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I) Introduction

In the present paper M and N will denote two von Neumann Algebras

where N C M . If A is any von Neumann Algebra, A1 will denote the

commutant of A. N° will denote the relative commutant of N in M.

i.e. N° = N 1 n M. U(N) will denote all unitary operators of N.

Let G be a group of unitaries of M. Let 0 be a linear map of M

into M. 0 is called G-stable if 0(U X U " ) = 0(X) for all X in M

and all U in G. S(G,M) will denote all Schwartz maps which are

G-stable. The purpose of this paper is to study the existence and

properties of G-stable expectations. The main results contained here

are:

Theorem 1; Let Tr be a faithful, semi-finite trace on M. Let

L be a von Neumann subalgebra of M such that Tr restricted to L is

semi-finite. Then there exists a normal, faithful, U(L ) stable

expectation 0 of M on L such that Tr(A 0 (X)) = Tr(A X) for all X

in M and all A in L for which Tr \ A \ < oo .

Theorem 2: Suppose M has a faithful, normal, semi-finite trace,

call it Tr. Suppose S(G,M) is sufficiently large, then there exists

cc c

a faithful, normal U(N ) stable expectation of M on N .

As corollary to the above theorem, it follows that with the

hypothesis of Theorem 2, N if finite, N can not be purely infinite.

Moreover if M is of type I so is N . Another corollary to Theorem 2

is that if S(G, L(h)) has sufficiently many maps, then the von

Neumann algebra N generated by G is atomic.

Next a notion of equivalence of two unitary groups will be

defined. Two groups of unitary operators are equivalent if they

generate the same von Neumann algebra.
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Theorem 3: Assume S(G,L(h)) contains a normal map, then G is

equivalent to a countable direct sum of finite groups. The next

result is a sort of converse to Theorem 3.

Theorem 4: If G has the property (F), then G is a countable

direct sum of finite groups and S(G,M) has sufficiently many maps.

A corollary to Theorem 3 is that if N is a finite atomic von

Neumann algebra, then N is generated by a direct sum of finite

unitary groups.

Next uniqueness of expectations of certain type will be con-

sidered. The main result of this section is:

Theorem 5: Assume that

(1) N° cz N

(2) N is finite

(3) M is semi-finite

Then there exists at most one normal expectation 0 of M on N.

2) Preliminaries

Definition: Let 0 be a map of M into N which preserves the

identity. Assume that 0 is a positive linear map and that 0(AX) =

A0(X) for all A in N and X in M. 0 will then be called an

expectation of M in N.

It is trivial to see that 0 is onto N and that 0 is a bounded

map. The notion of expectations in von Neumann algebras was studied

in [2], [7], and [9].

Definition: Let 0 be an expectation of M on N, 0 is called

normal if 0(Sup A ) = Sup 0(A ) for any increasing net of uniformly
\JL (Jo

bounded self adjoint operators.



0 is called faithful if given a positive operator A such that

0(A) = 0 then A = 0.

Let 0 be a set of expectations of M onto N. The set 0 is

called complete if given a positive operator A such that 0a(
A) = 0

then A = 0.

Definition; Let G be a subgroup of U(M) # By a Schwartz map

relative to (G,M) one means a linear map of M into itself such that

(1) P(X) = U P(X) iT 1 for all U in G and all X in M

(2) P(X) is in CO[X] where C [X] denotes the weak closure of
G VX

the convex hull generated by elements of the type U X U

as U ranges over G.

For more information on Schwartz maps see [6] .

S(G,M) will denote all Schwartz maps relative to (G,M) which

are G-stable, i.e. P(X) = P(V X V"1) for all V in G. S(G,M) will

be called sufficient if for any positive operator X in M such that

P(X) = 0 for all P in S(g,M) then X = 0.

Definition: A group G is said to be amenable as a discrete

group if there exists a finitely additive probability measure p, on

the field of all subsets of G such that |JL(XE) = |x(E) . For more

information on amenable groups see [4] and [5],

3) Stable Maps and Schwartz Maps

Lemma 1: If there exists a complete set of U-stable expectations

of M on N then U is in N ,

Proof: Let V be a unitary of N. Let 0 be a complete set

of U-stable expectations, then 0 (UVU~ V ) = 0 (VU V U) =

V0rv(U"'
1V"1U) . This by Stability. Also V0 (V*"1) = W " 1 = I.



Let W = UVU^V" • Then 0 [(W - I)*(W - I)] = 0. By completeness

W = I or UV = VU. So U is in N°.

c
Lemma 2: A normal U(N) stable expectation of M on N is

faithful.

Proof: Let 0 be the expectation. Let I = {A/A e M,

0(A * A) = 0} clearly as 0[(XA)* (XA)] < ||x||2 0(A*A) = 0

and (A + B ) * (A + B) < 2(A* A + B* B) . I is a left ideal.

Now to show that I is ultra-weakly closed. The ultra

weak closure of I coincides with its ultra-strong closure.

Let X be a net in I converging ultra strongly to X, then

(X - X ) * (X - X) converges ultra weakly to 0. Hence

0 [(X - X ) * (X - X)] converges to 0 ultra-weakly (normality).

As 0(Xa - X ) * 0(Xa - X) < 0 (Xa - X ) * (Xa - X) it follows

that 0(X ) converges to 0(X) . X* X and X X* have the same

limit so 0(X* X) = 0. Hence I is a left ultra-weakly closed

ideal. So there exists a unique projection E in M such that

I = {T/TE = TJ. U T U"1 € I for all U € U(N) by stability.

So U E U~ = E. So E e N°. So E = 0(E) = 0. So if

0(X* X) = 0 then X = XE = 0, so 0 is faithful.

Now let G be a subgroup of U(M). Let N be the von

Neumann algebra generated by G.

Lemma 3: A Schwartz map relative to (G,M) is an expectation

c
onto N

Proof: Let P be the Schwartz map. As P(X) commutes with

all unitaries of G, P(X) is in NC. Now if A is in N°, CO

G
2 c

reduces to the element A. So P(A) = A. So P = P. N is

hence the range of P and P(I) = I. Now to show that ||P|| < 1.

n i

Let T = S a. U. AU.~ where a. > 0 and £ a. = 1 Then
i = = 1 i i i i - • l



||T|| < M A I L Because P(A) is in C_[A] this means that there
it ii — ii ii {j

exists a net T of the same form as T such that T converges

strongly to P(A). Let X be a vector of norm one. | |T X| |

converges to ||P(A)X|| but | |TQ X| | < | |A| | . So | | P(A) | | < | |A| | .

By a result of J. Tomiyama [7], this implies that P is an

expectation.

Lemma 4: If G is amenable, S(G,M) is non void.

Proof: Let X be a mean. Let § and T] be 2 vectors.

Considering U as the variable, \(U~ X U 5,1]) is a bounded

hermition form. By Riez Lemma there exists an operator E
A*

such that \(lf"1XU5,Tl) = (E (X)5,T]). It was shown in [1] that
A,

E_ is in S(G,M).
A*

Lemma 5: Let M be finite and countable decomposable, let G

be any subgroup of U(N), then S(G,M) is non void. (In particular

if N is any von Neumann subalgebra of M, then S(U(N),M) is non void).

Proof: Let Tr be a faithful, normal, finite trace on

. By finiteness there exists a faithful, normal expectation

0 of M and N° such that Tr(XB) = Tr(0(X)B) for all X in M

and all B in N C. Hence 0(V X V"1) = 0(X) for all X in M and

all V in U(N ) 3 U(N) . Now to show 0(X) is in Cn[X] . C^[X]

intersects N° [31. Let T be in C^[X] n N C then by normality

T = 0(T) = 0(X) . Hence 0 is in S(G,M).

Let G be a subgroup of U(M) . Let N be the von Neumann

algebra generated by G.

Lemma 6: If S(G,M) contains a normal map 0, then S(G,M)

reduces to 0 and so does S(U(N) M) . Moreover C [X] intersects N in
G

just one point.



Proof: Let T be in CG[X], by normality 0(T) = 0(X).

Now le t T be in C [̂X] f) N°. Then T = 0(T) by Lemma 3 . So T is
G

the unique point in C [X] O N 0 . By normality 0 is U(N) stable,

so S(U(N),M) = 0 .

Lemma 7: Let Tr be a faithful, normal, semi-finite trace on

M. Let G be a subgroup of U(M) and N the von Neumann algebra generated

by G. Suppose S(G,M) is sufficient, then the restriction of Tr to

N C is semi-finite.

Proof: In this proof the notation of [3] will be used.

Let to be the ideal whose positive part consists of positive

1/2 1/2
operators A such that Tr A < <». Consider to . If A is in to ,

i / o c

cto and Cn[k] ON is noa void [3] . Let S be a positive
G b

operator in N°, S $ 0. To show that there exists Ŝ^ f 0,

S1 < S where S- is a positive operator of N 0 M. Let A be

in to such that 0 < A < I . Let P be in S(G,M) . Then

S > /S P (A) >/If = P (/s A >/S) . A can be picked such that

y/s" A /S~ ^ 0 or else A>/~S = 0 for a l l A positive in to. By

semi-finiteness there would exist a net A converging weakly

to I so i V s = 0. So S = 0, a contradiction. Pick A then

so that >/s A / s f 0. Let H = Vs A v/sT then H is in to •

is in 1 / 2 f1NC. So [P^O/tf)]2 is in ^RN 0 . So
(P (/H)) < P (H) < S. By sufficiency, there exists an

a such that P (v/H) ̂  0. Choose S- = (P (>/H)) 2
#

o o

Theorem 1: Let Tr be a faithful, semi-finite trace of M. Let

N be a von Neumann subalgebra of M and assume that the restriction

of Tr to N is semi-finite, then there exists a normal, faithful
c

U(N )-stable expectation 0 of M on N such that Tr(A 0 (X)) = Tr(A X)



for all X in M and all A in N such that Tr|A| < «>.

Proof: Using the notations of the above lemma let A and

1/2
B be in to D N (that intersection is non void), define

(A,B) « Tr(AB*). Choose X positive in M and define

A,B = Tr(A B* X ) . [,] is a bounded hermitian form respectively

1/2
to (,). Let k be the completion of to under (,). By

Riez lemma there exists an operator 0(X) in L(k) such that

[A,B] = (0(X) (A),B). Now: Let R denote the right multipli-

1/2
cation by C, where C is in to ' . (RQ 0(X) (A),B) =

(0(X) (A),BC*) = [A,BC*] = Tr(ACB*X) (0(X) Rc

[R (A) B] = [AC,B] = Tr(ACB*X) so R 0(X) = 0(X)R
c c c

By the commutation theorem [3] this implies that 0(X) (A)

is a left multiplication by an element of N. Call that element

0(X). Then Tr(AB*X) = Tr(0(X)AB*) = Tr(AB*0(X)) for all A and B

1/2
in to PI N and all X positive in M. 0 can then be extended in

the obvious fashion to all of M. As Tr is faithful, normal, it

is easy to see that 0 is faithful, normal, and U(N ) stable.

c

For example to check that 0 is U(N ) stable; let V be in

U(NC), let A be in N, then:

Tr(A 0 (V X V""1)) = Tr(A V X V"1) = Tr(V A X V"1) = Tr(A X) =

Tr(A 0 (X)). So Tr[A(0V X V*"1) • 0(X))] = 0 for all A in N fl to.

Since Tr is semi-finite on N, let P be a family of orthogonal

projections of N such that Tr P < oo and S P = 1 . Make

A = (0(V XV" 1) - 0(X))* Po# One has P^Q (V X V"1) - 0(X)) = 0

for all a, i.e. 0(V X v"1) = 0(X).

Theorem 2: Suppose M has a faithful, normal, semi-finite trace

Tr. Suppose S(G,M) is sufficient, then there exists a faithful,

cc c
normal U(N ) stable expectation of M on N . (N is the algebra

generated by G).



Proof: By Lemma 7 the restriction of Tr to N is semi-

cc
finite. By Theorem 1 there exists a normal, faithful, U(N )

stable expectation 0 of M on N° such that Tr(A X) = Tr(A 0(X))

for all A in N° such that Tr|A| < «. Now 0 is in S(G,M).

Indeed 0 is G-stable and if P is in S(G,M) then 0(P(X)) = P(X)

(as 0 is the identity on N°). By normality 0(P(X)) « 0(X).

cc
So P = 0. Hence 0 is a normal, faithful, U(N ) stable

expectation of M on N by Lemma 3.

The above theorem says that if there is a sufficient number of

G-stable expectations of M on N , there is a faithful, normal

cc
one which in fact is more than G-stable it is U(N ) stable.

cc
Corollary 1: With the above hypothesis N if finite.

cc

Proof: By the above theorem s(U(N ),M) is non void. Let

P be in S(U(NC°),M). Let A be in N° C, let C(A) be the norm

closure of the convex hull KA of points of the form U A U " as
CC

U ranges over U(N ) . Consider C(A) fl Z where Z is the center
cc

of N . C(A) ft Z is non void [3]. By [3] it is sufficient to

show that C(A) f] Z reduces to one point. P is constant on KA

A

hence on C(A) . Let T- and T be in C(A) fl Z, then T- =

cc
P(T1) = P(T2) = T2, so N is finite. In particular N is
finite.

Corollary 2: With the above hypothesis N° can not be pure

infinite.

Proof: In [7] J. Tomiyama proved that if it is an

expectation from a semi-finite algebra M onto a purely infinite

subalgebra A, then it is always singular, i.e. jt is not

normal. Since there exists a normal expectation from M on N°,

N is not purely infinite.



Corollary 3: With the above hypothesis if M is of type I,

so is N .

Proof: In [7] it has been shown that if there exists an

expectation from M of type I to a subalgebra of type II,

that expectation is not normal. By the above corollary N has

no part of type III and hence no part II or III are present,

so N is of type I.

Let G be a subgroup of U(M) . Let N be generated by G.

Corollary 4: Let M be a countably decomposable von Neumann

algebra and consider the following conditions:

(1) N is finite and there exists a faithful, normal expectation

0 of M on N

(2) There exists a faithful, normal state p of M such that

p(U X if1) - p(X) for all U in G

(3) There exists a faithful, normal expectation 0 of M on N

such that 0(V X V"1) = 0(X) for all V in U(N)

(4) S(G,M) is sufficient and M has a faithful, semi-finite

normal trace Tr.

Then (1) and (2) are equivalent. If S(G,M) is non void, (2) and

(3) are equivalent. Finally (4) always implies (3).

Proof: Assume (1), then there exists a faithful, normal

finite trace \ on N. Let r(X) a=X[0(X)]. Clearly r is

faithful, normal and bounded. Let U be in G, then r(U X if ) •

X0(U X IT1) - X,0(X) - r(X). Normalizing r, (2) is established.

Assume (2). By a classical Hilbert algebra argument one

can show that there exists an expectation 0 such that

p(AX) - p(A 0(X)) for all A in N and all X in M. 0

will satisfy (1).



Assume now (2) together with the fact that S(G,M) is non

void. Let P be in S(G,M). p is constant on C [A] . Hence

p(A) = P(P(A)). This shows that P is faithful, normal and

satisfies P(V A V""1) = P(A), for all V in U(N) . For example

to check that P(A) = P(V A V " 1 ) :

Let B be any element of N .

p(B V A V"1) = p(P(B V A V""1)) = p(B P (V A V"1))

p(B V A V""1) = p(V B A V"1) = p(B A) = p(B P(A))

Choose B = (P(V A V""1) - P(A))* , by faithfulness of p

P(V A V"*1) = P(A) .

Assume now (3). By countable decomposability there exists

a faithful, normal state a of M (get a maximal set of orthogonal

projections P of M where each P is the projection on [Mfx ],

and let a = E W (Notation of 3) . Let p(X) = a 0(X) .

n
p in the state of (2) .

Finally to show that (4) implies (3). By Theorem 2 there

exists a faithful, normal expectation of M on N , call it Y such

that Tr(X A) = Tr(y (X) A) for all A in Jn D N C. As above one

shows that Y (V X V 4 ) = Y(X) .

Corollary 5; If S(G,L(h)) is sufficient, N, the algebra

generated by G, is atomic.

Proof: By Theorem 2 there exists a faithful, normal,

expectation of L(h) on Nf which is U(N) stable. By Corollary

3, Nf is of Type I, hence so is N[3]. Also N is finite by

Corollary 1. Let Z be the center of N. Any projection of N

dominates an abelian projection in N, call it P f 0. If Q is

a projection of N such that Q < P, then Q = PC where C is a



projection of Z. Since Z is atomic [3], Q and hence P

dominate a minimal projection. So N is atomic.

Remarks; The following statements are trivial to see:

(1) If S(G,L(h)) is sufficient then there exists a normal expectation

0 from L(h) to Nf such that 0(U X u"1) = 0(X) for

all U in G, this is part of Corollary 4.

(2) Assuming S(G,L(h)) contains a normal map, then S(G,L(h)) is

sufficient. Let K be a normal map, then % is faithful.

Indeed: by normality *(U X if1) = *(X) for all U in U(N).

Assume that P is a projection such that rt(P) = 0. Let

Q = Sup U P U"1 as U e U(N). Then Q = V Q V"1 for all V

in U(N), so Q is in N f. Hence Q = jt(Q) = 0 . So P = 0.

Definition: Two groups of unitaries are equivalent if they

generate the same von Neumann algebra.

Theorem 3: Assume S(G,L(h)) contains a normal map it, then G

is equivalent to a countable direct sum of finite groups.

Proof: By Lemma 6, S(G,L(h)) = £jt} . By the above remark

rt is faithful and by normality it is in S(U(N),L(h)) . By

Corollary 1 N is finite. Let Z be the center of N. By

Corollary 5 Z is atomic. Pick a maximal set of orthogonal minimal

projections, C of Z such that N = 4>N . N is a factor of
n c c

n n

Type I . N is isomorphic to n x n matrices, so N is
n c } c

n n

generated by a finite group K of unitaries. Let K = «K
n n

(all components are the identity except a finite number). The

algebra generated by K contains all N , so it could contains N.
n

Each K is a subgroup of U(N). So the algebra generated by

K is N.



Let M be a von Neumann algebra and let G be a subgroup of

U(M) .

Definition: G will satisfy condition (F) if

(1) There exists orthogonal projections C of N1 (N is the algebra

generated by G) such that I = E C^ and |GC | < «>.

(2) For every U in G, UC = C for all but a finite number of a.

Theorem 4: If G has property (F), then G is a countable direct

sum of finite groups, and S(G,M) is sufficient.

Proof: Define a map it on G by rt (U) = UC . it is
UC UC UC UC

clearly a homomorphism of G and it (G) is finite. Also the

intersection of all kernels of it is I. Let F = it (G), then

by definition of condition (F), G - -©F . As each F is finite
UC UL

G is amenable since it is locally finite. So S(G,M) is non void

by Lemma 4. Now let A be a positive operator in M, let P be

in S(G,M) and suppose P(A) = 0 for all P in S(G,M). If A i 0

C A C f 0 for some C , call a such an a. C P(A) C
o o

P(C A C ) e C [C A C ]. Let H be all elements of G
o o o o

where the a component is the identity. Then G = HF . Let U
o

be in G, then U is uniquely written as U = VW where V is in

H and W in F .

-1 ° -1
U C A C U = W C A C W but there is only a finite number

o ao ao %
of U C A C U"1. Hence C^[C A C ] is the convex hull of

o o o o
W C A C W"1 as W ranges in F .

o o ao

So 0 = P(Ca A Ca ) = § a. W ±C a A C W"1 . So C a A C - 0,
O O 1=1 O O O O

a contradiction. So A = 0 and S(G,M) is sufficient.



Remark: While proving Theorem 3 it has been shown that if N

if a finite atomic von Neumann algebra, then N is generated by a

direct sum of finite groups K .

4) Uniqueness Properties

Lemma 8: If there exists only one faithful> normal expectation

0 of M on N then N C C N ,

Proof: Let e > 0. Let H be a positive operator in N such

that H > el > 0 0(H) is in N <0(H) > el. Let X be in N then

X#(H) • 0(XH) = 0(HX) - 0(H)X. So 0(H) is in N», so in N D N» = 2 .

1 "VTJ J. ITV

Define n(X) = 0(H) 0( 2 ). Clearly * is another expectation

of M on N, by uniqueness K - <f>. So #(HX + XH) - 20(H)0(X) for all

H in N 7 positive and such that H > el. In particular let X « Ĥ  then

2 2 c
0(H) = 0(H ) # This holds for any self adjoint operator in N which is

positive. Let H be any self adjoint operator in NC> pick C > 0

such that CI + H > €l, then [0(CI + H)]2 « 0(CI + H) 2 so 0(H)2 » 0(H)2.

Let P be a projection in NC, then (P - 0(P)2 > 0. So 0(P - 0(P))2 *

(0(P) - 0(P))2 « 0. By faithfulness P * 0(P)/ i.e. P is in N so N° c N.

Lemma 9: Let N be normal in M (i.e. NCC « N) , A necessary

and sufficient condition for at most one faithful, normal expectation

tb exist from M to N is that N° c N.

Proof: The necessary condition was shown in Lemma 1. Now to show

the sufficient condition: As N C c N N° is the center of N in

particular NC is abelian. Hence, U(NC) is amenable, so S(U(N°)aM)

is non void by Lemma 4. Let P be in S(U(N°),M) then P is an

expectation on N f] M by Lemma 3. So P is an expectation on N.

HUNi LlBiiARK
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Let 0(P(X)) « 0(X). Also 0(P(X)) - p 0 0 so 0 « P. This shows

that there exists at most one normal expectation.

Theorem 5: Assume the following conditions:

(1) NCCN

(2) N is finite

(3) M is semi-finite

Then there exists at most one normal expectation 0.

Proof: N° is the center of N; by finiteness the map"£ (notation

of [3]) is defined from N to NC. If X is in M, define Y(X) «

Y is a normal map. S(U(N°) M) is non void. Let P be in S(U(NC),M).

If X is in m1/2, C U / N J X I
 n ^ 2 and Cu(N)^X^ intersects N ° . Let

T be in C ^ ^ [X] f] NC. Y is invariant under U(N), so T = Y(T) « y(x).

So NC fl CufN)[X] «{ Y(X) }. If 0l is another normal expectation of M

on N. then define Y1(X) = [01(X)]"*'. Also NC n C U ( N ) [X] - V^X) > so

1/2
on m ' j hence on M.

Let \ be any normal finite trace on N. Then: \0(X) « XY(X) «=

XY1(X) «= \0-(X)# Since the \ form a complete set 0 « 0

In conclusion consider the following problem. Let N be a von

Neumann algebra. Suppose there exists sufficiently many expectations

of M on N. Is N relatively semi-finite? An answer to that problem

was given when the expectations are of a certain type (Lemma 7).
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