now there is / € Aut(C) such that
f(a!) = a, /(&') = 6 and f \ cd = idea, by choice of V. Hence, by property
of the rank

a = R[tp{a',cab')] = i?[/(tp(a',ca&'))] = R[tp(a,cab)] < a,

which is a contradiction. Hence a vL 56, so that p(x, a) is regular. D
a

By observing what happens when N = C in above theorem, one discovers
more concrete regular types. For this, we make the following definition. A similar
definition in the context of LU1UJ(Q) appears in the last section of [Sh4]. An
illustration of why this definition is natural can be found in the proof of Lemma
4.20. In presence of the compactness theorem, S-minimal is the same as strongly
minimal.

Definition 3.11. (1) A big, stationary type q(x,a) over M is said to_be S-
minimal for M if for any 0(x,b) over M not both q(x, d) U 6{x,b) and
q(x, a) U -i0(:r, b) are big for M.

(2) A big, stationary type q(x, a) is said to be S-minimal if q(x, a) is S-minimal
for for every M containing a.

(3) If q € S£>(J4) is big and stationary, we say that q is S-minimal if q f a is
S-minimal for some a.

Remark 3.12. (1) Let q(x, c) be S-minimal for the (Z?, No)-homogeneous model
M. Let W = q{M,c) and fora € W and B C W define

a € cl(B) if tp(a, B U c) is not big (for M).

Then it can be shown directly from the assumption that D is totally tran-
scendental, that (W, cl) is a pregeometry.

(2) If M is (2?, No)-homogeneous and q(x, c) has minimal rank among all big,
stationary q(x, c) over M, then the previous theorem shows that q is reg-
ular. But q is also S-minimal for M. As a matter of fact, if adsB, then

c
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B[tp(a, B Uc)] = i?[g(x, c)] > 1 and tp(a, B U c) is stationary, so tp(a, 6U
c) is big, so a £ cl{B). Conversely, if a ^ JB, then i?[tp(a, Be)] < R[q{x, c].

c
But if tp(a, B U c) was big, then we could find a1 & M such that tp(a', 2? U

c) = tp(a ,BUc) , so

f?[tp(a',M)] < i?[tp(a',BUc)] = i?[ tp(a,BUc)]< iJ[g(x,£)],
contradicting the minimality of R[q{x, c)]. Hence tp(a, B U c) is not big,
and so a G c/(B). In other words, both pregeometries coincide.

(3) Using the results that we have proven so far, it is not difficult to show that
if M, N are (D, No)-homogeneous, and q(x1 c) has minimal rank among all
big, stationary types over M and t G N such that tp(c, 0) = tp(c /, 0), then
q(x, c') has minimal rank among all big, stationary types over iV, hence if
g(x, <!) is S-minimal for N.

In the light of these remarks, we will make the following definition.

Definition 3,13. Let M be (D, No)-homogeneous. A big, stationary type q(x, c)
with c G M is called minimal if g(x, c) has minimal rank among all big, stationary
types over M.

We close this section by summarizing above remark in the following theo-
rem.

Theorem 3.14. (1) For any (D, HQ)-homogeneous model, there exists a mini-
mal q(x, c) with c£ M.

(2) Minimal types are regular and moreover for every A containing c, every set
B and a\= qAwe have

tp(a ,AUB) is big if and only if a^LB.
A

Proof The first item is clear by definition. The second follows by Theorem 3.10,
and Remark 3.12 2 and 3. •

4. APPLICATIONS

In this section, we give a few applications of our concepts. The rank is
especially useful to study the class of (Dy No)-homogeneous models of a totally
transcendental D. In the first subsection, we start with the existence of prime
models.

4.1. Prime models. We give definitions from [Sh 1] in more modern terminology.

Definition 4.1. (1) We say that p G SD{A) is Ds
x-isolated over B C A, \B\ <

A, if for any q G Sx>(̂ 4) extending p \ B, we have q = p.
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(2) We say that p G SD{A) is Ds
x-isolated if there is B C A, |B | < A, such

that p is /^-isolated over B.

The following are verifications of Axioms X.I and XI. 1 from Chapter IV
of[Sha].

Theorem 4.2 (X.I). Let A C C and \i > No- Every <p(x, a) over A realized in C
can be extended to a D^-isolated type p G SD(A).

Proof It is enough to show the result for fi = No-

Since C f= zte0[x,a], there exists c G C such that C f= <£[c,a]. Thus
there exists is p G S^CA), namely tp(c, ^4), containing <£(#, a). Since D is totally
transcendental and i C C w e must have RA\P] < oo. Among all those p G 5D(-A)

containing <f>(x, a) choose one with minimal rank. Say RA\P] = a > 0.

We claim that p is D#o-isolated. First, there is b G A such that RA\P) =
i ^ i b f 6]. We may assume that p \ b contains <f)(x, a) by Lemma 2.2 6. Suppose
that there is q € SD{A)> q ^ p, such that q extends p \ b. Then RA[q] > ex by
choice of p (since q contains 0(x, a)). Now, choose ^ ( ^ , c) with c € i such that
ip(x, c) G p and - ^ ( ^ c) G 9. Then since (p f 6) U V>(̂ > c) C p, by Lemma 2.2 6
we have

RA[(P r 6) U *P(x,c)] > RA\p] > a.

Similarly

RA[(P r 5) U -.tf(2,c)] > B^H > a.

Now, given any d G A> RA [p t & U J)_> a (again by Lemma 2.2 6). Since
P € 5 D ( J 4 ) 1 necessarily if we write p \ d_ = p(x, d), then wehave p(x, y) e D
(since p(x, d) G Sn(d)). Hence since p f f t u J h p ffeU p(x, J)) we have

^ [ ( P r b) Up{xJ)] > RA\p f bUd\ > a.

But this shows that i2,4[p f 6] > a + 1, a contradiction.

Hence p is the only extension of p \ 6, so p is Z)£o -isolated. •

Theorem 4.3 (XL 1). Let fi be infinite and B C A Every Desolated r G 5/>(B)
can fee extended to a D^-isolated type p G ^ ( - 4 ) .

Proof Since C is (2?, x) -homogeneous, there exists c€<£ realizing r. Hence there
is p G SD(A) extending r, namely tp(c, ̂ 4). Since D is totally transcendental and
A C Cv/e must have RA\P] < 00. Among all those p G S£>(4) extending r
choose one with minimal rank. Say RA\P] = « > 0.

We claim that p is D*-isolated. First, there is 6 G -4 such that RA\P] =
RA\P \b]- Also, since r is D^-isolated, there is C C By \C\ < (j, such that r f C
isolates r. We may assume that RA[T] = i2yi[r f C], by Lemma 2.2 7. We claim
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that (r \ C)U{p\b) isolates p. By contradiction, suppose that there is q G SD{A)
extending (r f C) U (p \ b) such that q ^ p. Notice that r Cq, since r was isolated
by r f C, and hence i^fa] > #A[P] = a by choice of p. Now, choose xl>{x,a)
with a G A such that ^{x.a) G p and ->if)(x,a) G g. By Lemma 2.2 6 (since
(p f 6) U V>(̂ > c) C p), we must have

t b) U ̂ (2 , c)] > RA\p) = a.

Similarly

Now, given any d G A we have that RA\P \ b U d\ > a (again by Lemma 2.2
6). Since p G S£>(^), necessarily if we write p f d = p(x,d), then we have
P(^>y) € Z? (since p(x,d) G SD((1)). Hence

> a,

since p f 6 U d h ( p f 6 ) U p(x,d). But this shows that RA\p \ b] > a + 1, a
contradiction.

Hence p is the only extension of (r \ C) U (p f 6), sop is D*-isolated. D

Following Chapter IV of [Sh a], we set:

Definition 4A (1) We say that C={{a,i, A{, Bi) \ i < a} is a (D, X)-construction
of C over A if
(a) C = A U U K I i < «};
(b) Bi C A., |Bj| < A, where A{ = A U ( J { ^ | j < i}\
(c) tp(aj, Ai) G So(Ai) is D^-isolated over Bj.

(2) We say that M is Dyconstructible over A if there is a (D, A)-construction
for M over A.

(3) We say that M is Dyprimary over A, if M is D^-constructible over A and
M is (D, A)-homogeneous.

(4) We say that M is Dyprime over A if
(a) M is (JD, A)-homogeneous and
(b) if iV is (D, A)-homogeneous and A C TV, then there is / : N —̂  M

elementary such that / f A = ZGU.
(5) We say that M is Dyminimal over A, if M is D^-prime over A and for

every (D, A)-homogeneous model JV, if A C JV C M, then M = JV.

Remark 4,5. We use the same notation as in [Sh a], except that we replace F by
D to make it explicit that we deal exclusively with D-types (or equivalently, types
realized in C). In particular, for example if M is D#Q-primary over A, then M is
D#o-prime over A.

Theorem 4.6 (Existence of prime models). Let D be totally transcendental Then
for all A C C and infinite fx there is a D^-primary model M over A of cardinality
\A\ + \T\ + \D\ + fi. Moreover, M is D^-prime over A.
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Proof. See page 175 of [Sh a] and notice that we just established J O and XI.l.
Observe that in the construction, each new element realizes a Z?-type, so that the
resulting model is indeed a jD-model. The optimal bound on the cardinality follows
from Theorem 2.13. The second sentence follows automatically. D

Remark 4.7. A similar theorem, with a stronger assumption (D is No-stable) and
without the bound on the cardinality appears in [Sh 1]. Note that Z?£-primaiy, is
called (D,fi, l)-prime there.

Notice that this allows us to show how any type can be decomposed into
stationary and isolated types. A similar result appears in [Sh 87a].

L e m m a 4 , 8 . L e t p G S o (A) and suppose a realizes p . Then there i s b E C such
that

( 1 ) tp(6,A) is Desolated;
(2) tp(a, Ab) is stationary;
(3) R[tp(a,Ab)] = R[tp{a,b)].

Furthermore, p does not split over a finite set.

Proof Let a (= p. Let M be D#o -primary model over A. Then tp(a,M) is
stationary since M is (J9, No)-homogeneous, and there is b G M finite, such that
R[tp(a,M)] = R[tp(a,b)]. Hence i2[tp(a, Ab)] = iJ[tp(S,6)] by Lemma 2.2 6,
and so tp(a,A6) is stationary. Also, tp(b,A) is D#Q-isolated, since M is Z?£o-
primary over A.

Finally, to see that p does not split over a finite set, assume a f= p, tp(6, A)
is D#o-isolated, tp(a,Ab) is stationary, and i?[tp(a, A6)] = i2[tp(a,6)]. Then
there is C C A finite, such that tp(b,A) is D#o-isolated over C. Also, since
tp(a, Ab) is stationary, it does not split over b. Now it is easy to see that p does
not split over C: otherwise there are q G A, and </>(£,y) such that tp(ci,C) =
tp(c2, C), &i G A for / = 1,2, and f= 0[a, c{\ and f= -></>[a, 02]. But tp(6, ̂ 4) does
not split over C, and so tp(ci,6) = tp(c2,6). However, this contradicts the fact
that tp(a, Ab) does not split over b. All the conditions are satisfied. •

This gives us an alternative and short proof that averages are well-defined,
and in fact, allows us to give short proofs of all the facts in Lemma 1.15.

Lemma 4.9. Let I be infinite and i C C . Then AvD(/, 4) G SD(A)

Proof Completeness is clear. To see that A V D ( / , - 4 ) is consistent, suppose that
both <f>(x, a) and -><£(a;, a) are realized by infinitely many elements of / . But
tp(d, / ) does not split over a finite set B C / by the previous lemma. Hence, by
choice of <f>(x, a), we can find b,ce I—B such that (= <f>[b, a] and f= -«<£[c, a]. This
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however, shows that tp(a, / ) splits over 2?, since tp(6, B) = tp(c, B) by indis-
cernibility of / and both <f>{b, y), -K/>(C, y) € tp(a, J). Now AvD(J, A) G SD(A)

since we can extend I to a Z?-set of indiscernible J of cardinality \A\+
9 and then

some element o f J realizes A V D ( / , A). - •

The following is a particular case of Theorem 1.11. We include it here not
just for completeness, but because the proof is different from the proof of 1.11 and
very similar in the conceptual framework to the first-order case.

Theorem 4.10. Let D be totally transcendental If (Mi \ i < a) is an increasing
chain of (D, /x)-homogeneous models, then \Ji<aMi is (2?,/i)-homogeneous (fi
infinite).

Proof Let M = [Ji<aMi and notice that M is (JD, No)-homogeneous. Letp G
SD(A)> A C M, |A| < /x and choose q G SD{M) extending p. Then, by Corollary
2.10, q is stationary and there i s B C M , finite such that q is based on B. Let i < a,
be such that B C M*. Since Mi is {Dy /z)-homogeneous, there is / = {a,j \ j <
fi} C Mi aMorley sequence for qs> Then, by Lemma2.17, qAB = kvi>{I,A\jB).
But | / | > |AUB|, so by Lemma 1.15 there is dj e I realizing AvD(/ , AUB). But

2 P> so p is realized in M. This shows that M is (JD, /i)-homogeneous. •

4.2. Categoricity. We now focus on the structure of (D, No)-homogeneous mod-
els. Notice that when D is the set of isolated types over the empty set or when
D comes from a Scott sentence of Luiu;9 this class coincides with the class of D-
models. When D = D(T), then K is the class of No-saturated models (of a totally
transcendental theory, in our case).

Definition 4.11. Define

K = { M | M is (D, No) — homogeneous }.

Remark 4.12. We will say that M G K is prime over A or minimal over A, when
M is JD^o-prime over A or D^Q -minimal over A respectively.

By analogy with the first-order case, we set the following definition.

Definition 4.13. Let D be totally transcendental. We say that D is unidimensional
if for every pair of models M C N in K and minimal type g(x, a) minimal over
M,

, a) = q(N, a) implies M = N.

Unidimensionality for a totally transcendental diagram D turns out to be
a weak dividing line. When it fails, we can construct non-isomorphic models, like
in the next theorem (this justifies the name), and when it holds we get a strong
structural theorem (see Theorem 4.19, which implies categoricity). In fact, the
conclusion of our next theorem is similar to (but stronger than) the conclusion of
Theorem 6.9 of [Sh 1] (we prove it for every /i, not just regular /i, and can obtain
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these models of cardinality exactly A, not arbitrarily large). The assumptions of
Theorem 6.9 of [Sh 1] are weaker and the proof considerably longer. Actually,
Corollary 4.25 makes the connection with Theorem 6.9 of [Sh 1] clearer.

We first prove two technical lemmas which are similar to Lemma 3.4 and
fact 3.2.1 from [GrHa] respectively. The proofs are straightforward generalizations
and are presented here for the sake of completeness.

Lemma 4.14. Letp, q € SD{M) and M C N be in K. If a vL bfor every a f= q
M

and b f= p, then a X bfor every a\= qw and b (= p#.
N

Proof Suppose not. Then there are a \= PN and b |= qx such that a
N

Choose E C N finite such that a 4, b and tp(a&, N) is based on E. This is
ME

possible by Theorem 2.21 5 and by die fact that tp(a6,7V) is stationary. Sim-
ilarly, we can find C C M finite, such that PM and ?M are based on C and
a sĵ  b. Since C C M finite and M € /C, there exists a*,6*,J&* C M, such

CE
that tp(a6£', C) = tp(a*b*E*, C), and so a* ^ b*. Since tp(a&, N) is based on

CE*
E, then tp(afe, CE) is stationary based on E9 so tp(a*6*, CE*) is stationary based
on E*. Therefore, we can choose arbf (= tp(a*6*, CE*)M, and by choice of C,
necessarily af f= PM and b' f= <?M-

Hence, by assumption on p^, <7M, we have a' ^L &', so also a1 d, b'. But
M CE*

this implies a* vL 6*, by choice of a'b\ a contradiction. •

Lemma 4.15. Let N be (D, n)-homogeneous. If adsb and tp(a,iV6) is Ds
a-

N
isolated, then a G N.

Proof Since p = tp(a,Nb) is ^-isolated, there is C C N9 \C\ <*/i such that
tp(a, C6) isolates p. Since tp(6, iV) is stationary, we may assume that tp(6, N)
does not split over C. Since, by Theorem 2.21 8 also b vL a, so we may assume

that tp(6, iVa) does not split over C.

Now, since N is (I?, y)-homogeneous, there is a1 € N, such that tp(a, C) =
tp(a;, (7). But since tp(6, No) does not split over C, then tp(a&, C) = tp(a'6, (7).
Hence tp(a, iV) = tp(a', JV), so that a € TV. •

We recall a definition from [Sh 1].

Definition 4.16. A D-model M is maximally (D, /J,)-homogeneous if M is (D, ii)~
homogeneous, but not (£>,/i+)-homogeneous.
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Theorem 4.17. Suppose D is not unidimensional Then there is a maximally
(£>, /j)-homogeneous model M of cardinality \,for every X > \x > \T\ + \D\.

Proof Suppose D is totally transcendental and not unidimensional. Then there

exists M, N in K and a minimal type g(x, a) over M with the property that

(*) q{M,a) = q{N,a) and M C JV, M^N.

Using the Downward Lowenheim Skolem Theorem and prime models, we
may assume that \q{M,a)\ < \T\ + \D\. Let A > \i > \T\ + \D\ be given.
We first show that we can find M, N € K satisfying (*) such that in addition

Since M ^ N e K, there is b € N - M, so p = tp(6, M) G
is big and stationary. This implies that a' ds br for any a1 |= ? M and 6' f= p (by

M
an automorphism sending 6' to 6, it is enough to see a' vL 6, but this is obvious,

M
otherwise tp(a', Mb) is not big, thus cannot be big for N by Lemma 3.2, hence
it has to be realized in N — M, which implies that af e N — M, contradicting

Construct (M* | i < fj,) increasing and / = {a* | i < /x}, a*
realizing gA/j> such that:

(1) Mf+i € K is D^o-primary over Mj U a*;
(2) Mo = M;
(3) Mj = (JJ<:i Mj when j is a limit ordinal;

(4) If bf realizes PM»> m̂d ̂ * is ̂ H0"P"mary o v e r

This is enough: Consider iV Dgo-primary over M^ U 6', where bf |=
Then b* e N - MM and yet ̂ (M^ja) = g(iV,a), so (*) holds. Furthermore,

This is possible:

• For i = 0, this follows from the definition of q (send 6; to 6 by an automor-
phism, fixing M, to obtain a realization of qu in N - M).

• If i is a limit ordinal, and 6; [= PMJ» then this implies that b1 \= pur for
any j < i. Also, if N* is prime over Mi U 6;, and c € N* — Mi realizes
q(xy a), then tp(c, Mib1) is D£o-isolated over some fhb, and mb € Mj for
some j < t, hence c G Mj by induction hypothesis, a contradiction.

• For i = j + 1. Let br |= PM, and JV* be prime over Mj U 6'. Suppose
that c e N* - Mj realizes g(x,a). Then, since c £ Mj, we must have
tp(c, Mj) is big, so c f= ̂ M, • Hence, by Lemma 4.14 we have c vL 6'. But

M
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tp(c,Mj&') is D£o-isolated, so by Lemma 4.15, we must have c G
contradiction. Hence q{Mi) = q(N*) and we are done.

Let M* = M^, and fix 6 f= PM* • We now show that we can find a (£>, /i)-
homogeneous model N 6 /C of cardinality A such that M* and iV satisfy (*). This
implies the conclusion of the theorem: N is (Z), jx)-homogeneous of cardinality A;
N is not (D,/L4+)-homogeneous, since N omits qM* € SD{M*), and ||M*|| = /i.

We construct (iVj | % < A) increasing, and 6» £ iVj realizing PN{ such that:

(1) 6o = b and iVo is D^ -primary over M* U 6;
(2) iVj+i is £>£-primary over N{ U 6*;
(3) N{ = Uj<t ^i» when i is a limit ordinal;
(4) ||JVi|| < A;
(5) N{ is (D,/i)-homogeneous;

This is clearly enough: N\ is as required.

This is possible: We construct N{ by induction on i < A.

• For % = 0, let N* C iV0 be Dgo-primary over M* U 6. We have g(iV*, a) =
q(M*, a) by construction of M*, so it is enough to show that q(N*, a) =
q(No,a). Suppose not and let c € No — N* realize g(x, a). Then, c re-
alizes qN* since tp(c,iV*) is big, and further there is A C M*, |i4| < fi
such that tp(c,>16) isolates tp(c,M*6). By Lemma 2.17 since / is based
on q, we have Avn(I,N*) = qw*y where / = {ai | i < //} C M*
defined above. But since both tp(c,Ab) and tp(c, Af*) are big, we must
have tp(c,46) = AvD(/,^&) and tp(c,AP) = AvD(/ ,M*). Hence
AVD( / , -46 ) H A V D ( / , M * ) . NOW, by Lemma 1.15, we can find / ' C 7,
| / ; | < /i such that / — If is indiscernible over >16. Since | / | = /z, then
/ — / ' ^ 0 and all elements of / — / ' realize AVD(/,-46), hence also
A V D ( / , M * ) = <7A/*. But this is impossible since / C M*. Therefore

• For i a limit ordinal, the only condition to check is that N{ is (i?,/x)-
homogeneous, but this follows from Theorem 4.10.

• For i = j + 1, by induction hypothesis, we have q(Nj, a) = q(M*, a), so it
is enough to show that q(Nj+i, a) = g(JVj, a). Suppose c e Nj+i realizes
q. Since Nj+\ is Z>*-primary over Nj U 6j, we have tp(c, JV̂  U bj) is D^-
isolated. But c dsbj, by Lemma 4.14. Therefore, by Lemma 4.15, we have

Nt

that c G -Wj. This shows that q(Nj+i,a) = g(M*,a).

This completes the proof. •

Corollary 4.18. Let D be totally transcendental IfK, is categorical in some A >
\T\ + \D\ then D is unidimensional
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Proof. Otherwise, there is a jD-homogeneous model of cardinality A and a maxi-
mally (D, |T| + |D|)-homogeneous model of cardinality A. Hence K is not cate-
gorical in A, since these models cannot be isomorphic. •

We now obtain strong structural results when D is unidimensional.

Theorem 4.19. Let D be unidimensional Then every M G Kis prime and mini-
mal over q(M, a), for any minimal type <j(x, a) over M.

Proof Let M G K be given. Since D is totally transcendental, there exists a
minimal type g(x,d) over M. Consider A = q(M,a). To check minimality,
suppose there was N G /C, such that A C N C M. Since g(iV, a) = A = g(M, a),
we must have iV = M, by unidimensionality of D. We now show that M is prime
over A. Since D is totally transcendental, there is M* € /C prime over A. Hence,
we may assume that A C M* C M. Now the minimality of M implies that
M = M*, so M is prime over A. Clearly, any other minimal type would have the
same property. •

We next establish two lemmas, which are key results to carry out the geo-
metric argument for the categoricity theorem.

Lemma 4.20. Let M G K and suppose that g(x, a) is minimal over M.IfW =
q(M,a) has dimension A infinite, then W realizes every extension p G SD(A) of
type q, provided A is a subset ofW of cardinality less than the dimension A.

Proof Let p G SD(A) be given extending q. Let c G C realize p. If p is not big
for M, then p is not realized outside M so c G M. Hence c ^ H ^ since p extends
q. If however p is big for M, then p is big and then by Lemma 3.8 and Theorem
3.14 we have that p = A V D ( / , A), where / is any basis of W of cardinality A. But
| / | = A > | A\+ + No, so by Lemma 1.15 and definition of averages, A V D ( / , A) is
realized by some element oflCW. Hence p is realized in W. •

Lemma 4.21. Let D be unidimensional and let M be in K of cardinality A >
\T\ + |Z?|. Suppose g(x, d) is minimal over M. Then g(M, a) has dimension A.

Proof Let M G /C be given and q(x, a) be minimal. Construct (Ma \ a < X)
strictly increasing and continuous such that a G Mo, MQ C M and ||MQ|| =
M + |T| + |£>|.

This is possible by Theorem 4.6: For a = 0, just choose Mo C M prime
over d. For a a limit ordinal, let Ma = \Jp<a

 MP- A t successor stage, since
||MQ|| < \a\ + \T\ + \D\ < A, there exists aa G M - M a , so we can choose
M a + i C M prime over MQ U aQ.

This is enough: Since D is unidimensional, we can find cQ G M a+i - M a

realizing g. By definition, t p (c Q , | J {^ I /?<<*}) i s big> s i n c e ca 0 MQ. Hence
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| ft < a}). Therefore {cQ | a < A} is independent and so q{M,a)
has dimension at least A. Hence since ||M|| = A, then q(M,a) has dimension
A. •

Theorem 4,22. Let D be unidimensional Then K is categorical in every A >
\T\ + \D\.

Proof. Let M/ e K for I = 1,2 be of cardinality A > \T\ + \D\. Since D is totally
transcendental, we can choose, q{x^a\) minimal, with a\ 6 M\. Now, since M2
is (Z?, Ko)-homogeneous, we can find 62 € M2 such that tp(ai,0) = tp(a2,0).
Then q(x,ai) is minimal also. Let Wi = q(Mi,a{) f or Z = 1,2. Since Z> is
unidimensional, by Lemma 4.21, we have dim(W )̂ = A > \T\ + \D\. Hence, by
Lemma 4.20 every type extending q(x, a\) over a subset of W\ of cardinality less
than A is realized in Wu for / = 1,2. This allows us to construct by induction an
elementary mapping g from W\ onto W2 extending (01,02). By Theorem 4.19,
Mi is prime and minimal over Wu for I = 1,2. Hence, in particular M\ is prime
over W\, so there is / : M\ -> M2 elementary extending g. But now rang(/) is a
(JD, NQ)-homogeneous model containing Ŵ > so by minimality of M2 over W2 we
have rang(/) = M2. Hence / is also onto, and so Mi and M2 are isomorphic. •

We can now summarize our results.

Corollary 4.23. Let D be totally transcendental The following conditions are
equivalent:

(1) K is categorical in every A > \T\ + \D\;
(2) K is categorical in some A > |T| + |Z?|;
(3) D is unidimensional;
(4) Every M G K is prime and minimal over q(M,a), where q(x,a) is any

minimal type over M;
(5) Every model M G K of cardinality A > \T\ + \D\ is D-homogeneous.

Proof. (1) implies (2) is trivial.
(2) implies (3) is Theorem 4.18.
(3) implies (1) is Theorem 4.22.
(3) implies (4) is Theorem 4.19.
(4) implies (3) is clear since prime models exist by Theorem 4.6.
(5) implies (1) is by back and forth construction, similarly to the corresponding
proof with saturated models.
(1) implies (5) since for each A > \D\ + \T\ there exist a (J9, A)-homogeneous
model of cardinality A (e.g. by Theorem 4.6).

•
Corollary 4.24. Let D be totally transcendental. IfK is not categorical in some
Ai > \T\ + \D\, then
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(1) IfT is countable, then there are at least \a\ models of cardinality Na in K;
(2) For every A > /x > \T\ + \D\ there is a maximally (JD, (i)-homogeneous of

cardinality A.

Proof (1) follows from (2). For (2), notice that D is not unidimensional by above
Corollary, so the result follows from Theorem 4.17. •

Corollary 4.25. Let D be totally transcendental Suppose there is a maximally
(D\ ii)-homogeneous model of cardinality A > \T\ + \D\for some A > JJL > No-
Then for every A > /i > \T\ + \D\ there is a maximally (D, fi)-homogeneous of
cardinality A.

Proof Notice that M € /C, and so K is not categorical in A. Hence, by the previous
corollary, D is not unidimensional, so the result follows from Theorem 4.17. •

As a last Corollary, we obtain a generalization of Keisler's Theorem. We
do not assume that D is totally transcendental.

Corollary 4.26. Let \T\ < 2N°, and suppose D is the set of isolated types ofT.
The following conditions are equivalent.

(1) K is categorical in every A > \T\;
(2) K is categorical in some A > \T\;
(3) D is totally transcendental and unidimensional;
(4) D is totally transcendental and every model ofK is prime and minimal over

over q(M, a), where q(x, a) is any minimal type over M;
(5) Every model M E /C of cardinality strictly above \T\ is D-homogeneous.

Proof Using Ehrenfeucht-Mostowski models, since K, and the class of D-models
coincide, it is easy to show that D must be stable in |Tj. Hence D is totally
transcendental by Theorem 2.13, and therefore the result follows from Corollary
4.23. •
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