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1. Introduction

A principal goal of continuum mechanics is to describe how a continuous body will deform

under prescribed applied forces. An essential initial step towards this goal is that of choosing a

class of deformations for the continuum. For the description of many continua, some generally

accepted requirements on the chosen class of deformations have emerged: deformations should

be invertible, differentiate mappings with differentiable inverses, and compositions of two

deformations in the class should again be in the class. However, such classical deformations are

not adequate for the description of all continua, and in many cases alternative choices must be

made. One type of choice involves the introduction of supplementary kinematical variables

such as the director fields of a polar continuum. Another choice involves the introduction of

supplementary fields that, although related to deformation, have the status of internal

variables. For example, in theories of plasticity, the plastic deformation tensor is governed by

an evolution law included in the constitutive equations of the continuum.

Our goal in this paper is to provide a methodology for both the construction of classes of

deformations appropriate for continua with supplementary kinematical variables and for the

construction of classes of deformations appropriate for continua with internal variables. Our

initial goal was narrower: we attempted to describe deformations appropriate for continua with

fractures by removing the requirement of continuity made on classical deformations. Thus, we

started from a class of deformations that can exhibit jumps of limited magnitude over surfaces

with prescribed regularity. The main difficulty we encountered was in the choice of a class of

regions to serve as the domains of deformations, i.e., a class of regions in space that the

continuum with fractures can occupy. In order to allow the continuum to have unopened

cracks, we had to generalize the notion of a fit region, introduced by NOLL k VIRGA [17], to

that of a piecewise fit region. This concept permitted us to define a class of deformations,

called simple deformations, rich enough to describe the formation and opening of cracks of a

fairly general nature and to describe the smooth deformations, also called transplacements, of

regions away from the crack sites.



In order to extend the scope of our description of fracture, we found it natural to consider

limits of sequences of simple deformations. Among a variety of possible notions of limits, we

chose one in which the crack site for the limit deformation is the limit inferior of the sequence

of crack sites. This embodies the idea that a point of the continuum is in the crack site for the

limit if, from some term on, it belongs to the crack site of every term in the sequence of simple

deformations. In addition, our choice of limit requires that the sequence of transplacements for

the simple deformations converge in the sense of Lw to a mapping called the transplacement

for the limit, and that the sequence of gradients of transplacements converge in L00. Our

choice of this particular notion of limit was dictated mainly for reasons of simplicity, and

different choices are necessary for the inclusion of some types of deformations not covered by

our choice.

The limits of sequences of simple deformations defined in this manner form a class of

deformations that we denote by LimSid. A surprising feature of LimSid that emerges from our

analysis is that the fractures associated with the terms of a sequence of simple deformations can

diffuse throughout the continuum and yet the crack site of the limit can be the empty set.

Moreover, the manner in which the fractures diffuse leads to limit deformations that may or

may not be free from the effects of fractures. Mathematically, the difference between the

presence and absence of the effects of fractures in the limit is reflected by the difference

between G, the L"— limit of the sequence n •—• vf of the gradients, and vg, the gradient

of the L® — limit of the sequence of transplacements n i—• fn. Indeed, this difference reveals

a difference between the deformation due to smooth changes away from crack sites, measured

by G, and the local deformation at the macroscopic level, measured by vg. This observation

has led us far beyond our initial goal: not only does the class LimSid describe complicated

processes of fracture at the macroscopic level, but also it permits us to identify processes of

microfracture that describe a continuum with structure.

The limit procedure leading to the class LimSid turns out to yield some limits that

correspond to the shrinking of portions of a body to single points and to other types of



deformation that have no ready interpretation in most of the applications that we consider in

this paper. Moreover, that procedure does not yield a natural way of composing limits of

simple deformations. For these reasons, we identify another class Std whose elements we call

structured deformations. Structured deformations are defined, without reference to a limit

process, as triples (*,g,G) in which K is the crack site and g the transplacement associated

with a simple deformation, and in which G is a tensor field having regularity properties

similar to those of vg. We define a notion of composition of structured deformations for which

the composition of two structured deformations is again a structured deformation. The main

mathematical result of this paper, the Approximation Theorem (Theorem 5.8), shows that

every structured deformation is a limit of simple deformations, i.e., Std is a subset of LimSid.

Along with this result, we have the following relations between classes of deformations

introduced in this paper:

LimSid

u

Std

Inv Std Sid

•<> O
InvSid

U
Cld

where Cld denotes our choice for the set of classical deformations, Sid is the set of simple

deformations, and InvSid and InvStd are the sets of those elements of Sid and Std, respectively,

that have an inverse in a sense that we make precise.

After a study of the mathematical properties of Std, we describe classes of deformations

appropriate to specific types of continua. In this description, we do not treat concepts, such as



motions, that are linked to time; nor do we discuss the notion of stress and constitutive

relations. There is a useful organization of the classes of deformations considered here that is

based on decompositions of structured deformations established at various points in the paper

and summarized here in the relation:

(1.1) ( « * G ) = (0,g,vg)

This decomposition involves (in the order from right to left) a fracture without any

displacement, a purely microscopic deformation that creates voids without distortion, a purely

microscopic deformation that distorts without creating voids, and a simple deformation without

fracture. The first three factors, taken individually and then combined with a simple

deformation without fracture, define deformations appropriate to continua with macrofracture,

continua with voids, and continua with purely microscopic distortions, respectively. The last

class includes the Cosserat continua.

In the last section we describe the application of structured deformations to some specific

continua. We use measures of local deformation due to microfracture and local deformation

without fracture to give precise kinematical meaning to the concepts of elastic and plastic

deformation in plasticity, to the notions of director field and degree of orientation in liquid

crystals, and to the continuous distributions of defects and lattice bases in theories of defective

crystals. In addition, we attempt to describe deformations of mixtures within a collection of

limits of simple deformations somewhat larger than the collection of structured deformations.

We conclude this introduction with some remarks on notation. We denote by 8 a

Euclidean point space whose dimension in different circumstances will vary from one to three.

The associated inner product space is denoted by Y, and Lin Y denotes the set of all linear

mappings of Y into itself. Both Y and Lin Y are made into normed spaces with the norms

(1.2) | . | r := («.«)1/2, | A W . ^



where the subscripts V, Lin Y will be omitted for simplicity. If the dimension of £ is one,

then £, Y and Lin Y will be all identified with the real line R. The empty set will be

denoted by 0. If <A is a subset of *, then by int, clo, bdy we denote the interior, the closure

and the boundary of */*, respectively, and by vol <A the volume (the Lebesgue measure) of

v4. ${x,6) denotes the open ball centered at x with radius S. The identity mappings in 8

and Lin Y are denoted by i and I, respectively, i ^ denotes the restriction of i to ji,

and I , : <A —> Lin Y denotes the mapping I Jx) := I, x € o€. With some abuse of

notation, we use the symbol I in place of lg.

For mappings L:^f —» 8 and t*' U {^) —» ?, we define

(1.3) (^ o £J (x) := y y x ) ) , for all x 6 Jt%

and, if f̂  is injective, we define

(1.4) ^ ( ^ W ) := x, for all x e Ji.

To within evident changes in domains and codomains of mappings, f« o f- is the composition

of fg and f̂ , and f̂  is the inverse of L.



2. Classical deformations

Classically, a deformation of a continuous body is a mapping whose domain is the region in

space initially occupied by the body. To each point in this region, the mapping assigns the

point occupied after the deformation has occurred. An example of a collection of deformations

is the class of all restrictions to open sets of Cn — diffeomorphisms between Euclidean

spaces [13]. However, as discussed in more detail in the article [14], the choice of open sets as

domains for deformations has some disadvantages. Indeed, not all open sets enjoy properties

which render their boundaries surface-like, namely, the property of having an exterior normal

defined at almost every point of the boundary and the property of satisfying even a generalized

version of the Gauss-Green formula. Nevertheless, imposing specific regularity requirements

on the boundary leads, in general, to the loss of some fundamental algebraic properties. For

instance, the set of all open sets with piecewise continuously differentiable boundaries is not

closed under finite intersection [17].

A collection of open sets having surface-like boundaries and yet enjoying nice algebraic

properties has been identified by NOLL & VIRGA [17]. According to their definition, a subset

J6 of the Euclidean space 8 is a fit ifigion if (i) Ji is bounded, (ii) <A is regularly open,

i.e., ^coincides with the interior of its closure, (iii) *A has finite perimeter, and (iv) the

boundary of <A has zero volume. Among the properties of fit regions, several are relevant

here: (Fl) the intersection of finitely many fit regions is a fit region;

(F2) C — diffeomorphisms of 8 map fit regions into fit regions;

(F3) for almost every line L parallel to a given direction, to within a set of

one-dimensional measure zero, the intersection L [) i consists of finitely many

pairwise disjoint closed intervals.

(Fl) and (F2) are proved in the article [17], and (F3) expresses a known property of sets of

finite perimeter (see e.g. [19], Sect. 4.2.2). It is worth noting that fit regions are not necessarily

connected. Indeed, when S is one-dimensional, every fit region is a finite union of bounded

open intervals whose closures are pairwise disjoint. When dim S is greater than one, examples



provided in the paper [17] show that there are fit regions having infinitely many connected

components.

As a starting point for our study we introduce a class of deformations which we call

classical and which are appropriate for many branches of continuum mechanics.

2.1 Definition: Let Jl be a fit region of 8. A classical deformation from *A is a mapping f

from <A into £ satisfying:

(Cld 1) f can be extended to a C — diffeomorphism of £;

(Cld 2) f is orientation preserving, i.e.,

(2.1) det vf(x) > 0 for all x € <A.

The set of all classical deformation from ji will be denoted by Cld(^), a n ^ Cld will denote

the set

Cld := {f € Cld(^) | ji is a fit region in S}.

This set has the following properties:

(Dl) each f e Cld isinjective;

(D2) if fx € Cld(^) and ^ 6 Cld(f1(^)), then fj ° f l 6

(D3) if f e Cld(^), then T 1 belongs to

Indeed, (Dl) follows from (Cld 1), and (D2) and (D3) are consequences of the following facts:

(i) by the property (Fg) of the class of fit regions, the image of a fit region under a

C — diffeomorphism of 8 is a fit region, (ii) the composition of two C — diffeomorphisms of

S and the inverse of a C — diffeomorphism of 8 are C — diffeomorphisms of £. We remark

explicitly that (i) implies that the image of a fit region under a classical deformation is a fit

region.



The fact that each f € Old is the restriction to a bounded set of a

C — diffeomorphism of 8 and the condition (2.1) imply that the determinant of vf is

bounded below by a positive number m. By (D3), the determinant of vf" is bounded below

by a positive number M . Because the determinant of vf~ (f(x)) is the reciprocal of the

determinant of vf(x), we are led to the following statement.

2.2 Proposition: Let <A be a fit region of ?. For every f 6 Cld(^) it is possible to find

two positive numbers m, M such that

(2.2) m < detvf(x) < M for all x € <A.

The set Cld(^) can be made into a metric space using, for example, the metric

(2.3) dCfpt,) := [ | | y x ) - t,(x) |2 dx + J | vf^x) - vf^x) |2 dx] ll2

associated with the norm of the Sobolev space H (V). The resulting metric space is not

complete. For example, if S is one-dimensional and o4 = (—1,1), the function f defined by

(2.4) f(x) :=
2x for 0 < x < 1,

x for - 1 < x < 0,

does not belong to Cld(t^), because it is not continuously differentiate, but it can be

obtained as the limit in H ( Y) of a Cauchy sequence in Cld(u^). This circumstance is very

useful when one is interested in defining "generalized deformations" to be used, for example, as

weak solutions for boundary value problems. However, not all limit elements of Cauchy

sequences are of interest. For example, the sequence n •—• f defined by

f ( x ) = x/n, - 1 < x < 1,
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is a Cauchy sequence whose limit is a constant function. Constant functions do not represent

desirable deformations, because they map *A into a single point. This suggests that a

desirable set of generalized deformations should be a proper subset of some completion of

Cld(t^); we shall develop this idea in Sections 4 and 5 in the more general context of

deformations allowing for fractures in the body.
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3. Simple deformations

The main concept that we introduce in this section, that of a simple deformation, describes

the geometrical changes associated with the formation and growth of cracks in a continuous

body. Namely, we wish to describe the formation of cracks in an initially uncracked body, as

well as the growth and the opening of the existing cracks in an initially cracked body. Fit

regions are not adequate for this purpose. Indeed, property (ii) of fit regions (a fit region is

regularly open) excludes regions representing a body containing unopened cracks. Moreover,

functions that extend to C — diffeomorphisms of ? are not adequate for describing the

discontinuities in displacement associated with the opening of a crack. For these reasons, we

relax the regularity requirements on deformations made in the preceding section. The following

definition provides a generalization of the notion of a fit region that includes the possibility of

unopened cracks.

3.1 Definition: A subset ji of <& is a piecewise fit region if it is a finite union of fit regions.

For example, the open set

(3.1) j( := ((-1,1) x (-1,1)) \ { (X,O) € R2 | - \ < x < \ }

is not a fit region in IR because it is not regularly open. Indeed,

int clo J€ = (—1,1) * (—1,1) i <A* However, <A is the union of the two fit regions

(3.2) jf1z=S\ {(x,y) € R2 | - \ < x < J, - 1 < y < 0},

(3.3) Ji2-Ji\ {(x,y) 6 R2 | - \ < x < l> 0 < y < 1},

and, therefore, is piecewise fit. Properties (Fl) — (F3) of fit regions have the following

counterparts for piecewise fit regions:
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(PF1) intersections and unions of finitely many piecewise fit regions are piecewise fit;

(PF2) C1 - diffeomorphisms of 8 map piecewise fit regions into piecewise fit regions;

(PF3) for almost every line L parallel to a given direction, to within a set of one

-dimensional measure zero, the intersection L n *4 consists of finitely many

pairwise disjoint closed intervals.

Properties (PF1) and (PF2) are direct consequences of Definition 3.1, and (PF3) will be proved

as a part of the proof of Theorem 3.8. In comparing (PF1) with (Fl) we see that the class of

piecewise fit regions is closed both under finite unions and finite intersections, whereas fit

regions are closed only under finite intersections. Let us also recall that, when we speak of a

finite union of fit regions, one or more of the fit regions may consist of infinitely many

connected components. However, when 8 is one-dimensional, every piecewise fit region is a

finite union of bounded open intervals.

We interpret the region jt in (3.1) as a two-dimensional body with an unopened crack.

Moreover, we interpret the replacement of the region (—1,1) * (—1,1) by ^ as the creation of

the unopened crack

ft := ((-1,1) « (-1,1)) \ *.

More generally, when describing the deformation of a fractured continuum, one must prescribe

two elements: the crack created in the deformation, and the position occupied after the

deformation by each point of the body which is not on the crack. To this end, we make the

following definition.

3.2 Definition: Let <A be a piecewise fit region in £. A simple deformation from ^ is a

pair (*, f), where K is a subset of ji and f is a mapping from <A \ K into #, with the
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following properties:

(Sidl) vol K = 0;

(Sid 2) f is injective;

(Sid 3) J6 \ K is the union of finitely many fit regions such that the restriction of f to

each of the fit regions is a classical deformation.

A finite collection A := {^i | j € {1,...J}} of fit regions satisfying (Sid 3) for a simple

deformation (*,f) from J6 will be called admissible for (/c,f). We may think of f as a

"piecewise classical deformation" in which each ^ . undergoes the classical deformation

(3.4)

Notice that not only <A but also ji \ K is a piecewise fit region, as is clear from (Sid 3).

Moreover, (Sid 3) combined with the property (F3) of fit regions ensures that the image of

*A \ K under f is piecewise fit. Indeed, by (F3), the image of o€. under f. is a fit region, so

that the set

J J J
K) = f( U c^.) = U f(c/O = U f.

j l J j l J j l J

is piecewise fit. Although f need not extend to a C — diffeomorphism of #, nevertheless,

(Sid 2) and (Sid 3) imply that f is a C — diffeomorphism. It is also an easy consequence of

(Sid 3) and Proposition 2.2 that for any simple deformation (*,f) from ji there are positive

numbers m, M such that

(3.5) m < det vf(x) < M, m < | vf(x) | < M, forall x 6 ^ \ / c .
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Because ji is piecewise fit, it can describe a body with unopened cracks. When K i 0, Jl \

K describes a body in which new cracks have been added to the pre-existing ones.

We denote by Sid ( ^ ) the collection of all simple deformations from <A and by Sid the

set

(3.6) Sid:= {(*,f) 6 Sid (J() \ <A is piecewise fit}.

Clearly, for each classical deformation f, the pair (0,f) obeys (Sid 1 ) - ( S i d 3). Therefore we

can regard each element of Cld as an element of Sid, and thereby identify Cld with a subset

of Sid.

An important subclass of Sid is provided by piecewise affine simple deformations. These

are defined to be the simple deformations for which there exists an admissible collection A

such that each restriction f. in (3.4) is affine. When g = R and *A is an interval of the

real line, for a piecewise affine deformation (*,f), * consists of a finite number of points

xk, k 6 {1...K}, in jt^ and the restriction t of f to each interval (x
k> x

k + i ) is of the

form:

fk(x) := ^ + bkx, xk < x x
k + 1

with a ,̂ bĵ  constants chosen in such a way that f is injective and orientation preserving.

The intervals (xk, x
k . j) then form an admissible collection for (/c, f). Indeed, each interval

is a fit region; moreover, each of the restrictions fk can be extended to the affine function

x i—• ak + bĵ x which is an orientation preserving C — diffeomorphism of R. As a first

example of a piecewise affine deformation, take ^ to be the interval (0,1), take K to be the

set

(3.7) , n := { | | h € {l,2,...n-l} },
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and take f to be the broken ramp function

(3.8) s n ( x ) : = x + f , | < x < 5 ± i , k 6 {0,1,. . . n-1},

with n a given positive integer. A related three-dimensional example which we will use later

is that of the deck of cards, in which we take <A to be the unit cube (0,1) * (0,1) x (0,1), and

K to be the set

(3.9) rn := (0,1) « (0,1) « <rn

with ^n given by (3.7). This corresponds to slicing the cube with equidistant planes

perpendicular to the Xg — direction. Finally, we take f to be the function

tU.JLUJ I IX< i AA* Xn I •—• (X<4 i" S (Xn I " " Xnt X A I X n l i

n x A o ± n o o A o

with s given by (3.8), which assigns to the k^1 slice a rigid translation of amount k/n in

the x^ — direction.

An example of a deformation with fracture which is not a simple deformation is supplied by

cavitation. For 8 = IR , let u( be the unit disc, let K be the singleton consisting of the

center of the disc, and let f be the mapping which maps the point with polar coordinates (r,y?)

into the point with polar coordinates

(3.U) f(r,v>) = (h(r) + c, <p)%

where c is a positive constant and h is a continuously differentiate mapping of (0,1) into

the reals that is monotone increasing and has right—hand limit h(0+) > — c. If we compute

the (p<p — component of the gradient we find
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(3-12) W ) w = ^

Thus, (vf) tends to +n> as r -• 0. If (/c,f) were a simple deformation, then by (Sid 3) there

•would be an admissible collection A of fit regions jl- such that the restriction f. of f to

each *4. is a classical deformation. Since A is finite, the center of ji belongs to the closure

of at least one of the J(>. For the corresponding f., the gradient is unbounded by (3.12), and

therefore there is no extension of f. to a C1 - diffeormorphism of R . Thus, (Sid 3) is

violated and (&,f) is not a simple deformation.

We wish now to establish for simple deformations counterparts of properties (Dl) — (D3) of

classical deformations. A counterpart of (Dl) is supplied by (Sid 2). The properties (D2), (D3)

concerning the composition and the inverse require the definition of the corresponding

operations in the class of simple deformations. Let us begin with the definition of composition.

3.3 Definition: Let J€ be a piecewise fit region of £, let (*, f) be a simple deformation from

*A and let (/*, h) be a simple deformation from i{ji \ K). Then the composition of (/x,h) and

(A;, f) is the pair

(3.13) (/*, h) o (*, f) := (K U F 1 ^ ) , hof

In this definition we have used the fact that, in a simple deformation (/c, f), the image of

*4 \ K under f is a piecewise fit region. We are now in position to prove a counterpart of

property (D2) for simple deformations.

3.4 Proposition: Let J(% (*, f) and (/*, h) be as in Definition 3.3. Then the composition

defined in (3.13) is a simple deformation from *4.

ElQQf: We have to prove that the pair (K U F 1 ^ ) , h o f | ^ \ / ^ u f - 1 / \\) has the properties

(Sid 1) — (Sid 3). (Sid 1) is satisfied, because by assumption K has zero volume, and because
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f~ (n) has zero volume as it is the image of a region with zero volume under a mapping f"

which satisfies (3.5)^ To prove (Sid 2), it is sufficient to remark that h o f \^\(K\jf^(u\) is

a composition of two injective mappings. To prove (Sid 3), take collections A p A2 of fit

regions ^ . , j 6 {1,..,J}> *^2D' P e i**"*^}* admissible for {jt \ K, f) and (i(j( \ K)\(I} h)

respectively. The collection

A := { ^ j fl r j (^2p) I j £ {1,...,J}, p 6

then is admissible for {J6 \ (K U f" (/*))> h 0 ^*\(K\jf-l(u)))- Indeed, A is finite and is

made up of fit regions, because *4+., f^ (^OD^ a r e ^ t } anc^ ^ e i n t e r s e c ^ o n °^ fit regions is

fit. Moreover, since f. and h are classical deformations, so are their restrictions to the fit

regions *4^. n f~. ( ^ 2 D ^ anc^ ^\(^i\) n ^ 2 D ' resPect^ve^y- Hence, the restriction

n r](^2p) = ^jf^y) n

of h o f to each element of A is the composition of two classical deformations and, therefore,

is a classical deformation. B

The definition of composition of simple deformations permits us to state the following

decomposition theorem for simple deformations.

3.5 Proposition: Every simple deformation (*, f) from <A admits the decomposition

(3.14) (*, f) = (0, f) o (*, i % ) .
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Moreover, the pairs (0, f) and (*, i ) are simple deformations from <A\K and ^ ,

respectively.

Proof: If (0, f) and (*, i ) are simple deformations, then (3.14) follows from the definition

(3.13). Thus, we have only to prove that (0, f) and (K, i ) are simple deformations.

(*, i ) is a simple deformation from ji because K satisfies (Sid 1) by assumption and the

identity mapping satisfies (Sid 2) and (Sid 3). (0,f) is a simple deformation from *4 \ K

because <A \ K is piecewise fit, the empty set has volume zero, and f satisfies (Sid 2) and

(Sid 3) by assumption. B

Because the simple deformation (/c, i ) describes the creation of a new crack site K

and leaves every point of the body fixed, we call it a pine cracking. In contrast, (0, f) is a

simple deformation which does not involve the creation of a crack, and we call it a

deformation without cracking. It is not difficult to see that, for a deformation without

cracking (0, f), the mapping f is a classical deformation from *A\K only if the domain

<A \ K is a fit region. Using the terminology just introduced, the decomposition in (3.14) can

be expressed as follows: every simple deformation is the composition of a pure cracking and a

deformation without cracking. There is only one simple deformation from *A which is both a

pure cracking and a deformation without cracking, and this is the identity deformation

If (&, f) is a simple deformation from *A% it is natural to define right and left inverses of

(*, f) as pairs which, when composed with (K} f) according to (3.13), result in the identity

deformation:

(3.15)
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The question of the existence and uniqueness of right and left inverses for a simple deformation

is answered by the following proposition.

3.6 Proposition: Let (*, f) be a simple deformation from J(. A right inverse (/?, r) and a

left inverse (A, I) exist if and only if /c = 0. In this case,

(„, r) = (A, I) = (0, T 1 ) .

Eioof: If K = 0, then by composing the pair (0,f~ ) with (0,f) we conclude that (0, f ) is

both a right and a left inverse for (0, f). Conversely, assume that a left inverse (A, I) of

(K, f) exists. Then from (3.13) and (3.15) it follows that

K u r\x) = 0,

and this implies K — 0 and f~ {X) = 0. On the other hand, because A is a subset of

f(i/£), f~ (A) = 0 implies X = 0. Because A = /c = 0, we obtain again from (3.13) and

(3.15)

i.e., / = f" • Following the same lines it can be proved that, if aright inverse (/?, r) exists,

then K = p = 0 and r = f~ . a

With this proposition we have proved that right and left inverses exist only for simple

deformations without cracking. If they exist, they are unique and coincide, and we can speak

simply of the inverse of a deformation without cracking. It is natural to refer to simple

deformations without cracking as invertible simple deformations and to write InvSid for the set

of invertible simple deformations.



20

With reference to the decomposition (3.14), we see that only the factor (/c, i ^ ^ ) does

not have, in general, an inverse. This reflects the irreversibility attributed to the process of

formation of a crack. For simple deformations, the property (D3) of classical deformations is

replaced by: the inverse of a simple deformation, whenever exists, is a simple deformation,

This property is established in the following proposition.

3.7 Proposition: The inverse of an invertible simple deformation (0, f) from <A is a simple

deformation from i(j().

ElOOf: (Sid 1) and (Sid 2) are verified trivially for (0, F 1 ) . To verify (Sid 3), we take an

admissible collection A for (0, f) and consider the collection

A' :=

Each f(«>£.) is a fit region. Moreover, because f| , is a classical deformation with range

f(o<.), its inverse exists and is a classical deformation from l{u4X Thus, A'has the

properties required by (Sid 3). a

The last result in this section is a more technical one: we show that the fundamental

theorem of calculus applies to simple deformations.

3.8 Theorem: Let *A be a piecewise fit region of ?, let (/c, f) be a simple deformation from
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jf> and let ^ be a unit vector in V. For almost every line L parallel to a there hold:

(i) to within a set of one-dimensional measure zero, L n *4\K consists of finitely many

pairwise disjoint closed intervals I , q 6 {1, . . . , Q};

(ii) for every q € {1 , . . . , Q}, f|T n ^ \ , . extends to a piecewise continuously

differentiate function f on I ;

(iii) for every q e {1 , . . . , Q} and every x, y € I with y = x + |y — x| <z, the

fundamental formula of calculus

(3.16) f(y-) - f(x+) = f Vf(x + ia)a dt + I (f(z+) - f(z-))

0

holds, where z runs through the points of discontinuity of fi in (x,y) and

f(w+) and f(w—) denote the right and left limits (with respect to a) of f at w,

respectively.

Before proving this theorem, we introduce a subdivision £ of J€ \K which will be useful

in subsequent developments, and we prove some properties of fi. Let { ^ . | j 6 {1,...,J }}

be an admissible collection for (/c,f) 6 Sid ( ^ ) . Then £ is the collection

\ | j € {1 , . . . , J}} defined recursively by

(3.17) I - • j - 1

j \ j p = 1 P *

3.9 Lemma: The subdivision £ has the following properties for each j , k € {1,2,...,J}:

(i) 3- C ^ j , and 3. n 3^ = 0 if j # k;

(ii) 3- is a fit region;
J

(iii) U A differs from ^ \ K by a set of volume zero.
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Proof of the Lemma: Property (i) follows directly from the definition of £ . To prove (ii) we

proceed by induction, observing that 3^ = ^ is fit. Let j € {2, ..., J} be given and

assume that 3 is fit for all p € {l , . . . , j- l} . Then int(^. \ 3?) is fit because the interior

of the difference of fit regions is fit [17]. Moreover,

j—1 j—1 j—1
3- = int {JC. \ ( U 3')) = int fl (jt> \ 3) = n int {ji. \ 3).

J J p=l F p=l J v p=l J

Therefore, 3 is fit because it is the finite intersection of fit regions. To prove (iii), we first

introduce the notation

(3.18) *4K 3

to mean that two subsets v£, 3 of t differ by a set of volume zero, and we proceed again by

induction. Clearly, 3^ « J6^ by (3.17). We let j € {1,2,..., J - l } be given and assume

that U JB « U o4. We now can write
P = i p P = i p

u a
P = i

j
u

P=i

u • [A u

Here we have used the fact that int ^ » <A whenever vol(bdy <A) = 0, as is the case for the

sets ^:+i \ U c2 and U 3 U ^ ; + 1 whose boundaries are subsets of the set

j + l
U bdy o€ having volume zero, due to the fact that each region *A is fit. B

p=l p p

Proof of Theorem 3.8: Take an admissible collection A for (*,f) and consider the subdivision

£ defined in (3.17) in terms of A. Consider first the region 3+ of £; since 31+ is fit, it
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follows from (F3) that, for almost every line L parallel to <z,

(3.19) L fl 3X » U I -

1
with I i > Qj € {1> —» Qj}) closed pairwise disjoint intervals. Here » is the counterpart in

one dimension of the symbol « defined in (3.18). Among all lines satisfying (3.19), we select

those for which

i Q2
(3.20) L ( l i , » U I 92 q 2 = l q2>2

with I 2> Qo 6 {** •"•» ^2^ J c^ose(^ a n ^ pairwise disjoint. Since 3« and J&o a r e disjoint,
2*

the interior of each interval I t is disjoint from the interior of each interval I o. Again

by (F3), almost every line L parallel to a satisfies simultaneously (3.19) and (3.20).

Proceeding recursively, we find that almost every L parallel to <s satisfies

(3.21) ?. « U I . for all j € {1,...,J},

with I ., q. € {1,.. . , QJ , j € {1,... , J}, closed intervals with pairwise disjoint interiors.

Denote by I , q € {1,...,Q} the connected components of the finite union

J j
U U I . . It follows from (3.21) that

j= l q j =1 q j ' J

J 1 J Q j Q
(3.22) U (LnJ?.) » U U I . = U I .

J j = l q. = 1 q j ' J q = l q
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In order to prove (i), it is sufficient to prove that

J 1
(3.23) U (L fi 3.) » L n ^ \ K

j=l J

for almost every line L parallel to <z. To do this, we observe that, by the assertion (iii) of the

preceding lemma,

(3.24) vol \{<€ \ K) \ (( U 3.)] = 0,
j = l J J

and that, by Fubini's Theorem, almost every line parallel to a given direction intersects each

set of volume zero in a set of one-dimensional measure zero. Therefore, (3.23) holds for almost

every line to which (3.22) applies. This proves the first assertion.

To prove (ii) it is sufficient to consider the restrictions of f to each ^ . . As we know

from (Sid 3), they are classical deformations, and therefore they extend to C —

diffeomorphisms f. of the whole space $. It is sufficient to set

(3.25) f(x) := -

fj(x) forxe int Iq ^ for q. € {l,...,Qj}, j 6 {1,...,J}

f(x) forx€(I n^\/c) \ U U int I .
q JQj qJ'J

x forxe In\(U U int I • U ̂ \K )
q j Qj q r

to get a piecewise continuously differentiable extension of f to I for each q € {1,..., Q}.

Indeed, ^(x) = f.(x) for each j € {1,.. . . J}, q. € {1,... , Q.}, and x e int I ..
J J J H4)J

Moreover, I is a finite union of intervals I ., and each f. has a continuously differentiable

extension to I .. At this point, (iii) follows from the fundamental formula of calculus applied
4j,J
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to each [w{> w i + 1 ] := Iq ^ n [x, y]:

(3.26) £j(wi+i) ~ f /w i ) = J Vf j fw.+t* ) * * ,
0

for all i € {1 , . . . , QJ, and from the observation that, for every j 6 {1 , . . . , J}, f. is defined

in the whole space and that f .(x) = f(x) and vf .(x) = vf(x) almost everywhere in I . .
J J 4j>J

Therefore, vf. can be replaced by vf in (3.26). Moreover,

so that the addition of (3.26) over all intervals I . forming I leads to (3.16).
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4. limits of simple deformations

We have introduced simple deformations (K, f) in order to describe the creation and

opening of cracks. This corresponds to the idea we have of macroscopic fracture: we think of

K as the site of new macroscopic fractures that are revealed through the discontinuities of f

across K.

Our purpose in this section is more general: we wish to describe deformations for which

fractures are allowed to diffuse throughout the body. This process of diffusion is obtained here

from a limiting procedure on sequences n |->(^n> fn) of simple deformations.

4.1 Definition: Let *A be a piecewise fit region of ?. By LimSid(^) we mean the set of all

triples (*,g,G), with u i , g 6 Lm(*4,8), G € L°(^,Lin Y\ for which there is a

sequence n •-• (*n>fn) in Sid(^) such that:

(i) K = lim inf *n,

L (

(iii) l i m || G — vf || = 0 .
n Lw{CUr)

We denote by LimSid the set

(4.1) LimSid := {(*,g,G) 6 LimSid(u<0| ** is piecewise fit}.

We call each dement of LimSid a limil of simple deformations. If (/c,g,G) €

and if n *-• (* ,f ) is a sequence in Sid(^) satisfying (i) — (iii) in the above definition, then

we say that n •-• (« ,f ) determines («,g,G). In (i), by lim inf K we mean the set
nH<D

OD W

(4.2) K := U n K .
p= l n=p

This is the set of all points x of ^ for which there exists a p such that x € K for all
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n > p. We recall that, by (Sid 3), each «^ \ *n is the union of finitely many regions *A.

such that the restriction of iR to each «4. extends to a C -diffeomorphism of g. This

implies that both fn and vf are bounded. Since K has volume zero by (Sid 1), it follows

that fn and vfn can be identified with elements of the Lebesgue spaces Lw(^>g) and

i/^i/^Lin y)} respectively.

The space Sid imbeds naturally into the space LimSid. Indeed, to each (*,f) € Sid we

can associate the element (*,f,vf) of LimSid determined by the constant sequence

n •-• (*,f). The fact, made evident by the following examples, that there are elements

(*,g,G) of LimSid with vg # G shows that the imbedding of Sid in LimSid is not

surjective.

4.2 Example (the broken ramp sequence): Let $ = R, Ji = (0,1) and, for each n 6 W, take

(*n,fn) to be the pair (<rn,*n) defined by (3.7) and (3.8). It is easy to see that the sequence

n •-• (^n,sn) determines the triple (*,g,G), where K is the empty set and g and G are

given by

(4.3) g(x) = 2x, G(x) = 1, 0 < x < 1.

4.3 Example (the dyadic broken ramp sequence): Consider the subsequence n »-• (K ,f )

of the broken ramp sequence. Since each set K n consists of dyadic rationals in (0,1) and

since K C K for every n < m, the set K consists of all dyadic rationals in (0,1). On

the other hand, the L00 — limits of n *-• f n and n •-• vf are the functions defined in (4.3).

We conclude that the dyadic broken ramp sequence determines the triple (*,g,G), with K the

set of all dyadic rationals in (0,1) and g, G given by (4.3).

Three-dimensional counterparts of the above examples are given by sequences of "decks of
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cards" constructed using the sets rn and the functions t n defined in (3.9), (3.10). The last

example shows that ji \ K is not, in general, a piecewise fit region; indeed, the complement

of the dyadic rationals is not an open subset of (0,1). The same example also illustrates the

following property of limits of simple deformations.

4.4 Proposition: If a sequence n •-> (*n>fn) determines a triple (*,g,G) in Lim Sid, then

each subsequence determines a triple (fc'jg'jG') inLimSidwith g' = g, G' = G and

K* 3 /c, the inclusion being strict, in general.

Of the next two examples, the first one shows that Lim Sid includes triples in which the

second entry may be a function as nasty as the Cantor function. The second one shows that, if

n •-• (K ,f ) determines (*,g,G) and if all the fn are of bounded variation, then g need not

be of bounded variation.

4.5 Example (The Cantor fracture): Let 8 = R, <A = (0,1), and let <p be any continuous

non—decreasing map of (0,1) onto itself. For each n e IN consider the points

x^, h € {0,1,...,n}, defined by

(4.4) XQ := 0, x h := min {x 6 (0,1) | tfx) = | }, h e {l,...,n}.

That there is at least one x such that (p(x) = h / n is ensured by the fact that <p is

continuous and surjective. Define n •-• (*n,fn) as follows:

y*) : = x +5» xh < x < xh+i> h e i0*1 n"i>-

Each («n,fn) is a piecewise affine simple deformation. Moreover, n •-» (/c ,f ) determines a
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triple («,g,G) in LimSid (jf). Indeed, vf (x) = 1 for all x 6 <A \ «n , so that the L" —

limit of vfn is the constant function x •—• G(x) = 1, and n *-* { has as V — limit the

function f(x) = x + <p(x). To see this, note that by (4.4)

for every x € (xj^Xh+i) a nd h € {0,1,..., n—1}, so that, in view of the monotonidty of ip,

0 = x + tfxh) - fn(x) < x + tfx) - fn(x) < x + v<xh+1) - fn(x) = y<xh+1) - <p(xh) = I .

It is now sufficient to observe that the Cantor function has all the properties assumed for <p to

conclude that (/c,g,G) may have as second entry the identity plus the Cantor function.

4.6 Example: Let S = R, <A = (0,1) and let (*n>fn) be the piecewise affine

deformation:

*n :== w Sr#> 2n+l *'

C""TT l f 9TTTT < x < IJTT» h 6 t 1 !—>n / i

c otherwise.

It can be verified that each f is injective, and that n i—• fn and n i—• vfn have Lw

limits that we denote by g and G. The total variation of f is

V(fn) = 1 +2 J J < +.,
n=l

and that of g is

V(g) = l i m V(fn) = + . .
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Therefore, each fn is of bounded variation but g is not.

In Section 3 we showed that the function defined in (3.11) and representing cavitation is

not a simple deformation. The following example shows that such a function may represent the

second entry of an element of LimSid. For simplicity, we restrict ourselves to the special case

Mr) = r.

4.7 Example: Let <A be the unit disc of R without its center, and let n •—• (K^, fn) be

the sequence defined by

Kn := {x | r(x) € (0,1), tfx) = ^ , h e {0,l,...,n-l}},

f (x\ - x + c (cos ^ sin 2*k) ?£h < ^ < 2rPH-D h e 10 1 n-1*
1 IAI •«— JL T v IVA/D _. • Dili — I. _, ^» U/IJLI ^ « i l C lU«X«*..«il X f.

fn(

Here c is a positive constant, and r(x) and <p(x) are the polar coordinates of x. Each fn(x)

represents the piecewise rigid deformation in which each sector 2rh/n < tp{x) < 2x(h+l)/n

experiences a translation of amount c in the radial direction <p = 2xh/n.

It is easy to verify that each (K ,f ) is a simple deformation from <A and that the If* —

limit of n •—• vf is the constant function G(x) = I. Moreover, the sequence

n i—• fn converges in Lw to the function g given by

g(x) := x + c (cos p(x), sin <p(x)).

Indeed, by direct computation we find that

- g(*)l = 2c I s i n ^ - <p(x))\ < c | ^ - <p(x) I < ?£C.

Our arguments prove that cavitation can indeed represent the second item of an dement

(*>g>G) of LimSid. It is also interesting to remark that, in the present example, K turns out

to be the set

K := { x € Jt I r(x) 6 (0,1), <p(x) = 0}.
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In general, it is not possible to compose limits of simple deformations. However, it is

possible to compose a limit of simple deformations with a simple deformation, and the result is

a limit of simple deformations.

4.8 Definition: Let (*,f) e Sid(c^), and let (/J,h,H) e LimSid (f(^\/c)). Then the

composition of 0*,h,H) with (*,f) is the triple

(4.5) 0*,h,H) o (*,f) :=

4.9 Proposition: Let (*,f) € Sid (^) and (/i,h,H) 6 LimSid (f(^\/e)). It follows that

(/i,h,H) o (/c,f) 6 LimSid(c^). Specifically, for each sequence n •-• (/*n,hn) € Sid(f(c^\A;))

that determines (/j,h,H), the sequence

= n ^

determines (/*,h,H) o (/c,f).

Proof: We have

OD OD

lim inf (K U r 1 (u )) = U n (K U f ~ V ))
p=l n=p

= « u ( u n r 1 (« )) = K U T 1 ( u n /» )
p=l n=p p=l n=p

Moreover, there hold

l im || h o f — h o f || = l im | |h — h | | = 0,
II 1̂  I I MM * II Tl II # m ^ —- *. *



32

and

l i m | | ( vh n of )v f - (Hof )v f | |
n L

l i m || vh — H || | |vf|| m = 0.
n L° " "( )

In the remainder of this section, we establish a variety of properties of the elements of

LimSid.

4.10 Theorem: Let (*,g,G) € LimSid ( ^ ) . Then: (i) K has volume zero; (ii) g and G

have representatives g and GQ which are continuous on

Before proving the theorem we state a lemma which shows that, in spite of the fact that

the domains of the transplacements f depend upon n, a notion of uniform convergence can

be established for n #-• f .

4.11 Lemma: Let n •—• (*n, fn) be a sequence determining (*,g,G) 6 LimSid {^). Then

g and G have representatives gQ : *4\K —> #, GQ : <A \ K —> Lin V such that n •-• fn

and n •—• vfn converge uniformly to gQ and GQ in the following sense: for every e > 0,

there is an N e W such that

(4.6a) sup | f (x) - g (x) | < e for all n > N
xG^\(/cU«n) n ° e

and

(4.6b) sup | vf (x) - G (x) | < e for all n > N .
^ \ ( U ) n ° c

i Let m, n € W. From the definition of the L" norm,

IL-t-ll _ = inf { su
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From the continuity of f and f on J6 \ ( K U K ), it follows that

l ^ - ^ l > | fn(x) — f m 0 0 I for all x G *^\(« n U

By the definition (4.2) of K, for each x € <A\K there is a subsequence n' •—• (K
n"{n

n'eW'cW, such that x € <A \ * n , for all n'. Thus, by (4.7) and by the fact that n7

f , has an

L00 — limit g, we conclude that n7 »-• f , (x) has a limit, and we set

(4.8) gQ(x) := l im fn ,(x) for all x G <A \ K.
n'-^oo

Let x be in jt \ {K U * n ) . Then by (4.7), with m restricted to W, in the limit for

m -> OD we have

If we choose N such that the L™ norm of L—g is less than e for all n > N , then

(4.6a) follows from (4.9). Moreover,

and, taking the limit as n -* a> in the last inequality we find that || g — g || = 0,

i.e., that gQ is a representative of g. A similar proof applies to G. a

Proof of Theorem 4.10: By (4.2), K is a countable union of sets each of which has volume zero

by (Sid 1). Thus, K has volume zero. We wish to prove that the representative

g of g defined in Lemma 4.11 is continuous. Let n »-• (*n>fn) be a sequence in Sid(^)

which determines (*,g,G). By the lemma, for any fixed e > 0 we may choose N € IN such
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that, for all n > N

(4.10) sup |fn(0-8oU)l

Let x € J€ \ K be given. Choose n' > N f such that x 6 *J\KU,\ because fn/ is

continuous with open domain ^\K^,, we may choose 6 > 0 such that

${x,6) C ̂  \ K , and, for all y €

(4.H)

Let z 6 ^(x,^) n ( ^ \ it) be given. Because S{x,6) C ̂ \ « n / , we have that both x

and z are in ( ^ \(«n/U /c)) n .#(x,£) and, by (4.10) applied to both x and z and (4.11)

with y = z we obtain:

(4.12) | go(x)-go(z) | < | g o(x)-fn /(x) | + | fn , (x)-fn , (z) | + | fn , (z)-g0(z) | < e.

A similar proof applies to G. B

4.12 Remark: As shown by Example 4.3, ji \ K in general is not an open set. Theorem 4.10

establishes the continuity of g on its domain *A \ K but does not guarantee that gQ has a

continuous extension to an open ball centered at a given point x in <A \ K. Nevertheless,

relation (4.12) does restrict the oscillation, and therefore the jumps, of g in

J8(x,6) n [y4 \ K) to be no greater than 2e.

4.13 Remark: It is not true in general that gQ is C , or even differentiate, at the interior of

j(> \ K. Indeed, referring to Example 4.5, choose the function tp to be

for 0 < x < 1 /2,
(4.13) ipix) = \

' for 1/2 < x < 1.[2x-l
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With this choice, K is the empty set and yet the function gQ : x *-• x + <p(x) is not

differentiate at x = 1/2.

Some of the examples in this section show that, although the permanent crack site K for a

limit of simple deformations (*,g,G) may be empty, the crack sites *n for a determining

sequence n »-• (K , f ) can diffuse throughout the region ^f. We now wish to identify

precisely the region affected by such diffusion and to investigate the fact that, in the above

examples, vg i G at the points where such diffusion of fracture occurs. Consider a sequence

n •"* *n *n ^ an(* (*e^ne *^e s e t

(4.14) A(n~/c ) := n clo( U « ) ,
p = l n = p

where the closure is taken relative to *A. This set is closed in <A because it is the intersection

of sets that are closed in J6. It includes the set K defined in (4.2) and the inclusion is in

general strict. For example, for the sequence (3.7) K is the empty set and A is the whole

interval (0,1). If two sequences in Sid(c^) determine the same element of LimSid(c^), the

two sets A need not coincide. For example, the identity (0, i ^ , I J) of LimSid (<A) is

determined by the constant sequence n •-• (0, i , ) , as well as by the sequence

n »-• ( ^ , i . » ), with an as in (3.7). In the first case A is the empty set, and in the
* n

second case it coincides with <A. The intersection of the sets A(n •-• K ) taken over all

sequences which determine a given (*,g,G) € LimSid (o4) will be denoted by $(/c,g,G).

This set is closed in ^ and includes K. The complement of $(/&,g,G) in ji will be denoted

by $(*,g,G). It is the set of all points x € *A such that there is at least one sequence

n •-• (*n>fn) 6 Sid {o4) which determines (*,g,G) and such that x belongs to the exterior
OD

of U *n. * is an open set included in *4 \ K and may be empty. *(/c,g,G) and
n=l

${*} g> G) will be called the unfractured zone and the fractured zone for (*,g,G), respectively.
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In the above example with (*,g,G) = (0, i ^ , 1^), because there is a sequence determining

(*,g,G) for which A = 0, we have $(/c,g,G) = 0 and therefore *(*,g,G) = *^.

4.14 Theorem: Let (/c,g,G) € Lim Sid ( ^ ) . Then, at all points of the unfractured zone

¥(*,g,G), g is continuously differentiable and vgQ = GQ.

Proof: Let x € *(/c,g,G). Then there is a sequence n •-* (*n>fn) in Sid (o4) which
00

determines (/e,g,G) and there is a neighborhood J(x) of x such that J(x) and U *n

n=l

are disjoint. Consequently, each f is of class C at x and the sequence of the derivatives

vf converges uniformly to G in <7(x). Under these conditions, a corollary of the mean

value theorem (see e.g. [2], Theorems 3.6.1, 3.6.2) ensures that gQ is of class C and that

its derivative at x is G (x). a

4.15 Theorem: Let (*,g,G) € Lim Sid ( ^ ) , and suppose that det G (x) > 0 at each point

x in the unfractured zone *(*,g,G). Then the restriction of gQ to *(/c,g,G) is a C -

diffeomorphism.

Proof: We first observe that the positivity of det GQ together with the continuity both of GQ

and the mapping of an invertible linear mapping into its inverse ([15], p. 250) imply that G^

is defined and continuous on *(A;,g,G). Therefore, for each x 6 *(/c,g,G) and for each

6 > 0 such that clo#(x,£) c *(*,g,G), there exists M = M(x,£) > 0 such that

(4.15) 0 < | G (Z)-1 I * M for aU ^ e clo

Let us prove now that gQ restricted to ¥(*,g,G) is injective. Assume to the contrary that

there are two distinct points x, y in #(*,g,G) such that

go(y) = go(x).
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Since x € *(*,g,G), there is a sequence n •-• (*n,fn) in Sid {A) which determines (*,g,G)

and a number 6 6 (0, |y — x | ) such that do &(x} 6) c ¥(*, g, G) and clo # (x , S) and
OD -

U K are disjoint. Because, for each n e W, f is a C — diffeomorphism of

clo #(x,£), *2?(x, 6) is mapped by fn onto a neighborhood of fn(x). Moreover, by (4.15)

and by the uniform convergence o f n M vf to G in clo *#(x, 6), there exists N € IN

such that n > N implies

< 2M for all f e clo J?(x, 6),

and therefore ([2], Prop. 3.3.1)

Since a C — diffeormorphism maps the interior of its domain onto the interior of its image

and the boundary of its domain onto the boundary of its image, we condude that f maps

t#(x, 6) onto an open neighborhood of fn(x) which indudes <#(fn(x), (2M)~ 6). Consider

now the point y which, by assumption, belongs to *(*,g,G) and therefore to ji \ K. Thus,

there is a subsequence nx •-• (^n/>fn/) of n •-• (^n^n) such that y belongs to all J6 \

K /. In view of (4.16) and of the property (4.6) of uniform convergence of n H f to g , for

suffitiently large n' we have

(4.17) | f n , ( y ) - f n , ( x ) | < | f n , ( y ) - g 0 ( y ) | + | g o ( y ) - g o ( x ) | + | g o ( x ) - f n , ( x ) | < (2M)"1*.

Thus, y does not belong to ^(x,^), but, for suffidently large n', its image under fn,

belongs to #( f n , (x ) , (2M) ^), and therefore to the image under fn, of *#(x,£). This

contradicts the injectivity of fn/. We condude that (4.16) holds only if y = x, and this

proves that the restriction of g to *(*,g,G) isinjective. By Theorem 4.14, g is of class

C and vg = G in *(*,g,G); moreover, the determinant of G is strictly positive by
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These conditions ensure that gQ is a C1 -diffeomorphism of ¥(/c,g,G), (see [2],

Corollary 4.2.2). u

4.16 Remark: That (4.15) does not imply that gQ is injective in <4 \ K or even in

ji \ do K is shown by the following example. Let 8 — R, *4 = (—1,1), and let

n *"* (V fn) be given by

(4.18)

« n : = £1 h6{l-n,2-n,...,-l,0,l,...,n-l»

for | < x <

for J
k+1

n '

..n-1}

Each pair (K ,f ) is a piecewise affine deformation; in particular, f is injective because the

image of (0,1) under f consists of the intervals (0,1/n), (2/n, 3/n), (4/n, 5/n),.. and that

of (—1,0) consists of the intervals (1/n, 2/n), (3/n, 4/n),...which are all pairwise disjoint.

The sequence (4.18) determines the triple («,g,G) with K = {0}, g given by

2x in (0,1),

2x+2 in (-1,0),

and G (x) = 1. Therefore, (4.15) is satisfied, but g is not injective.

4.17 Theorem: Let (*,g,G) 6 Lim Sid ( ^ ) , and let x e J6 \ K. Assume that there is an

open neighborhood J{x) of x included in o€ such that g can be extended to an
1 e

orientation preserving C — diffeomorphism g on J(x). Then

(4.19) det Gn(x) < det vge(x).
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Proof: Choose 6 > 0 such that the ball 3t(x,6) is included in J{x). For each e > 0,

denote by ge(3(x,S))e the set

ge(JS(x,6))e := U tf(ge(£), 0-

Since c < e' implies ge(3(x,6))€ c ge(S(x,6))€ and since the intersection of all

ge(3(x,6))€ with e > 0 is the closure in 8 of ge(S(x)6)), we have that

(4.20) vol ge(.2(x,*))c = vol ge(JB{x,S)) + *(e).

e 1
Because g is an orientation preserving C — diffeomorphism, (4.20) can be written as

(4.21) vol g e(^(x/)) c = J det vgeU) d̂  + *(e).
S(x,S)

Choose a sequence n >-* («n,C) in Sid (^) which determines («,g,G). Then there is an

Nc e W such that for all n > Nf

(4.22) I I C - 8 II + H Vf — G || < e.
n L"Vr) n "^(^Lir)

For each such n, by (4.22), by the definition of the set ge(J8(x,6))e, and by the fact that ge

is an extension of g,

so that, by (4.21),

(4.23) vol fn (S(x,6)\ Kn) < J det< J
Since f is an orientation preserving C — diffeomorphism of the open set ji \ K and since

f

has volume zero,

vol fn(^(x/)\/cn)' J n ^ ' * J i
d>(x,6)\Kn *{x,S)
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On the other hand, by (4.22), for the representative GQ of G we have

vol f (J9(x,#)\ K ) = I det G {£) d£ + 0^

and, by (4.23),

j det GQ(£) df < I det vge(£) d£ + 0

Because e is arbitrary, we conclude that

f det G o (0 d£ < J det vge(O

It is clear that 6 can be replaced by an arbitrary positive number 6' less than 6. Then, by

letting 6' tend to zero and using the continuity of G on *4\K} we obtain (4.19). B

4.18 Remark: If x belongs V> the interior of <A \ K, Theorem 4.17 has the following

consequence: assume that g is of class C in a neighborhood of x and that

detvgQ(x) > 0. Then

(4.24) det GQ(x) < det vgo(x).

The last result in this section is an extension to LimSid of the fundamental formula of

calculus for simple deformations proved in Theorem 3.8.

4.19 Theorem: Let a piecewise fit region jty a triple (*,g,G) € LimSid ( ^ ) , and a unit

vector a € Y be given. There hold:
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(i) For almost every line L parallel to ^, L fl <A \ K is, to within a

one-dimensional set of measure zero, a finite union of pairwise disjoint closed

intervals Iq, q e {1, . . . , Q};

(ii) for each sequence n •-• («n>fn) that determines (*,g,G) and for almost every line

L parallel to *z, not only does (i) hold, but also, for each q 6 {1 , . . . , Q} and

N € W, f n | j n yx extends to a piecewise continuously differentiable function f6

on I , and the fundamental formula (3.16) applies to fn for every x, y in I with

y = x + | y - x | <z;

(iii) in addition, for almost every x, y 6 I \ K with y = x + |y—x| a, the formula

0
(4.25) go(y)-go(x) = G0(x+t^)^dt + lim E

**" z

is valid, where g and GQ are the representatives of g and G introduced in Theorem

4.10 and z runs through the points of discontinuity of f̂  in the interval (x,y).

EIQQ£L Let n •—• (/c , f ) be a sequence that determines (*,g,G). By (Sid 1) in

Definition 3.2, each set K has volume zero, and by item (i) of Theorem 4.10 the set K also

has volume zero. Using the notation of (3.18) and (3.19), we have that ^\K « <J€\K and,

therefore, for each n > 1 and for almost every line L parallel to ^, there holds

1
(4.26) L n O4\KU « L fl O4\K.

By item (i) of Theorem 3.8, for each integer n > 1 and for almost every line L satisfying

(4.26) there is a finite collection of pairwise disjoint closed intervals I , qn € {1 , . . . , Q }
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such that

(4.27) L n «4\K « U Irt _ .

For each n > 1, we define J^ to be the set of lines parallel to <s for which not only (4.26)

and (4.27) hold, but also (cf. items (ii), (iii) of Theorem 3.8)

(ii) foreach I q n €{l , . . . > Q n } , fn |j n^K extends to a
n q ,n * n

piecewise continuously differentiable function f̂  on I n;

(iii) for each q 6 {1 , . . . , Q } and every X J E I with

y = x + |y — x\a, there holds

-

J0
(4.28) f T i ( y _ ) - f n ( x + ) = | vfn(x + t*)*dt + I (fn(zn+)-fn(2n-)).

zn

By items (ii) and (iii) of Theorem 3.8 and the above arguments, J^ has full measure, i.e., J£

differs from the collection of all lines parallel to a by a set of measure zero. It follows that
flD

n J£ has full measure and that both (4.26) and (4.27) hold for every n > 1 and for every
n=l

tD

L e n Jf. Relation (4.26) implies that for every such n and L
n=l

OD 1 1

(4.29) L n ^ \ ( U *m) « L n ^ \ Kn « L n Ji \ K.
m=l
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CD

Let a line L € n Jf be given. By (4.26) and (4.27), for each n, m > 1 there holds
n=l

U I K U I m .
Qn — n ^m"" m

Since each member of this relation is the union of a collection of pairwise disjoint, closed

intervals, this implies

Hence, if we put Q := Q, and if, for each q € {1 , . . . , Q}, we put I := I -, then (4.26)

and (4.27) yield

1 Q
L n ^ \ K » u i

q - l Q

which proves item (i). Item (ii) is proved by observing that item (ii) holds for the given line

L and for every n > 1, and that, by (4.30), the intervals I are now independent of n.

Because item (iii)n holds for the given line L and for every n > 1, we can assert that (4.28)

holds for each interval I and for every x, y € I with y = x + |y — x\a. In particular,
CD

if for a given I we take x, y e i fl I \ ( U K ), then x, y 6 JG fl I \ A; for every
H 4 m = = i m 4

n > 1. Since f is continuous on <A \ K , the limits f (y —) and f (x+) in (4.28) can be

replaced by fn(y) and fn(x), respectively. If in that relation we let n tend to ©, then by

(4.6) fn(y) and fn(x) converge to go(y) and go(x), respectively. We wish now to show that

the integral in (4.28) tends to the integral in (4.25) as n tends to <D. We first observe that, for

every n > 1, vf and GQ are defined on jf \ /cn and <A \ K, respectively, and, therefore,

are defined almost everywhere on I . Moreover, (4.6b) tells us that for each c > 0 there

exists an integer N such that

ess sup | vfn ( 0 - GQ(0 | < e
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for all n > N . Consequently, for each n > N£ ,

|y-*l
| J (vfn(x + t^) - G0(x + t*))*dt | < e | y - x |

which yields the desired conclusion. The formula (4.25) then follows from (iii)n upon letting n
QD

tend to OD. This establishes (4.25) for every x, y in the set *A n I \ ( U «m) which, by
^ m=l

(4.27) and (4.29), differs from I by a set of one-dimensional measure zero. a
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5. Structured deformations

The examples in Section 4 show on the one hand that an element of LimSid may contain

significant kinematical information not provided by any single term of a sequence defining it.

Thus, in Example 3.2, the limit of the broken ramp sequence describes a mapping of the

interval (0,1) onto the interval (0,2) in which the smaller interval can be viewed as being

fractured into infinitely many infinitesimally small pieces that are scattered uniformly

throughout the larger interval, a situation that cannot be described by any one term of the

sequence. On the other hand, an element of LimSid may lose the injectivity or some of the

regularity properties enjoyed by each term. In fact, Remark 4.16 provides an example of an

element (*,g,G) of LimSid (^4) in which the continuous representative g of g is not

injective, and in Remark 4.13 g is not differentiable at an interior point of <A \ K. Although

lack of injectivity is useful in some situations, for example, to describe mixtures of two

continua as we indicate in Section 7d, in many other situations it is natural to consider only

limits of simple deformations (*,g,G) in which g is injective. Moreover, in order to be able

to define compositions of triples (*,g,G) it is natural to require further that g and G have

smoothness properties stronger than the continuity guaranteed in Theorem 4.10, such as those

enjoyed by f and vf, respectively, in the case where f is the second entry of a simple

deformation (/c, f). In this section we define and study a collection Std of triples meeting

these requirements.

5.1 Definition: Let a piecewise fit region <A be given. A structured deformation from <A is a

triple (*,g,G) for which there hold:

(Std 1) (*,g) is a simple deformation from *A\
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(Std 2) G : ji \ K -4 Lin V is continuous and is piecewise continuous on c l o ^ , i.e.,

there exists a finite collection of fit regions {p. | j e {1,.-,J}} whose union is

<^\K such that, for each j e {1,..., J}, G |^ has a continuous extension to

do^jj

(Std 3) there exists m > 0 such that, for all x e <A \ /c, m < det G(x) < det vg(x).

We emphasize that our definition of structured deformations makes no use of limits of simple

deformations, even though both notions of deformation are described by triples (*,g,G).

Nevertheless, in the Approximation Theorem, Theorem 5.8, we will prove that every structured

deformation is a limit of simple deformations. Of course, when we say that a given structured

deformation (*,g,G) is a limit of simple deformations, we mean that the set K and the

L*— mappings associated with the continuous functions g and G form a triple that satisfies

Definition 4.1.

It is helpful to re-examine the examples of limits of simple deformations in Section 4 to

determine those (*,g,G) € LimSid that also are structured deformations, in the sense that the

triple (*>go>Go)> with g and G the continuous mappings constructed in Theorem 4.10,

satisfies Definition 5.1. The broken ramp sequence (Example 4.2) determines the limit of

simple deformations (0,g,G), with g and G given by (4.3), which also is a structured

deformation. However, the dyadic broken ramp sequence (Example 4.3) determines the limit of

simple deformations (/c,g,G), with g and G again given by (4.3), but with K the set of

dyadic rationals in (0,1). Hence, <A \ K = (0,1) \ K is not open and, therefore, not piecewise

fit; consequently, (*,g,G) is not a structured deformation from (0,1). These two examples

illustrate the role that the set K can play in distinguishing structured deformations from

general limits of simple deformations. The remaining examples in Section 4 include more

pathological situations that may not lead to structured deformations. In Example 4.5, choosing
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(p to be the Cantor function provides us with an element (*,g,G) of LimSid (0,1) in which g

is not differentiate, and, hence, (*,g,G) is not a structured deformation. The limit of simple

deformations (*,g,G) in Example 4.6 is not a structured deformation, because the set ji \ K,

with * = { - | n € IN \ {0,1}}, is not a piecewise fit region. The two-dimensional cavitation

(0»g>G) in Example 4.7 is a limit of simple deformations but not a structured deformation,

because our discussion in Section 3 showed that (0,g) is not a simple deformation. Finally,

the "one-dimensional kink" described in Remark 4.13 is not a structured deformation, because

g is not differentiable on <A \ K.

We shall denote by Std(c^) the set of structured deformations from a given piecewise fit

region jf and by Std the set of all structured deformations:

(5.1) Std := { (/c,g,G) G Std ( ^ ) | ji is piecewise fit}.

It is easy to see from (Sid 1) - (Sid 3) that for each (*,g) e Sid(c^), the triple (*,g,vg)

satisfies (Std 1) - (Std 3); therefore, we may identify Sid with a subset of Std.

The appearance of a simple deformation (*,g) in the triple (/c,g,G) denoting a structured

?deformation makes it easy to define the composition of structured deformations.

5.2 Definition: Let a piecewise fit region <A and structured deformations

(*>g>G) € Std {J6\ (/*,h,H) € Std (g(c/T \ K)) be given. The composition (^,h,H)o(/c,g,G) is

defined to be the triple

(5.2) ( * U g^OO, h o g| ((Hog)G) | _- ).
^\(*Ug X(/0) ^\(*Ug fy))

5.3 Proposition: A composition of structured deformations is a structured deformation.

Proof: The reader will notice that the first two components of the triple in (5.2) describe the

simple deformation (/*,h) o (*,g) defined in (3.13). By Proposition 3.4,
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0*,h) o (*,g) € Sid ( ^ ) , so that (M,1I,H) O (*,g,G) obeys (Std 1). Moreover, we can write

(5.3) det ((Hog)G) = det (Hog) det G < det (vhog) det vg =

= det ((vhog) vg) = det (v(hog)),

where we have dropped explicit indication of restrictions and have used (Std 3) for (/*,h,H) and

for (*>g)G) along with the chain rule. Relation (5.3) shows that the triple (5.2) also satisfies

the second inequality in (Std 3). The remaining inequality in (Std 3) follows from the first

equality in (5.3) and the fact that each factor in the second member in (5.3) is bounded below

by a positive number. We wish finally to show that this triple also satisfies (Std 2). To this

end, we choose finite collections of fit regions {p^ | k € {1,...,K}} in <A \ K and

/ 6 {1,...,L}} in g(u4 \ K)\fi satisfying (Std 2) for G and for H, respectively, as well

as an admissible collection { j(. \ j € {1,...,J}} as in (Sid 3) for the simple deformation (/c,g)

from J6. Because for each j € {1, ..., J} the restriction g. of g to ^- is a classical

deformation, its inverse gj is a classical deformation from the fit region g:(^»). Because for

each I € {1 , . . , L} J69 is a fit region, the set J69 n g. (o4-) is a fit region and, therefore,

so is g"j (<#'£ fl g. (c^.)). Consequently, for every j , k, and I as above, the set

(5.4) ji^ := g"1 (Xt n g j

is a fit region; we have

so that

- 1= w ( g &$ n ^j n W-(U« (^)) n (u^) n (u
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and, since the range of g is included in *4\ K,

J k /

Thus, the sets ^TL£ form a collection of fit regions whose union is <^\(Kl)g (/*)).

Because ^u£ C j ^ , by (Std 2), G has a continuous extension to clo ^XL*] because, by

(5.4), (5.5) and the injectivity of g,

) = xt n g(^) n

(Std 2) implies that H has a continuous extension to clo g (<^ft/)* Moreover, g has a

continuous extension to clo jf- 3 clo ^^p and, thus, Hog has a continuous extension to

clo ^fep- We conclude that (Hog) G has a continuous extension to clo ^v^t and that

(Std 2) is satisfied by the triple in (5.2). B

It is natural to consider the triple (0, i *% I,) as the identity element in Std

Indeed, we observe that not only is (0, i >>, I J) € Std ( ^ ) , but also that

(5.6) (*,g,G) o (0, i ^ ,

for all (*,g,G) € Std {*4). The next proposition concerns the existence of a left inverse for a

structured deformation and is a natural counterpart of Proposition 3.6 for simple deformations.

5.4 Proposition: Let (*,g,G) € Std {ji) be given. There exists (A,£,L) € Std (g(^4 \ K) )

satisfying

(5.7) (A,/,L) o («,g,G) = (1^,1^)

if and only if

(5.8) K = 0 and det G = det vg.
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In this case, we have the relations

(5.9) X = 0, I = g""1, and L = G"1 o g"1,

as well as the relation

) o (J,/,L) = (0, i

Proof: Suppose that (5.7) holds for some structured deformation (JI,l,L) from g(*4 \ K).

The definition of composition (5.2) then yields for the simple deformations (\yl) and (*,g

(V) • («,g) = (#,U),

and Proposition 3.6 implies

(5.11) X = K = 0 and / = g~L

Furthermore, (5.2) tells us that (Log) G = 1^, so that L o g = G"1 and, thus,

(5.12) L = G ^ o g " 1 .

Because (X,i,L) € Std(g ( ^ \ «)), the inequality (Std 3), (5.11), (5.12) and the Inverse

Function Theorem tell us that

(detG)"1 o g"1 = det (G"1 o g"1) = det*L < det v / = det (v(g - 1)) ,

i.e.,

(513) (det G)"1 < det (^(g-1) o g) = (det vg)"1.

It is immediate from (5.13) and (Std 3) that the relation det G = det vg in (5.8) holds.
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Conversely, suppose that (5.8) holds and put A = 0, / = g , and L = G og .

It is then clear that (5.7) and (5.10) hold, and it only remains to show that

(0, g~\ G^og"1) € Std(g(^)). Because (0,g) 6 Sid (^) , Proposition 3.7 tells us that

(fl.g"1) € Sid(g(^)), so that (Std 1) is satisfied for (0, g"1, G^og"1). To verify (Std 3)

we note that

(5.14) det(G"1o g"1) = (det G"1) o g"1 = (det G)"1 o g"1

and the second relation in (5.8) yields

(5.15) (det G)"1 o g"1 = (det vg)"1 o g"1 = (det (vg)"1) o g"1

= det ((vg)"1 o g"1) = det(v(g"1)),

which verifies with equality the second relation in (Std 3) for (0, g , G og '. Moreover,

this equality, relation (3.5), and the fact that (0, g~ ) 6 Sid (g(<^ \ K)) provide a positive

lower bound for det (G l o g l) on g ( ^ \ K). Thus, (Std 3) is satisfied. To verify (Std 2)

for (0, g , G o g ), we choose an admissible collection {^ k | k e {1,..., K}} for (0, g)
—1and fit regions p+, ..., p* satisfying (Std 2) for (0,g,G) and note that, for each j , G | ^

J
has a continuous extension H. to do p.. Put

(5.16) J« := gk (u<k n p^j C g(c^)

and observe that each set J * is a fit region, as it is the image of «^k n p. under the

classical deformation g,. Choosing an extension gf to all of $ that is a

C — diffeormorphism, we can write

do J^ = do (g£ (^k n $.)) = g£ (do (^k n 7''
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and we note that for each y € int clo J ^ — J^,

Hj (g-^y)) = Hj (g^1 (y)) = (G"1 o g"1) (y).

Moreover, H. o g"1 has the extension H. o (gj)"1 | that is continuous.
d o % 7jk

Thus, G o g is piecewise continuous on clo *4 , and (Std 2) is satified. B

Proposition 5.4 has the following immediate corollary.

5.5 Proposition: Let («,g,G) € Std be given. Then (/c,g,G) has an inverse (A,l,L) e Std if

and only if K = 0 and det G = det vg, in which case

(5.17) (A,/, L) = (0, g - \ G^og"1).

Propositions 5.4 and 5.5 tell us that the existence of an inverse in Std is equivalent to the

' existence of a left inverse which, in turn, is equivalent to the relations (5.8). We use the

notation

(5.18) (• AG)" 1 := (0, g"1, G-Xo g"1)

for the inverse of (0,g,G), and we write InvStd for the set of invertible structured

deformations:

(5.19) InvStd := {(*,g,G) € Std | K = 0 and det G = det vg}.

We recall that, from Proposition 3.6, the condition K = 0 is both necessary and sufficient in

order that the simple deformation (/c,g) be invertible. Thus, the conditions det G = det vg

and K = 0 play the corresponding role in determining which structured deformations are

invertible. From the imbedding g •-+ (0,g,vg) of Cld into Std we conclude that each



53

invertible simple deformation and, in particular, each classical deformation, when regarded as a

structured deformation, is an invertible structured deformation.

A principal goal in the remainder of this section is to show that Std can be identified with

a subset of LimSid. In order to do so, it is helpful to record a simple consequence of the

definition of composition of structured deformations that gives a counterpart of the

decomposition (3.14) for simple deformations.

5.6 Proposition: Each structured deformation (/c,g,G) is a composition of the simple

deformation (/c,g,vg) and of a structured deformation of the form (0,i,H):

(5.20) (*,g,G) = [ 0, i g ^ j , (G o g^1)((v6r1og-1) ] o (*,g,vg).

The next result, the Approximation Lemma, is central to the Approximation Theorem

which asserts that every structured deformation is a limit of simple deformations. The lemma

shows that a structured deformation of the form (0,i,H) can be approximated to any desired

accuracy by a simple deformation (A,h). Before stating the Approximation Lemma, we let a

piecewise fit region J€ be given and choose a Cartesian coordinate system for 8 with origin
1 2 30 in such a way that clo J6 is included in the coordinate cube ( j )

(5.21) c l o ^ c

(For definiteness and simplicity, we here consider the case where 8 is three-dimensional.)

For each prime p € IN and subset Z of the integers I, we define a family II(p,Z) of

coordinate planes:

(5.22) n(p,Z) := {r C 8 \ t is a coordinate plane whose distance from O is m/p for

some m € Z}.
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In particular, n(p,2Z) is the set of all coordinate planes obtained from any one of the three

coordinate planes through O by a translation of amount an integral multiple of p"" .

In stating the Approximation Lemma for a given (0,i,H) € Std (<^), we also refer to sets

occurring in (Std 2) of Definition 5.1 as well as sets constructed from them. Specifically, we

choose fit regions Ji^ ..., <&* whose union is <A and such that, for each j 6 {1,...,J},

H I j ^ has a continuous extension H.: do <#. -• Lin V. Consider the subdivision £ of ^
j •* ^

into mutually disjoint fit regions 3^ j € {1,...,J}, constructed using the procedure in (3.17)

with *4. there replaced by Jlf.. We now define
j j

(5.23) r(B) := U ((bdy 3.) n J(\
j l J

ie., F(£) is the set of points in <A that are in the boundary of at least one of the subdividing

regions 3-, and for each c > 0 we define

(5.24) r(B)c := {x € r(B) | dist (x, bdy j() < e}.

5.7 Approximation Lemma: Let a piecewise fit region ^4 be given and choose a Cartesian

coordinate system for 8 satisfying (5.21). Let (0,i,H) € Std (J() be given,
choose sets {ft. \ j € {1,...,J}} as in (Std 2), and consider the subdivision £ as in (3.17),
with o4. there replaced by <&.. For each e > 0 and each prime p € W, there exist a
piecewise affine simple deformation (Jl,h) from *4 and primes Pi,P2 greater than p such
that

(i) X is covered by the set T(R)( defined in (5.24) together with the planes
r € n ( p / l { l , . . . , p / - l } ) with / €{1,2};

(ii) | | h - i | | < e;

(iii) | |vh-H|| < t.
L-^.Linr)

Moreover, (X, h), pj, and p 2 can be chosen so that, if we put
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tf := int{x 6 Ji | H(x) =
(5.25) y

then A n i - • » d

7.
H • do X• - Lin r of H is continuous, Hj is

there exists m > 0 such that

(5.26)

andwemaychoose/J>0 satisfying

(5.27)

m < detH, <
JJ

6>0 such that, for each j e {1.....J}.

extension

Choose a prime P l such that

(5.29)

with
M :=max{supJ^H(x)-l | , 1 },
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k, k n +l k9 k 9 + l k. k . + l

and put

(5.31) £ (px) := {if C (0,l)3 | if =

kl> k 2' k3 € f1' 2 ' - • p l " 2 ^

i .e . ,£ (p 1 ) is the set of all closed cubes if in (0,1) whose parallel faces are included in

consecutive planes in II (p1? {1, 2, ..., Pj-1}). The condition (5.21) tells us that clo ^ is

covered by Q (pj), and the relation (5.29) implies that the diagonal /T/p1 of each cube is

less than both e/2M and 8. Consequently, we may write for each if € Q (p^)

(5.32) x, y € if => |x -y | < min {e/2M, 6}

and for each j 6 { 1,...,J}, by (5.28),

(5.33) x, y 6 (if n clo *.) =* |H. (x) - H. (y)| < -£-
J J J 2 J

In order to define the set X C *A and the mapping h : J€\ X —\ 8} we need to consider

three cases for the cubes if e £ (p^, one of which, namely when if and J6 are disjoint, so

that the domain of h does not intersect if, is a trivial case and we need not mention it

further. We now treat the remaining two cases: if is included in ^ , or if is neither

included in nor disjoint from *A.

It is convenient here to put

(5.34) Hx := { if € £ ( P l ) | if C

To treat the first case, let a cube if € U^ be given. Because if c <A, H is continuous on

if, and, because if is closed, H is uniformly continuous on if Moreover, because the fit

regions JK, j e {1,...,J}, cover <A, they cover if For each x, y in the convex set if, we
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construct a list of points in the segment [x,y] c tf as follows. Choose jj 6 {1,..., J} such

that x € ^ , and choose w1 € clo Xk such that
Jl x Jl

Iwj -y l = m i n { | z - y | | z 6 clo ^ fi [x,y] }.

Note that [w^y] n <#j = 0, so that [w^y] is covered by the remaining J - l sets <#..

Choosing j 9 e {1,...,J} \ {h} such that w1 € & , we obtain by the same procedure a list

of points WQ, WJ, W2 , ..., Wj! in [x,y] with V < J, WQ = x, Wj, = y, and satisfying: for

each k e { l , . . . ,^ } , w « « and w, both are in the set clo J& . This list permits us to use

(5.33) and the triangle inequality to write

|H(x)-H(y)| < 1 I H C W ^ - H C W ^ I < ^ f < J,

and to conclude that

<5.35) x ,y6 * =* |H(x)-H(y)| < J .

Now, we choose a point c ̂  in the cube &, we define the affine map <ẑ : t —» t by

(5.36) <*g,(x) := c#+ i9H(c^) [x-c^,], x 6 8,

and we note that a^ satisfies

(5.37) v ^ ( x ) = ^Hfc^) foraU x e tf.

By (5.27) and (Std 3) we also have for all x e f?:

(5.38) detv^(x) < fi < 1,
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and, by (5.27), (5.35), and (5.37),

(5.39) |v*^(x)-H(x)| < fi | H(c^)-H(x) | + (1-/?) | H(x) | < £ + £ = e.

The last relation shows that, on if, the requirement (iii) of the lemma is satisfied by <z^.

The requirement (ii) is satisfied on if as well. In fact, for each x e if, by

(5.36), (5.32) and (5.30), we have

(5.40) | ^ ( x ) - i (x) | = | c ^ + fi H(c ^) [x-c ^] - x| <

c.

However, if we define h restricted to the interior of each cube if e ^ to be

k 'int tf :== ^V'inttf' we find that h need not be injective, because the images ^ ( i n t if)

of the cubes tf in Dj need not be disjoint. To remedy this situation we compose each affine

mapping ^^ with a piecewise rigid mapping r ^ that fractures &<g( if) into smaller,

mutually congruent parallelepipeds, and then moves the smaller parallelepipeds into if

without interpenetration. To this end, we let a prime p7 > p be given and note that the set

(5.41)

is a collection of planes in space, each of which is parallel to one of the faces of the

parallelepiped *g{&). Two consecutive planes in ^ ( I I ( p / , 2 ) ) parallel to a given face of

<ẑ ,( if) have distances 7 / p7 from one another, with 7 a positive number depending only

on va^ and the normal to the face. Therefore, the collection ^ ( n ( p 7 , 1 ) ) subdivides 8

into infinitely many mutually congruent closed parallelepipeds, and we denote by E(p7) this

collection of parallelepipeds. We consider now two finite subsets of E(p7):

(5.42) £ ( P 7 ) ^ :=
if
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and

(5.43) E ( p ' ) g r = { ^ e E(p') I ^ C

thus, the elements of E (p') form a cover of ^ ( tf) by mutually congruent

non—overlapping parallelepipeds, and the elements of E (p')# a r e mutually congruent

non-overlapping parallelepipeds in the interior of # We observe from (5.37), (5.38), and

(5.26) that

(5.44) vol «^( tf) = /J3 det H(c ^) vol tf < vol

Now, by (5.37), for each 9 e E(p') there holds

(5.45) v(p') := vol 9 = f? det H(c^) (p7)"3

because each 9 is the image of a cube of volume (p') under ^ , and this tells us that

(5.46) l im v(pr) = 0.

Using (5.42), (5.43) and the fact that vol bdy tf = vol bdy a^{ <€) = 0, we conclude that

(5.47) l im vol U E(p' )^ = v°l * ^

and

(5.48) l im v o l U E ( p ' ) # = vol tf.
P'-^DD

Relations (5.44), (5.47) and (5.48) imply that we can choose a prime p ^ > p such that

< v o l U E t e O ^ for all p' > p^,. Since all parallelepipeds in E(p') have
u
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the 6ame volume v(p'), we conclude that the set E (p ' )^ of non-overlapping

parallelepipeds covering *«*(#) has fewer elements than the set E ( p ' ) # ° f

non-overlapping parallelepipeds contained in int # whenever p' > p ^ . Consequently,

since all the parallelepipeds in both collections are congruent, we can choose an injective,

piecewise rigid mapping r ^: *^( tf) \ ^ ( I I ( p / , I)) —i int tf; using (5.21) we may put

(5.49) X # := {x € x n int ff\ t € II(p', {1, . . . fp'- l})} ,

and define the mapping h ^ : (int €) \ X ̂  —> int € by

(5.50) h^(x) := r ^ ( ^ ( x ) ) , x €(inttf)\A^.

Because the range of r ̂  is included in tf and tf has diagonal / T / p ' less than e,

satisfies item (ii) in the statement of the lemma on its domain, and, because vr ^ = I, we

have

(5.51) vhg, = v ^ .

Relations (5.51) and (5.39) then tell us that h ^ satisfies (iii) on its domain. Finally, relation

(5.49) tells us that X ̂  is consistent with (i). To summarize, we have shown that our

construction yields a piecewise affine simple deformation (X ̂ , h J) from int € that satisfies

(i) — (iii) and whose range is included in int tf when tf is in IX and when p7 is a prime

greater than or equal to p ^ .

Let now a cube tf e Q (px) be given such that tf n *A t 0 and tf \ ji $ 0, and note

that

(5.52) tf fl bdy J6 # 0.



61

Therefore, H| «>n • need not be uniformly continuous, and we need to subdivide tf fl

into smaller regions before we can approximate H. We use the chosen subdivision

of jt and put for each j € {1,...,J}

(5.53) # := (do .») n ff;

we note that, by the construction of £ ,

(5.54) tf c (do <#) n tf,

so that (5.33) yields

(5.55) x, y € fj - » | H(x) - H(y) | = | Hj(x) - H^y) | < e.

We also put

(5.56) H2 := { « = do $. n tf | « # •, tf n • * # #, tf \ ^ # 0,

j € {1, . . . , J}, tf € G(P l )} .

For each tf, € D0J we choose y. 6 tf. and define <z^ : ?—> t by

(5.57) ^ (x) := 7 j + 0 H(y.) [x - 7 j ], x € S.

Using the same procedure as described in the case tf € H^ for each #. 6 1^ we can choose

a prime p ^ such that, for all primes p'. > p ^, there exists an injective, piecevrise rigid
j J J

mapping r ^ which maps <z^(ty\ <ig(Il{p'.,!)) into int tf.. Note that, in establishing
vj j J J J J

the counterparts of (5.47) and (5.48), the property vol bdy tf = 0 is replaced by

vol bdy # = 0 which holds because # . , by (5.53), is the closure of a fit region. Let a prime

p' 1 P <g be given. We define as in (5.49) and (5.50)
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(5.58) A g, := {x € x fl int «J | T € n(pj, {i, . . . , p< - 1})},

(5.59) h ^ (x) := r ^:(<*#(x)), x € (int ^ \ X #. ,
J J J J

and note that X^ is covered by the collection of planes fl(p^, {1 , . . . , Pj - 1 } ) and that
j J

h ^ satisfies

i
II ** " i l l < «

and

||vh t f-H|| < c
J Li ^ c - , JLll

As in the preceding case, our goal is that of constructing a piecewise affine simple deformation,

now from (int if) fi ^ , that satisfies (i) — (iii). To this end, for each j we put

(5.60) h ^(x) := h ^ (x) for all x 6 (int « ) \ X #
j J j

to obtain a mapping h ^: U ((int tf.) \ X J) —* int #
* tfjCf? J j

For each tf. c tf we have
J

(int ft) \ Jk ^ s int ^ n ((int t^ \ A ^) ;

because int ft is a fit region and (int ft) \ X ̂  is a piecewise fit region, we may conclude

that the domain of h ^ is a piecewise fit region. Since the sets int ft are pairwise disjoint

and A g, C int ft , there holds
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(5.61) U ((int tf.)\A J) = ( U int « ) \ U

= ( U (J& flint ff))\ U A«, = (( U ^ . ) n inttf)\ U

n int tf)\ U \# = («£ fl int # ) \ ((r(£) fl int tf) U ( U

J J

We now define

(5.62) \« := (r(£) fl int tf) U ( U \« )

and observe that (A ,̂, h^,) is a piecewise affine simple deformation from (int tf) fl *A.

Indeed, vol( U \#) = 0 by (5.58) and vol r(£) = 0 by (5.23). Moreover, h^ is

injective because each h^, is injective and h^, (int tf. \ A^ ) c int tf *. Finally, (5.58),

(5.59), and (5.60) tell us that the domain of h^, is a finite union of fit regions, each of which is

the intersection of int <6. with an open cube of edge length 1/p', and the restriction of h^, to

each of these fit regions extends to 9 as an affine deformation. Thus, (A^, h^) is a piecewise

affine simple deformation from (int #) fl <A. To show that (A^, YLJ) satisfies (i) we note

that, by (5.32) and (5.52), the set T(£) fl if lies within a distance e from bdy ^ , i.e., by

(5.24),

(5.63) r(fi) n if c r(£) e ,

so that, by (5.58) and (5.62), X^ is covered by the collection

(5.64) {x n tf. 11 e n(pj, {i,..., Pj -1})} u r(a)€.

That hg, satisfies (ii) and (iii) is a direct consequence of the fact that each h^, satisfies these

conditions in its domain. We conclude that our procedure yields a piecewise affine simple
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deformation (X^ , h ,̂) from (int tf) n ji with the required properties (i) - (iii) when^ , h ,̂

\ <A * 0, tf n . * # 0, and p'. > p * for all « c tf.
J 1 J

We are now prepared to construct the simple deformation (A, h) in the statement of the

lemma. First of all, we define p 2 to be the maximum of the primes p ^ and p ^ a s <€

varies over the cubes in Hj and tf. varies over the regions in J^, respectively, and we put

p' = p 2 in (5.49) and p' = p 2 in (5.58). We define h : U(c/T fl int <6 \ X^) —* £, with
j #

<6 running through those cubes in the set £ 2 ^ ) in (5.31) whose intersections with J6 are

not empty, by setting:

(5.65) h(x) := h^(x) for all x € <A fl int <6 \ \^

with h ,̂ given by (5.50) for tf in 1^ and by (5.60), (5.59) for $ with <6 fl J6 # 0 and

<6\J6 i 0. We take >l to be the complement in *A of the domain of h and note that,

because the domain of h is

(5.66) U {Ji n int tf \ X^ ) = ^ \ U ( ( ^ fl bdy tf) U X^ ),

the set X obeys item (i); it follows from the above construction that (A, h) is a piecewise

affine simple deformation obeying (ii) and (iii).

We now wish to modify the definition of h on some of the regions in Ih U Ho in order to

obtain a simple deformation (A, h) that satisfies

(5.67) X fl f = 0 and h L = i . ,

with f given by (5.25). The key observation that permits us to do so is that if # 6 IL and

tf n f * 0, or if «j G 1^ and « n £ # 0, instead of the specifications (5.36) and

(5.57) of *g and u^ , we may take

(5.68) ^ ss <*^, as i.
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We define

(5.69) 3 := U {<^€ ^ U H2 \ tf'fl pi 0},

and we note that each x 6 p belongs to some df € H* U IU t̂nd, therefore, to 3. Thus

p c 3 and, because p is open, p c int 3\ because p c *4, we have

(5.70) j? C u< n int 3.

Moreover, 3 is a finite union of closures of fit regions, and, therefore, int 3 is a fit region

and <A fl int 3 is piecewise fit. We now modify the definition (5.65) of h by replacing all

of the fit regions into/ , with df fl p $ 0, by the single piecewise fit region *4 (\ int 3

and by putting

(5.71) h(x) := x for all x 6 ^ fl int 3.

We leave the definition of h(x) for x e J6\ int 3 unchanged. This definition permits us to

write the domain of h in the form:

U ( ^ n int df\ X J) U (</Tfl int 3) = ji fl ( U (int ^ \ L ) U int 3 ),

with Jl ̂  as in (5.49) when df = tf 6 E j and with Jl ̂  as in (5.58) when * / = # - € J22

If we define A to be the complement in J6 of the domain of h, then the last relations yield

(5.72) Jl = U ((u^flbdy <if) U A ^ ) U ( ^ n b d y 3) =

= ^ \ ( U (int G / U ,, ) U int 3 ),

and (5.67JJ follows immediately from (5.70) and (5.72). Moreover, (5.67)2 follows directly

from (5.71) and (5.70). The observations that showed that the original pair (A, h) is a
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piecewise afiine simple deformation from *4 satisfying (i) - (iii) are easily adapted to show

that the modified pair also is a piecewise afiine simple deformation satisfying these

conditions. a

We now state and prove the Approximation Theorem.

5.8 Approximation Theorem: For each piecewise fit region <A and each (fc,g,G) € St

there exists a sequence n *-• (*n, fn) € Sid(*/*) that determines (*,g,G) in the sense of

Definition 4.1.

Proof: Let (/c,g,G) 6 S t d ( ^ ) be given. Our first step is to reduce the problem of finding a

sequence n »-• (*n, fn) that determines (*,g,G) to that of finding a sequence that determines

a structured deformation of the form (0, i, H). Specifically, suppose that the sequence

n •-• 0 n > h
n ) € Sid(g(c^\/c)) determines the structured deformation (0, i / ^ * N, H)

from g(c^\/c), with

" 1(5.73) H := (Gog

as given by (5.20). By (4.5) and Proposition 4.9, because («,g) 6 Sid ( ^ ) , the sequence

n *-* On ,hn) ° («>g) determines the triple

\K)> H ) ° (**) = (̂  U

= (/c U 0, g, GtvgrSg) = (/c,g,G).

Next, we let (0,i,H) € Std(^) be given, and we define recursively a sequence n »-» (A , h )

in S i d ( ^ ) that determines (0,i,H) as follows. Put p : = 2 and ^ 1 : = i in the

Approximation Lemma to obtain primes pj, Pg greater than 3 and (Aphj) 6 Sid
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satisfying

(i)j X^ is covered by the collection of planes x € n(p^, {1 , . . . , p^ - 1 } ) with

/ € {1, 2}, together with the set r(£) j c ^ defined as in (5.24),

Let n € IN \ {0} be given. Suppose further that for each k e {2, . . . , n} we have chosen
k k k k

primes pp p 2 and a simple deformation 0 ^ ^ ) , with p1? p 2 both greater than
u i k—1

max {p^ , p 2 } and satisfying

(i)k Xk is covered by U n(pj, {1 , . . . , p j - 1}) U {r(£) k } ,

with ek := l / (k+l) . To choose p j + 1 , p j + 1 and 0 n + 1 , ^ n + 1 ) € S i d ( ^ ) , we again use

the Approximation Lemma, with e n + := l/(n+2), and with p := max { p?, p 2 }. The

chosen primes p? , p 2 ^ d the simple deformation (X . +, h , , ) satisfy (i) , i,

(ii) , - , and (iii) , . . This completes the recursive choice of a sequence of simple deformations

n H-4 (A , h ) € Sid ( ^ ) . We note that properties (ii) and (iii) imply that conditions (ii)

and (iii) in Definition 4.1 are satisfied, and it remains to verify that condition (i) holds, i.e.,

that lim inf An = 0.

Let x e i be given. Because the primes p^ + , p 2
+ chosen at the (n + l ) s t stage are
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greater than all the primes chosen at preceding stages and because *A obeys (5.21), the

relation

x e u n ( p * { i , . . . , p * - i } )
*=i * l

can be satisfied at most for three values of n. Moreover, because dist (x, bdy *A) > 0 and

l i m en = 0, the relation x 6 T(B) n can be satisfied at most for finitely many values of n.
n-»(D c

Hence, by (i) , the relation x E ] can be valid at most for finitely many values of n, and

the definition of lim inf An tells us that x i lim inf X^. Because x e <A is arbitrary, we
nto n»

conclude that lim inf A = 0.
n

5.9 Remark: It is convenient to restate the Approximation Theorem as follows: every

structured deformation is a limit of simple deformations. Note that in order to consider a

structured deformation (*,g,G) as a limit of simple deformations, one must identify

g and G with the Lw — functions that they represent. With this identification, the

Approximation Theorem establishes the desired inclusion Std C LimSid.

An immediate consequence of the Approximation Theorem is that the fractured zone

$(*>g>G) and the unfractured zone *(*,g,G), defined following (4.14) for each

(*>6>G) € LimSid ( ^ ) , also are defined for each structured deformation. This fact permits us

to characterize the unfractured zone directly in terms of *, vg and G, when (*,g,G) is a

structured deformation. We recall from Section 4 that for each (*,g,G) € LimSid

*(/c,g,G) is the set of all points x £ ^ such that, for at least one sequence n i—• (*n , f )
CD

that determines (/c,g,G), x belongs to ext ( U K ). We have already established that
n=l

*(*,g,G) is open and *(/c,g,G) n K = 0. Moreover, by Theorem 4.14, gJ^frtrn\ is of
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class C1 and vgQ = GQ on * (*, g, G), i.e.,

(5.75) #(*,g,G) C int { x e J6 \ K | gQ is differentiable at x and vgQ(x) = GQ(x)}.

The next theorem establishes the opposite inclusion when (*,g,G) is a structured deformation

and tells us that *(/c,g,G) is the largest set on which (*,g,G) is locally a classical

deformation.

5.10 Theorem: For each structured deformation (*,g,G) from ^ there holds

(5.76) *(*,g,G) = int {x e Ji \ K \ vg(x) = G(x)}.

fi As in the proof of the Approximation Theorem, our first step is to show that it suffices

to verify (5.76) for structured deformations of the form (0, i, H). Let (*,g,G) e Std(^) be

given and consider (0, i / *\Ky H) € Std(g(^<\A;)), with H as in (5.73). For each

x 6 jt \ K, put z := g(x) and note that

(5.77) vg(x) = G(x) « I = G(x) (vg(x))-1 <=>

Cz)))-1 « I = H(z).

Therefore, we may write

(5.78) g({x € ^\K I vg(x) = G(x)}) « {z € g{jf\K) | H(z) = I}.

Assume now that (5.76) holds for (0, L / ^ \ Ky H), i.e.,

(5.79) *(«, ig{^ ^ K), H) = int {z € g ( ̂ \K) | H(Z) = I}.
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Relations (5.78), (5.79) and the fact that g is a C1 - diffeomorphism imply

(5.80) g~~V(*> i g ( ^ \ *)>H)) = g ' V * g({x € ^ \ / c | Vg(x) = G

= int {x 6 ^ \ « | vg(x) = G(x)}.

Thus, the inclusion opposite to (5.75),

(5.81) int {x 6 ^\K I vg(x) = G(x)} C *(«,g,G),

will follow from (5.80) if we can prove the inclusion

(5.82) &\

To this end, let z € *(0, i / ,\ Ky H) be given. We may then choose r > 0 and a

sequence n i—• (fi^ hn) € Sid(g(*^ \K)) that determines (0, i -(^\Ky H) such that

, r) c g ( ^ \ « ) and

(5.83) 3(z} r) fi ( U pn) = 0.
n=l

Using the injectivity of g"" and (5.83) we may write

(5.84) t = g-Vfz,!)) n g-^ E pn) = g-1(^(z,r))n( S g"1^ )).
l l

n ) g ( ( ) ) ( g ^ )
n=l n=l

Because g (JB(zyi)) c ^6\ n, we have

(5.85) g~\*M)

and (5.84) then can be written as

(5.86) 0 = g-1(J?(z,r)) n ( 5 ( g " 1 ^ ) U «)).
n=l
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Moreover, g is a C — diffeomorphism, so there exists f > 0 such that
1(z), f) c g~\&{*, r))and, by (5.86), we have

(5.87) 3(g \z), f) fl ( U (g \a) U *)) = 0.
n=l

By Proposition 4.9, the sequence

W J = (* U S"1 W > hn ° 8 I

determines (/c,g,G), and relation (5.87) then tells us that g (z) e *(*,g,G), so that the

inclusion (5.82) is established. Consequently, we have reduced the verification of (5.81) to that

of (5.79) which, by Theorem 4.14 and the fact that #(0, i ,^ * % H) is open, reduces finally

to the verification of

(5.88) i n t { z € g ( ^ \ / O | H ( z ) = I} c ¥(0, i g ( ^ ^ H).

Of course, it suffices to verify that, for each piecewise fit region ji and for every

(0,i,H) € S t d ( ^ ) ,

(5.89) f C *(0,i^>H),

with j? as defined in (5.25). By the Approximation Lemma, each term (An, fn) in the

determining sequence for (^ , i^ , H) in the Approximation Theorem can be chosen so that

A n f = 0. Because f is open, (5.89) follows from the definition of the unfractured zone

Because each structured deformation (*,g,G) from *4 satisfies both (*,g) €

and (/c,g,G) € LimSid ( ^ ) , we may apply both Theorem 3.8 and Theorem 4.19 to obtain the

following version of the Fundamental Theorem of Calculus for structured deformations.
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5.11 Theorem: Let a piecewise fit region jf, a triple (*,g,G) € Std(^) , and a unit vector

4i in J^be given. There then hold:

(i) for almost every line L parallel to <z, L fl(^\A;) is, to within a one-dimensional

set of measure zero, a finite union of pairwise disjoint intervals I , q 6 {1, . . . ,Q};

(ii) for each sequence n •—• (K , f ) which determines (*,g,G) and for almost every

line L parallel to <z, not only does (i) hold, but also, for each q € {1, . . . , Q} and

n € W, f | T % and g | T i extend to piecewise C functions f~ and
lq \*n lq ^

ge on I , and the fundamental formula (3.16) applies to fn and g for every x, y

in Iq;

(iii) in addition, for every x, y 6 I with y = x + |y — x| <z, we have the formula

(5.90) g(y-) - g(x+) = I G(x + t^)^dt + l i m I ( f
T1(z

n+) ^ ^ K " ) ) )
z

where z are the discontinuity points of F* in (x,y).

EIQQ£: All of the assertions in this theorem are immediate consequences of Theorem 3.8 and

Theorem 4.19, except for the assertion that formula (5.90) holds everywhere in I . Equation

00

(4.25) tells us only that (5.90) holds for all x, y in the set Ji[\ I \ U K which differs
* m=l m

from I by a set of one-dimensional measure zero and, hence, is dense in I . To extend the

validity of (5.90) to all x and y in I , it suffices to note that by (ii) of the present theorem,

ĝ extends to I as a piecewise continuous function and, therefore, has left and right limits at

each point of I . Moreover, the proof of Theorem 4.19 shows that G is an integrable function

on I , and it follows that the integral in (5.90) as a function of x and y extends to I as a

continuous function. •
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6. Interpretations and examples

The concepts and results in Sections 2 through 5 have been presented with only hints of

possible interpretations in mechanics. In this section we make explicit such interpretations and

provide justifications based on the mathematical results established in previous sections. In

addition, we show how structured deformations can be used to describe the deformations of

specific classes of continua with microstructure.

In our theory, a piecewise fit region *4 represents a region occupied by a continuous body,

and the set (int do *4) \ <A represents the site of pre-existing, unopened cracks. In a simple

deformation (*, f) from *A> K is the collection of all points of the body at which a new crack

is created, and f specifies the position occupied by the remaining points of the body after the

deformation. We call K the new crack site, or briefly the crack silfi, and f the

transplacement of the given simple deformation. We point out that new cracks can be created

through a simple deformation, but pre-existing cracks cannot disappear; in other words, the

process of forming a crack via simple deformations is irreversible. A theory in which all

cracking is reversible recently has been formulated by NOLL [16].

A macroscopic fracture, or macrofracture, is here identified with the creation of a new

crack. Besides macrofractures, our scheme allows for the presence of microfractures. The

simultaneous formation of microfractures and macrofractures is described mathematically as

the result of a limit procedure in which a sequence n •—-• (*n, fn) of simple deformations

determines a limit of simple deformations (*,g,G). In a limit of simple deformations, the site

of all fractures, both macroscopic and microscopic, is the fractured zone $(/c,g,G) defined in

Section 4, and the site of the macrofractures is the crack site K. The broken ramp sequences in

Examples 4.2, 4.3 illustrate a typical situation in which each individual term of the determining

sequence involves macrofractures which, for growing values of n, spread all over the body with

decreasing amplitudes of the associated jumps. In the limit, the jumps disappear, but K turns

out to be the empty set in the first example and the set of all dyadic rationals between
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0 and 1 in the second example. Thus, there are no macrofractures in the first case, whereas

in the second case the macrofractures are diffused throughout the body. In the examples under

consideration, the fractured zone can easily be determined. Indeed, Theorem 4.14 tells us that

the fractured zone includes all points x for which vgQ(x) * GQ(x), and in both examples this

condition is satisfied at all points of the body.

Among the collection of limits of simple deformations, we have identified the subclass of

structured deformations. This subclass has the property that, for each structured deformation

(*>g>G)> the pair (*,g) is a simple deformation. Another useful property is provided by

Proposition 5.3: the composition of two structured deformations is a structured deformation.

We now use these two properties to define local measures of deformations due to microfracture.

First of all we observe that the gradient vfn of each transplacement in the determining

sequence n •—• (/cn, f ) can be regarded as a local measure of deformation at those points of

*A at which no fracture occurs. It is then natural to consider the limit element G of the

sequence n *—• vfn as a local measure of deformation without fracture, in the sense that G

is not affected by the presence of either microfractures of macrofractures. It is also natural to

consider vg as a local measure of the macroscopic deformation determined by the

macroscopically observed transplacements g. For these reasons, we call vg and G the

macroscopic deformation tensor and the tensor of deformation without fracturey respectively.

Theorem 5.10 characterizes the fractured zone for a structured deformation as the complement

in *A of the interior of the region in which these two deformation tensors agree.

For a structured deformation (*,g,G) from ji^ the fundamental formula of calculus for

simple deformations (3.16) tells us that

g(y) - g(x) = J
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i.e., that the relative transplacement g(y) — g(x) of y andx, with x, y in <^\ K and

y = x+ |y—xj <z} is a sum of an integral representing the relative transplacement due to

macroscopic deformation and of a sum of jumps representing the relative transplacement due to

macroscopic fracture. On the other hand, the fundamental formula of calculus for structured

deformations (5.90)

(6.2) g (y ) -g (x ) = I G(x+t*)*dt + l imI
0

shows that the relative transplacement of y and x also is the sum of an integral involving the

relative transplacement without fracture, plus a term which accounts for all fractures occurring

in the simple deformations (K ,f ) of the determining sequence. Note that, in the limit, this

term may result both from macroscopic and microscopic fractures. Subtracting (6.1) from (6.2)

yields

(6.3) J (vg(x+t«) -J

= l i m I ( fn(zn+) - (fn(zn-)) - S (6 ( z +)-g(z - ) ) ,
n-»© z z

where the right—hand side consists of the difference between the relative transplacement due to

fracture and that due to macrofracture; therefore, the right-hand side of (6.3) represents the

relative transplacement due to microfracture. This formula tells us that the relative

transplacement due microfracture admits an integral representation in which the tensor field

(6.4) M(x) := vg(x) - G(x), x 6



76

provides a local measure of deformation due to microfracture. The additive decomposition

(6.5) vg = G + M

expresses the macroscopic deformation tensor as the sum of the tensor of deformation without

fracture and of a local measure of deformation due to microfracture. For reasons that we give

presently, we call M the Burgers microfracture tensor.

Multiplicative decompositions of vg involving G and appropriate local measures of

deformation due to microfracture can be obtained from the global decomposition of structured

deformations

(6.6) («,g,G) = (0, ^ \ K y (Gog"1) ((vg)"1 o g"1)) o (/c,g,vg),

established in Proposition 5.6, and from its counterpart

(6-7) (/c,g,G) = (K, g, vg) o (0, i .. (vg)"1 G),

that also follows from the formula (5.2) for the composition of two structured deformations. In

both cases, a structured deformation is decomposed into a simple deformation and a structured

deformation of the form (0,i,H). The latter can be interpreted as a purely rp^

deformation; indeed, because K = 0, no macrofracture occurs; because g = i, no point is

macroscopically displaced. Thus, the factorization (6.6) represents a structured deformation as

a simple deformation followed by a purely microscopic deformation, and (6.7) represents the

same structured deformation as a purely microscopic deformation followed by a simple

deformation. This suggests the local multiplicative decompositions

(6.8) vg = M^ G,

(6.9) vg = G Mr,

of the macroscopic deformation tensor vg, with M* := vg G and M := G"""1 vg; M / and M
£ r £ r
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will be called the left rnicrofrfiCtiire tensor and ihfi right iHifrTOfrar*1ire tensor, respectively.

In conclusion, both additive and multiplicative decompositions of vg involving G and a

measure of deformation due to microfracture arise from our analysis. For each structured

deformation (/c,g,G), the tensor fields M, M^ and Mr are determined by g and G. Thus,

there is no difference in principle between adopting one decomposition or the other, and, once

G and one of the above tensor fields are known, the other two can be determined from their

definitions. For a structured deformation (*,g,G), the fact that (*,g) is a simple deformation

implies that g is differentiable in ^\K. Therefore, if we integrate relation (6.5) along a

closed curve * in *A\K we obtain

(6.10) 0 = <b vgd* = | G d* + I Md*;

C

this shows that the circulation of — G along € equals that of M, and, therefore, measures

the relative transplacement due to microfracture along the closed curve c. The circulation of

M (or of — G) along c is called the Burgers vector in continuum theories of dislocations

[8], [9]. This motivates our choice of the name Burgers microfracture tensor for M.

Of course, det vg represents the macroscopic local volume change; analogously, det G

represents the local volume change without fracture, so that the inequality (4.19), also

occurring in (Std 3), Definition 5.1, asserts that the local volume change without fracture

cannot exceed ih& macroscopic local volume change. In other words, microfracture can create

voids but cannot consolidate the body. Accordingly, we interpret the scalar field

(6.11) 9 := $SL = (det M,)"1 = (det

whose values lie in the interval (0,1], as the volume fraction and 1 — p as the void fraction for

the given structured deformation (*,g,G). When ip = 1, there is no volume change due to

microfracture, i.e., deformation due to microfracture cannot entail the opening of cracks at the

microscopic level. In particular, if we consider the set of invertable structured deformations as
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defined by (5.19), we see that, because for such deformations the crack site K is empty,

invertible structured deformations describe situations in which deformation due to

microfracture occurs without the formation of new cracks; because for invertible structured

deformations the volume fraction is one, by (6.11), they describe deformations in which no

volume change occurs due to microfracture.

,<• We are now in a position to describe the deformations of particular classes of continua. We

recall the decompositions (6.6), (6.7), according to which a structured deformation can be

thought of as the composition of a simple deformation and a purely microscopic deformation.

For definiteness, we consider here the decomposition (6.6) which we rewrite in the form

(6.12) (*,g,G) = (0,i,H) o (*,g,vg).

Sets of deformations appropriate to particular classes of continua can be constructed by

requiring that each factor in this decomposition be subject to further restrictions. For example,

the requirement K = 0 yields the deformations of a rrmtiTn̂ iTH without macrofractures, and

H = I yields the deformations of a roptiTniiiTTri without Tjn>rofra.ct.̂ rê  Taking both K = 0

and H = I and requiring further that all transplacements g be classical deformations yields

the deformations of a classical continuum. Suitable restrictions on the transplacements g

yield deformations of continua subject to internal constraints, such as rigidity,

incompressibility, or inextensibility in a given material direction. Similarly, restrictions on H

yield deformations of particular classes of continua with microfractures, some of which will be

identified in the following.

For each purely microscopic deformation (0,i,H) from *A and for all x 6 jty set

(6.13) U(x) := (K*)r1 / 3 H(x),

where the volume fraction p9 defined in (6.11), here reduces to det H. Note also that the

tensor field U is unimodular, i.e., det U(x) = 1 for all x € ji. Consider the

decomposition
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(6.14) (0,i,H) = (14,11) o ( 0 , i , / / 3 I)

in which both triples on the right-hand side are purely microscopic deformations. The

deformation (04»F I) involves a creation of voids; the fact that the tensor of deformation

without fracture is spherical at each point is expressed by saying that there is no distortion in

the deformation without fracture. Accordingly, we call the two factors in the decomposition

(6.14) a creation of voids without distortion and a purely ipin'OftfOpJC distortion, respectively.

Notice that, by (5.19), a purely microscopic distortion (0,i,U) is an invertible structured

deformation.

The term continuum with voids is commonly used to describe a continuum in which the

only purely microscopic deformations that can occur are creations of voids without distortion.

In a similar way, a continuum in which the only purely microscopic deformations are purely

microscopic distortions may be called a continuum without voids.

Particular classes of continua without voids can be identified by imposing further

restrictions on the field U. Examples taken from the list given in the book [1], Sect. 2, are

shown in the following table.

Name of continuum Range of U

continuum with spin all proper orthogonal tensors

with axes parallel to a fixed direction

Cosserat continuum all proper orthogonal tensors

continuum without voids all proper unimodular tensors

A continuum that can undergo arbitrary, purely microscopic deformations is called a

microTnorplnf. continuum. In another class of continua mentioned in reference [1], the continua

with vector microstructure, the field H can take arbitrary values in the set of second-order

tensors. Deformations of such continua need not be structured deformations because they can

violate the condition (Std 3) on the positiveness of the determinant of H. (In fact, they need

not even be limits of simple deformations.) Further classes of continua in the same list, namely
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liquid crystals and bodies with continuous distribution of dislocations, will be considered in the

next section.



81

7. Applications to specific continuum theories

In this section we examine several existing continuum theories and propose sets of

non-classical deformations that clarify concepts in these theories.

7a Plasticity

The subject of plasticity treats large deformations of a continuous body that can occur

under nearly constant stress and that cannot be reversed by reversal of the stress alone. The

most widely used theories of plasticity are formulated in the kinematical context of classical

deformations of a continuum and introduce notions of "elastic deformation" and "plastic

deformation" not as purely kinematical quantities but in the context of internal variables that

appear in decompositions of the deformation gradient and in other constitutive relations. This

approach has the advantage of describing plastic behavior in the same classical kinematical

framework that is used in elasticity and fluid mechanics. It has the disadvantage that, however

well motivated on physical grounds the chosen notions of elastic and plastic deformation might

be, certain additional choices must be made as to how the local deformation should decompose

into elastic and plastic parts and how each part should transform under changes in observer

and reference configuration. The multiplicity of such choices has led to lingering

controversies [11].

Here we choose to describe elastic deformation as deformation without fracture and plastic

deformation as deformation due to microfracture. Within the class of structured deformations

(*)g)G) we define the elastic deformation tensor to be G, the tensor of deformation without

fracture. This definition agrees with descriptions of deformations at the microscopic level in

metals, where deformations are considered to be elastic when no substantial activation of

defects in the crystalline structure occurs. This definition also agrees with the caveat made in

theories of plasticity: elastic deformation need not be the gradient of a displacement of the

body, or even of a piece of the body. In fact, our results in Section 5 require only that G be a

limit of gradients, and this limit need not be a gradient. Furthermore, the plastic behavior of
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many materials involves neither macroscopic fracture nor local volume changes due to

microfracture. For such materials, an appropriate class of deformations is the class InvStd of

invertible structured deformations for which, by definition, the crack site is empty and

detvg = det G.

An important consequence of our definition of the elastic deformation tensor, that usually

enters as an assumption in existing theories of plasticity, is the fact that the tensor transforms

in the same manner as the local macroscopic deformation vg under changes in observer and

reference configuration (see [18]). Here, we consider changes in observer and reference

configuration in the sense described in the book [7]. In particular, we consider changes in

reference configuration that are classical deformations.

7.1 Proposition: Under changes in observer there holds

(7.1) vg —• Q vg and G —> Q G,

and under changes in reference configuration there hold

(7.2) vg —> vgH and G —i GH.

f: The laws of change in observer and change in reference configuration tell us that

deformation gradients F transform according to F —> Q F and F —> FH, which

immediately yields the properties of vg in (7.1) and (7.2). Here, Q is the orthogonal tensor

associated with the change in observer and H is the unimodular tensor associated with the

change in reference configuration. Because G is the limit of the sequence n i—• vf and, for

every n € IN, the deformation gradient vfn transforms in the same way as vg, we conclude

that G transforms as in (7.1) and (7.2). a

Our earlier description of plastic deformation as deformation due to microfracture leads

naturally to the choice of the local measures of deformation due to microfracture
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(7.3) M = vg - G,

(7.4) M^ = vg G"1,

(7.5) Mr = G"1 vg,

as plastic deformation tensors for a given structured deformation (/c,g,G). Counterparts of

M,M, and MT are the tensors F p - I of NEMAT-NASSER [12], F p of CLIFTON [3],

and F p of LEE & LIU [10], respectively (c.f. [18] for further discussion of this

correspondence). The relations (7.3) — (7.5) give rise to corresponding decompositions of the

macroscopic deformation tensor vg into elastic and plastic parts. When there is no local

volume change due to microtracture the relation det vg = det G implies

det M* = det M = 1. In this case, the tensor field H in (6.12) satisfies det H = 1, so
£ r

that (0,i,H) represents a purely microscopic distortion.

Just as we showed in Proposition 7.1 that the transformation laws for the elastic

deformation tensor G are determined by those for deformation gradients, we obtain a

corresponding result for each of the plastic deformation tensors M, M,, and M ([18]).

7.2 Proposition: The tensors M, M *, and M transform under changes in observer and

changes in reference configuration according to the rules:

(7.6) M —• Q M, M —» M H

(7.7) M ^ Q M ^ QT , M^ — M^ ,

(7.8) Mr - 4 M r , Mr —4 BT1 Mr H.

We note that the plastic deformation tensor M transforms in the same way as do the elastic

deformation tensor G and the macroscopic deformation tensor vg.
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7b Liquid Crystals

Liquid crystals are substances that behave mechanically in many ways like fluids, but

whose optical and electrical properties are more like those of anisotropic, crystalline solids.

Based on the observed presence in many liquid crystals of nearly rigid, rod-4ike molecules that

tend to align within small regions of the liquid crystal, theories of liquid crystals often postulate

the existence of a director field for each global state of the liquid crystal, i.e., a field n whose

value *i(x) at a point x is a unit vector, interpreted as the average of the orientations of a

collection of molecules. In addition, a scalar order—parameter S sometimes is introduced to

represent deviations of molecular orientation from the director field n.

We show here that a director field automatically arises within a specified class of

structured deformations, and we also discuss the possibility of defining an order—parameter

within that class. For simplicity, we discuss only "statical configurations" of liquid crystals,

i.e., situations in which there is no movement of the continuum that represents the liquid

crystal, but in which the director field n can change. To this end, we consider purely

microscopic deformations (0,i,H) in Std (o4) for which H(x) is an orthogonal tensor for

every point x in the given region J(. By the Approximation Theorem,

Theorem 5.8, we may choose a sequence j •—• (*., f.) of piecewise affine simple deformations

such that, in the sense of L00 — convergence on ^ ,

(7.9)

(7.10)

and such that

(7.11) lim inf K. = 0.
j J

lim

lim
V4CD

f.

vf.

= h

= H,
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Relations (7.9) and (7.10) tell us that f. is approximately a piecewise rigid mapping and that

the finitely many values of vf. are approximately orthogonal. Therefore, it is natural to

regard each of the affine restrictions of f. as imparting an approximately rigid transplacement

to one of the molecules of the liquid crystal, which we identify as one of the connected

components of J6 \ *.. If all the molecules in J6 have a common initial alignment defined by

a unit vector / , then the finitely many values of vf • A give the corresponding alignments

after the simple deformation (*., f.). Moreover, Lemma 4.11 tells us that, for each x 6 ji>

(7.12) H(x) A = l i m vf.,(x) A,

(7.13) x = l i m f., (x),

for some subsequence j ' •—• (/c.,,f-,) of j •—• (*., f.) that may depend upon the point x.

Therefore, (7.12) permits us to assert: the unit vector H(x) A is Hie liypitipg qiig^yn^t; of the

orientations vf.,(x) A of molecules at x as j ' tends to infinity. (Our identification of

molecules with connected components of *A \ K- suggests that the size of the molecules tends

to zero as j and j ' tend to a>). Therefore, we define the director field *i for the deformation

(0,i,H) and for the initial direction A by the relation

(7.14) n(x) = H(x) A for all x € J6.

The following proposition gives a precise sense in which the director field n is a limit of

the average orientations of collections of molecules.

7.3 Proposition: Let a unit vector A and (0,i>H) e Std(^) be given with H

orthogonal—valued. For each x € Ji and each determining sequence j i—• (*., f.) for

(0,i,H), there holds

(7.15) n(x) = l im , f vf.(y)^dy.
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Proof: For each j E II we have

f (vL(y)i-H(y)-Ody
+ l ) - 1 ) ^

+ f (H(y) A- H(x) i) dy + J H(x) i dy
(j+i)-1)n^ *(x,Cj+ir1)n^

and (7.15) then follows from (7.10), (7.14), and the continuity of H on Jl.

We recall that in the relation (7.12) the choice of subsequence depends upon the given

point x, as is also the case in the following formula for the director at x:

= (7-16) «(x) = H(x) t = l i m vf|/(x) 4.
j'-HD J

In contrast to this fact, the relation (7.15) holds for every determining sequence j •—• (K-, f •)

and for every x € J4. Thus, for a given point x in v^, no special determining sequence for

(0,i,H) need be chosen in order to guarantee the validity of (7.15).

.It is interesting to try to use the present kinematical setting in order to identify the

order—parameter S mentioned above. In descriptions of nematic liquid crystals [20] one finds

a measure of deviation of molecular orientations from the director **(x) that corresponds in

our setting to the quantity

(7.17) S(x) := lim |
j-»OD

i.
1
3

2
Here, (^z(x) • vf.(y)^) measures the angular deviation from n(x) of the axis of the

molecule located at y. Using the same arguments given in the proof of Proposition 7.3, we
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conclude that S(x) = 1, a relation that describes the completely oriented nematic phase of

the liquid crystal. Hence, the Lw — convergence of j •—• vf • to H leads to a class of liquid

crystals in which the order—parameter takes on only the value 1. In further studies along these

lines, it would be necessary to weaken the type of convergence of the gradients in order to

obtain other values of the order parameter.

7c Crystals with Defects

Continuum theories of defective crystalline solids describe substances with microscopically

regular atomic lattices that are weakened by the presence of defects, i.e., irregularities in the

lattice structure that collectively can support large deformations of the crystal. In such

theories, the discrete structure of the atomic lattice at the microscopic scale is replaced by a

continupus distribution of basic lattice vectors that are specified mathematically as a triple

(*j , <?2> *Q) of vector fields such that the triple of vectors (^(x) , *o(x)> *Q(X ) ) *S a ^as^s °*

V at each point x of the body. The presence of defects is then inferred from topological

properties associated with the fields (<^, <?2> ^3)- We show here that lattice vector fields

automatically arise within a specified class of structured deformations in the same way as the

director field for liquid crystals arose in the previous discussion, and this provides a

mathematical description of the process of "continuizing" a crystalline structure [9]. We

further indicate how continuous distributions of dislocations can be obtained as limits of simple

deformations, and we identify the position of a class of "neutral changes in state" for defective

crystals ([4], [5], [6]) within the class of structured deformations.

We restrict our attention to purely microscopic distortions of a defective crystal; other

deformations can then be obtained via composition with arbitrary simple deformations. Let

(0,i,H) in Std(^) be given such that det H = 1, and let an orthonormal basis

{Av ^2> ' 3 ) oi V be given. We choose a determining sequence m 1—• (*m> fm) for

(0,i,H) such that each simple deformation is piecewise affine. Note that, for each m 6 W and

x 6 ji\Kvti ( ^ W ' r v f mW^2' v f
m W ^ i s a b a s i s o f ^ , and that, as vfm has only



finitely many values, this basis takes on only finitely many values. Therefore,

{ • ( * U x ) ' l t * W X ) ' 2 ' v f m W ^ | x € ^ W > is a finite set of bases of V that we

interpret as the set of discrete lattice bases for all the atomic sites of the crystal in the

deformed state determined by (*m, fm). The same arguments that led to (7.12) and (7.13) tell

us that, for each x e ^ , there is a subsequence m' •—• (*m/>fm>) °* m

such that

(7.18) H ( x ) ^ = l i m v f m , ( x ) ^ , I 6 {1 ,2 ,3} .

Wecall(H(x)^ l f H(x)^2, H(x)^3) the lattice fcasis at x for (0,i, H) and (dv A^ ^ 3 ) .

Moreover, the proof of Proposition 7.3 immediately shows that, for every x € J6 and I € {1,

2,3},

(7.19) l i m

Thus, our use of structured deformations (0, i, H) permits us to show that the lattice basis

field (H^., H^2> H^3) is a limit of averages of discrete lattice bases.

Two classes of structured deformations of interest in the study of defective crystals arise

from the following factorization of a classical deformation f, regarded as a structured

deformation (0,f,vf):

(7.20) (0,f,vf) = (0,f,I) o (0,i,vf).

The factor (0,f,I) has G = I, so there is no local deformation without fracture; because

K = 0, there is no macrofracture. Therefore, we think of (0,f,I) as a deformation due to

microfracture. The limit of the deck of cards discussed following Example 4.3 is a deformation

(0,s,I) of this type with s a simple shear. The second factor (0,i,vf) in (7.20) involves some

deformation due to microfracture whenever vi = I £ vf. However, because G = vf is a
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gradient, the line integral d> G d* must vanish for every rectifiable closed curve c in the

domain of f, i.e., the Burgers vector for (0,i,vf) vanishes. This situation is described by

saying that the purely microscopic deformation (0,i,vf) introduces no new defects in a crystal.

Extensive studies of classes of "changes of state" of defective crystals by DAVINI & PARRY

fl4], [5]) and FONSECA & PARRY ([6]) have focused on a class of "neutral", or "defect -

preserving", changes of state; when det vf = 1, our deformations (0,i,vf) correspond to a

proper subset of the collection of neutral changes in state, and our deformations (0,f,I)

correspond to "rearrangements" in the above studies.

In closing this subsection, we indicate how limits of simple deformations permit one to

describe continuous distributions of defects in a body. Indeed, the limit of the "deck of cards"

(0,s,I) with s a simple shear suffices to illustrate this point. Each simple deformation (r ,

tn) defined in (3.9) and (3.10) describes the effect of n — 1 edge dislocations passing through

the deck of cards. The glide plane of each dislocation is one of the interfaces between the cards,

and one may view the n — 1 edge dislocations as passing through the deck one after another,

starting with the activation of the plane on the bottom card and proceeding to higher and

higher cards in the deck. The structured deformation (0,s,I) is determined by the sequence

n *—• (rn>tn) and can be visualized as the effect of infinitely many parallel glide planes, each

causing an infinitesimal displacement of the region above that plane parallel to that plane .

Thus, (0,s,I) describes the effect of a continuous distribution of edge dislocations passing

through a body. Of course, our theory provides the possibility of generalizing this example in

many directions, as our examples in Sections 4 and 5 suggest.

7d Mixtures

Continuum theories of mixtures describe a distinguished continuum, called the mixture, as

well as auxiliary continua, called the constituents, that are permitted to interpenetrate. Such

interpenetration cannot be described using a structured deformation, because the
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transplacement for such a deformation must be injective. Mixture theories often assign to each

constituent its own classical deformation and then explore various methods for identifying an

associated deformation of the mixture. The need to include in a mixture theory the possibility

of diffusion among the constituents leads to many possible choices of an associated deformation

of the mixture and, hence, to a diversity of mixture theories.

We here propose a description of deformations of a mixture and of its constituents in which

we approximate a deformation of the mixture by a simple deformation that, by virtue of its

injectivity, places all the constituents in space without interpenetration of matter. Each

constituent undergoes in the approximation a simple deformation that separates the constituent

into pieces, with spaces between the pieces left for other constituents to occupy. Thus, in the

approximation, the constituents are dispersed in space without interpenetration of matter. A

deformation of the mixture is defined to be a limit of approximating simple deformations. In

the passage to the limit, the volume of the pieces of the constituents goes to zero and the

number of pieces goes to infinity, so that, in the limit, different constituents are permitted to

interpenetrate. For example, consider as an approximating simple deformation the cutting and

shuffling of a deck of cards. The cut divides the deck in two parts: each part can be thought of

as a constituent of the mixture and the shuffling as the dispersion of the two constituents

without interpenetration. A sequence of cuts and shuffles of decks whose cards are taken to be

thinner but more numerous at each stage in the sequence leads to a limit of simple

deformations that describes each of the two constituents diffused throughout one and the same

region in space. Thus, the occurrence of interpenetration of matter in the limit can be resolved

by choosing arbitrarily accurate approximations of a given deformation by simple deformations

in which interpenetration of matter does not occur.

A starting point toward a precise description of these ideas may be found in the following

definition.
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7.4 Definition: Let a piecewise fit region *4 and («,g,G) 6 LimSid( Ji) be given. The triple

(x;,g,G), is called a mixing deformation from ji if there exists a finite collection

{*4- | j € {1 , . . . , J}} of pairwise disjoint, piecewise fit regions such that

(Mix 1) «4\ K = U jL\
j= l J

(Mix 2) for each j € { 1 , . . . , J } , (0,g:,G.) 6 Std(^) .
J J J

In (Mix 2), g. and G. denote the restrictions to *4. of g and G , the continuous

representatives of g and G on J(\K defined in Lemma 4.11. We interpret each region <4.

as a reference region for the j constituent of the mixture and g («4j) as the region occupied

by the j constituent of the mixture for the given mixing deformation. The transplacement

g. is injective, because (0,g:,G.) is a structured deformation from %A*. Because (*,g,G) is

assumed to be a limit of simple deformations and not a structured deformation,

g : <A\ K —> <6 need not be injective. We interpret g o ( ^ ) to be the region occupied by

the mixture in the given mixing deformation. For example, the triple (*;,g,G) defined in

Remark 4.16 is a mixing deformation that "shuffles" the two intervals (—1,0) and (0,1) to

form the interval (0,2).

Of course, condition (Mix 2) permits us to apply to the deformation (0,g-,G.) of each

constituent the concepts introduced in Section 6 for arbitrary structured deformations. For

example, we define the xolumfi fraction p. for the j constituent in the mixing deformation

(*>g>G) to be the scalar field p.: gQ(^ \ K) —» R given by

0 if x i g o ( ^ ; )

det G.

d e t v g . J ° J

If we decompose each structured deformation (0,g:,G-) according to (6.12) and (6.14), the
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factor (0,i,p1/3 I) represents a creation of voids without distortion for the j constituent.

This deformation gives a measure of the dispersion of the constituent in space, in the sense that

it tells us what fraction of the volume in space is available for occupation by other constituents.

It is then natural to think of the region int{x € g o ( ^ \ *) | V\{x) = 1} as the undispersed

zone for the j constituent in the mixing deformation (*,g,G).
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