NOTICE WARNING CONCERNING COPYRIGHT RESTRICTIONS:

The copyright law of the United States (title 17, U.S. Code) governs the making

of photocopies or other reproductions of copyrighted material. Any copying of this
document without permission of its author may be prohibited by law.






RECURSIVE TYPES
AND
THE SUBJECT REDUCTION THEOREM

by

Rick Statman
Department of Mathematics
Carnegie Mellon University
Pittsburgh, PA 15213, USA

Research Report No. 94—164 y
March, 1994

510.6
C28R
94-164



. .
2 B b e # WL AL
g T EXE AV IR LSRR eR
Universily widis
, ¥

Sl an ey iy Sl
Carnegie Aelion Uity
iitsburgh PR ITSLS

RECURSIVE TYPES
and
THE SUBJECT REDUCTION THEOREM
by
Rick Statman

Carnegie-Mellon University

NSF CCR-9201893
INTRODUCTION

Dana Scott began talking about type algebras before 1975

([ 9] and his ideas have been persued by Albert Meyer and Val
Breazu-Tannen ([ 3 ]) among others. It is clear that in this frame-
work the notion of recursive type ([ 8 ]) can be developed and
principal properties proved. The notion of type algebra provides
an alternative enviornment to the mu calculus([ 4 ]). In this setting
it is clear that the regular tree semantics ([ 4 ]) is just one possible
semantics for recursive types. This semantics identifies

pP=p->p
and

, p=(p->p)->p

but the latter fails to syntactically typeAx. xx . In other words
syntactic typing makes more distinctions. There is even a very
interesting result concerning syntactic typing due to Mendler
([ 8 1). Here we shall persue the syntactic approach.

In this note we shall prove that the type algebras which
satisfy Curry’s subject reduction theorem are precisely the
recursive types. Here lambda calculus and type theory are in
remarkable harmony. Along the way we shall solve the type
inference problem for recursive types. This problem has not
been adaquately considered in the literature.

PRELIMINARIES



Type expressions are built up from atoms p,q,r,... by ->. A,B,C,

.. are type expressions. A type algebra T is a congruence on the
type expressions. Instead of T(A,B) we write T |- A=B. T can be
presented by sets of identities. If S is such a set we will often
abuse notation and write S |- A=B instead of T |- A=B.

A simultaneous recursion R is a set of identities of the form

p=A

such that
(1) for each p there is at most one A such that p=A:R
(2) each A is a non-atom.
The set of atoms p such that there exists an A with p=A:R is de-
noted def(R) and the map p I-> A such that p=A:R with domain
def(R) is denoted R(.). When R is finite we can write it as the
simultaneous system

p1=Ai(p1,...,pn)

pn=An(p1,...,pn).
This can be solved in the mu calculus ([ ]) by
gl <- mux1 A1(x1,...,xn)

gn <- muxn An([gn-1/xn-1](...([q2/x2]q1)...),...,qn-1,xn)
pn <- gqn

p1 <- [p2/x2,...,pn/xn]q1. University Libraries
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More generally it is easy to see that for finite recursions our form-
alization and the mu calculus are equivalent.
INVERTIBILITY
With each simultaneous recursion R we associate a rewrite
system R+={ R(p) >->p | p: def(R) }. Since the rules of R+ are
length decreasing if there are no critical pairs then R+ is Church-
Rosser. In particular, we can pass to what amounts to the Knuth-
Bendix completeion to insure Church-Rosser as follows.
Suppose that s:Natural Numbers-> AtomsxAtoms such that
(a) s(t) has distinct coordinates
(b) if p and q are distinct then { t | s(t)=<p,q> } is infinite.
Here s is to be thought of as a fair schedule of pairs. Define two
sequences Rn,Sn of sets of identities as follows. R0O=R and S0=
empty. If Rn and Sn are defined and s(n+1)=<p0,p1> then
(1) If p0O=A0 and p1=A1 belong to Rn, A1 is a proper subexpress-
ion of A0 and AO* is the result of replacing each occurrence of
A1 by p1 in A0 then Rn+1=Rn-{p0=A0}+{p0=A0*} and Sn+1=
Sn
(2) If p0=A and p1=A belong to Rn and pi<p(1-i) , where we here
assume that the atoms have somehow been encoded as nat-
ural numbers, then Rn+1=[pi/p(1-i)]Rn and Sn+1=Sn+{p(1-i)=
pi}
and otherwise we set Rn+1=Rn and Sn+1=Sn. Now we let S"\=
U{Sn | n=0,1,...} and R"= {p=A | p=A: Rn for all but finitely many n}.
The principal fact about the above construction is that R is
logically equivalent to R* U SA. To see this we trace a given mem-
ber of R through the construction of the Rn and Sn as a finite set
Fn such that Fn+1 |I= Fn. We begin with p=A:R and set FO={p=A}.
To go from Fn to Fn+1 in case
(1) we replace p0=A0 by p1=A1 and p0=A0*



(2) we replace each identity E by [pi/p(1-i)]JE and add p(1-i)=p1.
Note that only finitely many changes can be made in the Fn by
(1) since each such operation reduces the number of nested (
non-outermost) ->’s. In addition,the atoms in the last such Fn
resulting from operation (1) can be changed and augmented by
(2) at most finitely often since the operation (2) decreases their
numerical value. Thus there exists a t such that for all n>t Ft is
contained in Fn. Thus Ft is contained in R* U SAand RAU SA |=
p=A. |

Now it is easily seen that R" is a simultaneous recursion and
RA+ has no critical pairs. The structure of S/ is similar. The mem-
bers of SA have the form p=q where p>q. For each p there is at
most one q such that p=q:S” and if such a g exists p does not
occur in a member of RA. Let SN+ ={ p>->q | p=q:S/*}; then RN+
U S7+ has no critical pairs and is terminating. Finally, if R |- A=B
then there exist A+,B+ and C such that A>->>A+ and B>->> B+ in
SA+ and A+>->>C<<-<B+ in RM+. Because SM+ is logically trivial
we shall assume that all of our recursions are presented in the
form of RAi.e. no critical pairs.

A type algebra T is said to be invertible if whenever we have
T |- A->B=C->D then T |- A=C and T |- B=D. We can now see that
every simultaneous recursion R is invertible for if R |- A->B = C->D
then by the Church-Rosser theorem there exists a type express-
ion E such that A->B >->> E<<-< C->D. If E is an atom then the
last step in each of the two reductions is the only step which
uses the entire expression as a redex. Since R is a recursion it
must be of the from R(E)>->E. In particular, R(E)= EO->E1 and
A>->>E0<<-<C and B>->>E1<<-<Dso R |-A=C and R |- B=D. If E
is not an atom it has the form EO->E1 and no reductions use the
entire expression as a redex. Thus A>->>E0<<-<C and B>->>E1



<<-<D and as before R |- A=C and R |- B=D.

Conversely every invertible type algebra can be presented
as a simultaneous recursion together with a logically trivial set of
identities between atoms. This will be seen below.

SOLVABILITY OF EQUATIONS

The type algebra T is said to solve the equation A=B if there
is a homomorphism (substitution) h such that T I- h(A)=h(B). Here
we wish to determine all solutions to a system S in a simultaneous
recursion R. Note that for any homomorphism h, h(S) has the in-
vertibility property. Let |-* refer to a congruence generated by
using the invertibility rule in addition to the laws of logic. For each
sub-congruence class S[p]={q | g an atom and S I-* g=p } pick a
cannonical member p* and let A[p*] be any shortest type express-
ion such that
(1) S I- *p*=A[p’]
(2) A[p*] contains only *ed atoms.
Put S*= {p*=A[p*] | A[p*] a non-atom } and let T={ p=p* | p an
atom }. We claim that S* U T logically implies S. To see this we
prove by induction that if B is built up only from *’ed atoms and
S |-* p*=B then S* |- p*=B. This is trivial if B is p* itself. Otherwise
B=C->D and A[p*]=A0->A1, and S |-* C=A0 & D=A1. Now,by in-
duction hypothesis S* I- C=A0 & D=A1, thus S* |- p*=B. The claim
now follows easily.Since S I-* S* U T we now see that that S and
S* U T have the same solutions in any simultaneous recursion R.
Since T is logically trivial we now consider only the problem of
solving simultaneous recursions S in simultaneous recursions R.
This show the claim above that invertibility => recursiveness.
Note also that if p* does not appear in A[p*] then p* can be e-
liminaterd by substitution, so we shall assume that S is a simul-
taneous recursion such that p=A:S => p appears in A.



Given a homomorphism h we may think of h as a substitution of
expressions for atoms.Since R+ is terminating&Church-Rosser we
may assume that the expression substituted for an atom is in
normal form. Thus we have h(A) >->> h(p) for each p=A:S. Now
any occurrence of h(p) in h(A) can have no residual in h(p) so,
since h(p) is itself normal, h(p) must be a subexpression of an
R+ redex. This bounds all solutions of S in R.

These remarks imply that solvability of S in R is an NP time
problem. Indeed we have the
PROPOSITION The solvability of S in R is NP complete even

for a fixed R. 2
PROOF: For each k define Rk as follows. Rk has the k atoms
c1,c2,...,ck, and d<i,j> for O<i<j<k+1. It consists of the identities
d<i,j> = ci->(cj->d<i,j>) for O<i<j<k+1.
The fixed R mentioned above will be R3. We shall encode graph
colorability into solvability in the Rk above. Suppose the graph
G=(V,E) is given. Define the simultaneous recursion S(G) as
follows.
The atoms of S(G) are v1,...,vn for V={v1,...,vn},and e_{i,j} for
each {i,j}:E. The identities of S(G) are the following
e_{i,j}=vi->(vj->e_{i,j}) for {i,j}.E
Now suppose that F is a k coloring of G in the colors {c1,...,ck}.
We define a homomorphism h by
h(vi)=F(vi)
h(e_{i,j})=d<F(i),F(j)> where we assume F(i)<F(j).

Clearly h solves S(G) in Rk. Now suppose that h is a solution of
S(G) in Rk. By invertibility and Church-Rosser there exists a k
coloring F in {c1,...,ck} such that h(vi)=F(vi). Thus S(G) is
solvable in Rk <=> Gis k colorable.

Let ]-[ be the equivalence relation on atoms generated



by the relation p[q if VA (p=A:S & q appears in A). Let [- be
the corresponding poset of equivalence classes. We have
the following
COROLLLARY When [- is a flat ordering the problem of
determining if S is solvable in R is P-time.
PROOF: We need only try each subexpression in R for any
particular atom of S, for each equivalence class of ]-[ indepen-
dently.
TYPING LAMBDA TERMS
Given a type algebra T we can type lambda terms a’la
Church or @’la Curry ([ 2 ] but see [ 3]). If H is a basis then we
write H |- M:A for the typing judgement that M:A is derivable
from the basis H. The two notions of typing are equivalent
for any type algebra T.
- The subject reduction theorem for T is the statement
H |- M:A & M->>N => H |- N:A for ->> taken as beta reduction.
A type algebra TO is said to be an expansion of the type
algebra T1 if the atoms of T1 are a subset of the atoms of TO
and the identities of TO are logically equivalent to those of T1
plus a set of identities p=q for p an atom of T1 and q an atom
of TO, and each q occurring at most once. We shall prove the
THEOREM The following are equivalent
(1)T is an expansion of a simultaneous recursion
(2)T is invertible
(3)T satisfies the subject reduction theorem
PROOF: We have in essence already proved that (1) and (2)
are equivalent. For the proof that (2)=>(3) we need only copy
the proof in [a] observing that all that is used about T is the
invertibility property. Now suppose ~(2), we shall show ~(3).
Suppose that T |-A->B=C->D but either ~ T I-A=Cv ~ T |-



B=D for A->B shortest with this property and A=B if possible
within these constraints. We distinguish two cases
(1)~TI-B=D
We have y:B, z:C |- (x.y)z:D but not y:B,z:C |-y:D

by the generation lemma forA->-Curry ([&]). Thus subject re-
duction fails.
2)TI-B=D & ~TI-A=C

Let A=A1->(...(As->p)...). We have the following

- up->B,viA->p,y:C |- (x.u(vx))y:D
Suppose that
u:p->B,v:A->p,y:C |- u(vy):D

By the generation lemma there exists a type expression E s.t.
T |- p->B=E->D & A->p=C->E. We argue by cases
() s>0

In this case p->B is shorter than A->B so by choice of
A->B we have T |- p=E. We have

x1:A1,...,xs:As,y:C |- Ax. xx1...xs)y:p
Suppose that
x1:A1,...,xs:As,y:C |- yx1...xs:p.
Then by the generation lemma
x1:A1,...,xs:As,y:.C |- y:A

hence T |- A=C contradicting the choice of case.Thus the
subject reduction theorem fails.
(i) s=0

In this case we have T |- p->B=E->D & p->p=C->E.By
the special choice of A->B, since p=A and ~ Tl- A=C we have
p=B. Thus we have

y:E |- AxX.X)y:p

z:C |- px.x)z:E.

and



If subject reduction holds in both cases we have
y:E I-y:p
z.Cl-zE
and by the generation lemma T |- C=E=p=A. This contradicts
the choice of case and subject reduction must fail.
Thus is all cases subject reduction fails.This completes
the proof.
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