```
    Representations of Certain
Isotropic Tensor Functions
    by
Walter Noll
Report 67-24
```

June, 1967 by Walter NoIl

1. Results. Let $\underbrace{\mathcal{1} \boldsymbol{\sim}}$ be an inner product space of dimension n over the field $d \boldsymbol{P}$ ' of real numbers. The inner product of \mathbb{X} and
 of symmetric tensors (ie. linear transformations) $\operatorname{over}^{\text {non }}(J$ by \uparrow and the orthogonal group of IT by \& . A function whose domain is a Cartesian product made up from $(\overrightarrow{A C}, \overrightarrow{1} \boldsymbol{S}$, and >0 and whose
 ant under the action of the orthogonal group \& . For example, £: $>0-\star C^{\text {Tr }}$ is isotropic if

$$
\begin{equation*}
£\left(\underset{\sim}{Q A} Q^{T}\right)=g(\underset{\sim}{A}) \tag{1}
\end{equation*}
$$

CH

T

holds for all Ae Jo and all フ Que . \tilde{Q} (

for all Ae J^{γ} and all Le σ.
It is well known (cf. [1], p. 28 and p. 32) that functions of the two types just described are isotropic if and only if they have certain representations in terms of real valued functions of several real variables. Such representations have important applications in Continuum Mechanics.

It is the purpose of this note to prove the following represensation theorems for isotropic functions of the type tox $>0 \times \underset{O}{\boldsymbol{O} \boldsymbol{0}} \rightarrow \boldsymbol{\mathcal { R }}$ and jig : ->ox $2^{-4} \boldsymbol{q}_{\sim+} \mathcal{V}^{\circ}$

[^0]Theorem I; The function $<p: \boldsymbol{J} \boldsymbol{*} \boldsymbol{X} \rightarrow \mathcal{R}$ is isotropic. ie.,

satisfies

$$
\begin{equation*}
<\mathrm{p}\left(Q \mathrm{~A} Q^{\bar{T}}, \mathrm{Qu}\right)=<\mathrm{p}(\mathrm{~A}, \mathrm{u}) \tag{3}
\end{equation*}
$$

for all Ae Jag all we \hat{u}^{4} andall $\ell € c r>$ if and only if there is a function $\overline{\mathrm{O}}: \wedge^{2 n} \mathcal{A}^{\wedge}\left(Q\right.$ such that for all $f e^{\wedge} \bar{S}$ and all $u \in \mathcal{V}^{\circ}$

$$
\begin{equation*}
\varphi(\underset{\sim}{A}, \underline{\sim})=\bar{\varphi}\left(I_{1}(\underset{\sim}{A}), \ldots, I_{n}(\underset{\sim}{A}), \underline{u_{n}} \cdot u, u-A u, \ldots u-A^{\wedge}-K i\right), \tag{4}
\end{equation*}
$$

where I. (A) is the j 'th principal invariant of A.
Theorem II; The function $A 9: \rho_{\times} \times V^{-*} 39$ is isotropic, ide., satisfies
 are n isotropic functions $\left(p^{\wedge}:>i \beta_{x} \mathscr{V} \%<\wedge, k=0,1, \ldots, n-1\right.$, such that for all $A \in J^{\prime} S^{\text {and all }}$ we V

$$
\begin{align*}
& \text { n-1 } \tag{6}
\end{align*}
$$

$\mathbf{2}^{\mathbf{2}}$ Proofs. It is a matter of trivial verification to show that the functions $t p$ or 4ℓ satisfy (3) or (5) if they have representations (4) or (6), respectively. The existence of such representations for given isotropic functions remains to be shown.

To prove Theorem I it is sufficient to show that if ${ }_{\sim}^{A}, B \in J £$ and ${\underset{\sim}{c}}_{\text {, we }}$ * 7 ¥ satisfy

$$
\begin{equation*}
I_{j}(A)=I_{j}(B), j=1, \ldots, n \tag{7}
\end{equation*}
$$

and
then there exists a $Q^{€ \in}$ tr such that

$$
\begin{equation*}
\mathrm{B}=Q A Q^{T}, W^{\prime}=2 U . \tag{9}
\end{equation*}
$$

It is well known (cf. [1], p. 28) that (7) implies the existence of a $Q_{\mathcal{A}} G . \bullet \& "$ such that

$$
\begin{equation*}
\text { 5. }={ }^{\circ}{ }^{2} \wedge 21^{T} \tag{10}
\end{equation*}
$$

It is also well known (cf. [2], p. 156, Theorem 2), that the orthogonal projections ${\underset{\sim}{i}}^{\mathbf{i}}$ of the spectral resolution

$$
£=\sum_{i=1}^{r} a_{i} E_{L i} \quad(r \leq n)
$$

can be expressed as polynomials of degree $<\mathbb{C} r$ in $A:$

$$
\begin{equation*}
\underset{\sim}{E_{ \pm}}==p_{ \pm}(\underset{\sim}{A}) \quad j=1, \ldots, r . \tag{12}
\end{equation*}
$$

 (.10) that

$$
\begin{align*}
& =v \cdot p \cdot(B) v=Q^{\wedge} v \cdot p \cdot\left(A j g^{\prime} F v\right. \\
& =\underline{Q}_{1}^{T} v \cdot{\underset{\sim}{E}}_{i}\left(\underline{Q}_{1}^{T} v\right)=\left|{\underset{\sim}{E}}_{i}{\underset{V}{T}}_{\underline{v}}^{T}\right|^{2} \tag{13}
\end{align*}
$$

 and have^ by (13) , the same magnitude, there exist orthogonal
 direct sum $\mathcal{R}_{-}^{\wedge} e t y$ of these transformations leaves every $\boldsymbol{U}_{\mathbf{i}}$ invariant and hence satisfies

It is clear from (14) that $\underset{\sim}{E}{\underset{i}{2}}^{Q_{2}}{\underset{\sim}{u}}^{u}=U^{\wedge} Q_{i}^{T} \underset{\sim}{V}$ and hence, after summing over i, that

Moreover, (11) and (14)? imply

$$
\begin{equation*}
\underset{\sim}{A}={\underset{\sim}{2}}_{2} A_{\sim} Q_{\sim}^{\wedge} \tag{16}
\end{equation*}
$$

It follows from (10), (16) and (15) that (9) holds with the choice $Q \doteq Q-x Q^{\wedge} e C T y$ which completes the proof of Theorem I.

To prove Theorem II assume that Ae $\sqrt{0}$ with spectral resolution

 left invariant by all those orthogonal transformations of (J_{j} that leave Eu invariant are just the scalar multiples of Eu. Hence, if $v . e \vec{U}$ ' and if
holds for all $Q_{x+*} 0^{\wedge}$ that satisfy

$$
\begin{equation*}
Q E . u=E . u \text { and } Q w=w \text { if we it. } \tag{18}
\end{equation*}
$$

we can conclude there is a number $j_{\mathbf{y}} \mathbf{y}$ such that

$$
\begin{equation*}
D_{3}=\wedge_{3} E_{3} \tag{19}
\end{equation*}
$$

Now, if (18) holds, it is easily seen that $Q A \mathscr{D}^{\mathscr{I}}=A$ and $Q u=u$. For such a choice of $\underset{\sim}{\sim}$ er (5) states that

$$
\begin{equation*}
Q v=v, \text { where } v=A \&(A, u) . \tag{20}
\end{equation*}
$$

 (17) holds. We can conclude that (19) must be valid for $v .=E . v$. Summing over j we get

$$
\begin{equation*}
\underset{\sim}{v}=\underset{j=1}{\mathrm{~S}} \text { jS.E.u. } \tag{21}
\end{equation*}
$$

Substituting the polynomial representations (12) into (21) we obtain

$$
\begin{align*}
& \mathrm{n}^{-*} \tag{22}
\end{align*}
$$

where the C_{X} are the coefficients of the polynomial $\underset{j=1}{E-j{\underset{D}{D}}^{S} . p_{3} .(x) . ~}$ These coefficients depend^ of course, on the original choice of A and u.

We can define an equivalence relation on the set JO X $7 /$ by

$$
\underline{A}=Q_{\sim}^{Q A} Q^{T}, \underline{u}=Q_{N} u_{0}
$$

 equivalence classes, we can construct the representation (22) for the choice $\widehat{A}=\hat{A}^{0}, \widehat{u^{\wedge}}=\widehat{u}^{0}$. For any pair $(\widehat{A}, \hat{j}$ a) equivalent to
 with $\left(\hat{A}^{-\lambda} \hat{u}^{\wedge}\right)$ It is clear that the $\cdot \frac{k}{<a}: J \& x l j^{\prime \prime}-*(Q \quad$ thus obtained are isotropic. Moreover, we have
i.e., the desired representation (6). Q.E.D.

References

[1] Truesdell, C. and W. Noll, 'The Non-linear Field Theories of Mechanics, ${ }^{1}$ Encyclopedia of Physics, vol. III/3. SpringerVerlag 1965.
[2] Halmos, P. R., 'Finite-Dimensional Vector Spaces, ${ }^{1}$ Van' Nostrand 1958.

[^0]: *The research leading to this paper was supported by the Office of Naval Research under contract NONR-760 (30).

