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Tchebyshev Nets on Spheres

3
Abstract: We show that the standard sphere on IR admits a Tchebychev net

which covers an open subset of the sphere which contains a closed hemisphere.



Introduction:

Tchebyshev introduced the notion of what are now called Tchebychev nets

in ? [Tchl] in order to model the deformation of cloth. In this model a

surface is considered to consist of two families of "fibers" which are

inextensible, although the angle between fibers belonging to the two families

can vary. Moreover this surface is assumed to be initially plane and to have

obtained the current shape after going through a deformation which did not

change the lengths of the fibers. The simplest way to describe such a surface

is to say that it admits a coordinate chart such that the coordinate vector

fields have unit magnitudes with respect to the ambient Euclidean metric.

In ? Bieberback [Biel] proved that every surface is locally a Tchebychev

net i.e. around every point there exists a coordinate chart such that

coordinate vector fields have unit magnitudes. This was accomplished by

reducing the problem to that of existence of solutions to a pair of

quasilinear hyperbolic equations. However, the global issue i.e. existence of

a Tchebychev net over a prescribed open set has not adequately been

investigated, except for an important equation called Hazzidakias formula,

which was first derived in [Hal] (see [Sil], [Pil] etc.) which shows that at

least on a simply connected, open surface which is complete with respect to

its Riemannian metric the integral of the Gaussian curvature must be less than

2ir in magnitude in order for a Tchebychev net to cover the whole surface.

For example there does not exist a Tchebychev net covering a semi-infinite

cylinder with one end is closed.

One important question is, whether we can find a Tchebychev net on the

standard sphere. It is easy to show that the open hemisphere and the sphere

with north and south poles removed admits global Tchebychev nets e.g. [ ].



The purpose of this paper is to show that there does exist a Tchebychev net

which covers a closed hemisphere.



2. Preliminaries and the Main Result:

Let S denote the unit sphere in IR endowed with the Riemannian

metric g induced from the Euclidean metric in IR .

Definition 2.1: A Tchebychev net on S is a coordinate chart (U,(x,y)) in

IR such that the coordinate vector fields (̂ — , «—) have unit magnitudes

with respect to g. These vector fields will be called fiber fields and

their integral curves will be called fibers.

Let (U,(x,y)) be a Tchebychev net of S2. Define -Y : U -> K such that

T( P ) is the angle between •=•— I and •=—I .v^' ^ dx'p 9y'p

Our objective is to obtain a solution to the Sine-Gordon equation and

then use this solution to construct a Tchebychev net.

Theorem 2.2 (Main Theorem): There exists a Tchebychev net (U,(x,y)) on S

such that U contains a closed hemisphere.

3. Characteristic Intitial Value Problem for the Sine Gordon Equation:

Our aim is to construct a Tchebyshev net on S such that orthogonal

longitudes through the south pole are fibers. Hence nr = ir/2 at the south

pole, since TT- is parallel along the integral curves of o— and vice-versa

(see [Pil]). This forces nr to be ir/2 on each of the two longitudes

mentioned above. Therefore we are led to the characteristic initial value

problem

a2

^ = - sin T . nr(x.O) = ir/2 = <r(O.y) (3.1)



for x,y € [0,a], where a is positive.

To simplify the equations let

a: = TT/2 - -r. (3.2)

Then

= cos a(x,yj,

a(x,O) = 0 = a(O,y), (3.3)

and

a(x,y) = cos(a(x,y))dxdy. (3.4)
0 0

Let a > 0 and J := [-a,a] x [-a,a]. A more general type of
a

characteristic initial value problem was considered in [BT]. Therefore the

existence of a solution to (3.4) is already known. However we need a sharp

estimate of the solution and hence we prove the existence part and the

approximation part together in the following lemma, and the proof follows as

in [BT]. The fact that the iterations converge rapidly allows us to find a

good approximation to the true solution quickly.

CO

3.1: For arbitrary a > 0, (3.4) admits a unique C -solution.

Proof: Let F : C(J ;K) -» C(J ;K) be defined by
a a

3C V

F(a)(x,y) = f f cos(a(9,«p))ded<p,
J0 J0



where C(J ;K) denotes the space of continuous functions on Ja endowed with

the sup norm 11*11. It is easy to see that

|(F(a) - F(/3))(x,y)| < xy Ila-j3ll

and

KFV) - Fn(P))(x,y)| < ̂ ^ lla-pil , (3.5)
(n!)2

where r denotes the n iterate of F.

Now (3.5) shows that r is a contractive mapping whenever n is large

enough. Hence there exists a unique a € C(J ;K) satisfying (3.4). This a
a

00

is necessarily C , also by (3.4). D

As a consequence of the fact that r in the proof of lemma 3.1 is a

contraction mapping whenever n is large enough, it follows that the unique

solution of (3.4) on J is obtained as the uniform limit of the sequence
a

(an) in C[Ja;K] defined by

Q

x y

a (x.y) = | [ c o s a (e,?)d8d?. (3.6)

Since

K+, -O(x.y)|
((n+1)!)2



if a < 4, we have

00 i___m+l

n=2

< ±zu_ ( i } ( 3 7 )

42 ,

Of course

x . y ) = 1 1 c o s
J0 J0

.x _y

(3.8)

Let

® = {(x,y) € J : |xy| < ir/2} for 0 < a < 4.
a a

We may bound the 4 and higher order terms of the Taylor series of

cos(6<p) on % as follows:
a

4 4 D6 6 Q4 4 .2 2 ,Q2 2.2

4! ll 5 6 5 6 7 8 '' *4! 6! •• |S 4! ll 5*6 5*6*7»8

4 4 4 4
f ^ <

4! l
 O2 2

; ^ 4!
1 - 9 y
1

1
5*6 120

12 *
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Therefore

|cos(9«p) -

So

3 3 5 5

Now by (3.7)

i #- \ x y i , i2(x y ) x y i ro i1A

|a(x.y) - xy + -j^l < |-l_-t-i. + ̂ _ | . (3.11)

The approximation to a on 2) given in (3.11) will be important
a

throughout the rest of the paper.

3.2: sgn(xy)a(x,y) ^ 0 on 2) .
a

Proof: Because of (3.11) it suffices to show that the function

f : [0 ,TT/2] -> IR defined by

22 3 X
f (X) := (X - Tfg^j X - 2 5 x l 2 ) .

is a nonnegative function. Clearly f(0) = 0 and f' (X) > 1 -

g (TT/2)° - l/6O(Tr/2y > 0; therefore f(X) > 0 for every X € [0,TT/2].



Lemma 3.3: sgn(xy) a(x,y) < TT/2 on 2) .
a

Proof: By (3.11) it suffices to prove that

g : [0.7T/2] -» IR defined by

3 A
25x12

i s bounded above by ir/2. Since

X 2 X 4

g'(x) = i - A _ +
A _ > o v x e

and

g(ir/2) = TT/2 - ^gjg- (ir/2)3(l - (TT/2)2 g ^ ^ ) < ir/2

the lemma is proved.

3.4: a depends on (xy) only and is an odd function of (xy).

Proof: Consider the iteration of C(2J ;K),
a

an+l ( x' y ) = J J c°s(an(0.e)) ddd<p, n ̂ 0.

Clearly a~ is expressible as a function of xy and is odd. Now suppose

that the a, also has these properties: we will prove that oc,+j satisfies
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this property as well.

Let (Xj.yj) and (xg.yg) € %& be such that x ^ = x ^ . We may assume

that Xj ?£ 0 ? y- since otherwise a
n+i(

xi«yi) = an+\^K2'^2) = °'

Now

pxl pyl

^o ^o n

f
X2 f

y2 x y x y
cos(M-i-s. -ia))(^-)(-i-

Jo Jo
 K X 2 y2 2 y2

x., yop 2 p 2
cos(a, (s,o))dads

J 0 J0

By induction we have proved that a (x,y) depends only on (xy) for every n.

A similar induction argument proves that a is an odd function of (xy) for

every n.

Since {a } -» a uniformly, the lemma is proved. •

Now let nr = ir/2 - a on 2) . Then nr satisfies
a

2
^ = -sin T , T(X,0) = ir/2 = ^r(O.y) ,

and T(x,y) € (O.TT) for every (x,y) € 2) . Thus T is a candidate for the
aa

angle between the fibers of a Tchebychev net on S , where x and y are now
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coordinates with respect to a Tchebychev chart. We must produce an open

subset ^ of S which is the domain of this Tchebychev chart.

It is well known that the Riemannian metric can be written on a

Tchebychev chart (see [Pil], [Stl]) as

= dx2 + 2 cos nr(x,y)dxdy + dy2. (3.12)

Since «— and j=f"~ have unit magnitude with respect to g on 2) it

2 2
follows that 2> endowed with the Riemannian metric g = dx + 2 cosnrdxdy + dy

a

admits a Tchebychev net (2^, (Q£>Q^)) • If we can find an open subset <M of

2
S and an isometry <p from <W into or onto 2) endowed with g, then (^,9)

a

is a Tchebychev net on S . We will produce such an open subset by using the

exponential mapping.

First let us recall some facts from Riemannian geometry.

Let (M,p) be a Riemannian manifold and p € M. Then exp is a mapping

having an open subset of T M as its domain and M as its codomain, and such

that

where a is the geodesic of (M,p) such that cr(O) = p and a(0) = v.

The Riemannian metric p induces a unique Riemannian connection v on

M. Many of the computations needed can be done conveniently by using the

Christoffel symbols with respect to some coordinate chart.

1 2
Let (U,(x ,x )) be a local coordinate chart on M. Then the Christoffel

\r 00

symbols (rv.}1^. ,,o are C -functions on U defined by
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9x

where the summation convention is used.

Let p = p. ,dx1dxJ with respect to the local coordinates on U.

Define {p i J> U i tj< n <= C°(U) by

{1 if i = €

(3.14)

0 if i * £

The Christoffel symbols are easily computed using the formula

Let a : [a,b] -» M be a geodesic such that cr([a,b]) C U. Then, writing

1 2
the components of a with respect to the local coordinates as a = (a ,a ),

we have

(a1 + ajak r*k) = 0 , i = l,...,n. (3.16)

For the remainder of this paper we fix a = ir and let

% = 2) = {(x,y) € K 2 : |x| < IT, |y| < ir, |xy| < TT/2}.
TT

Let's consider the Riemannian manifold (2),g). Using (3.15) we compute the

Christoffel symbols:
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1 J2
r n = '22 = cot('Y)Ty

F22 = -

Remark 3.5: The fact that rv. = 0 for i = k is equivalent to the

statement that on a Tchebychev net each fiber field is parallel along the

integral curves of the remaining vector fields.

Let t » (x(t).y(t)) be a geodesic of (2>,g). Then by (3.16) and (3.17)

we get

x = u

y = v

• 2 2
u = -cot(nr)T u + CSC(T)T V

x y
• 2 2
v = csc(nr)nr u - cot(-Y)-Y v . (3.18)

x y

The following facts are obtained from lemmas (3.3) and (3.4) and

equations (3.18).

Fact 3.6: The curves t » (t,0), |t| £ tr ,

t » (0,t) . |t| < 7T.

are both geodesies.
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Fact 3.7: If t » (x(t),y(t)), |t| < b, is a geodesic, then the curves

t » (± x(t), ± y(t))

are all geodesies.

Because of this we consider geodesies in the first quadrant unless such a

geodesic crosses the x or the y axis.

Fact 3.8: If t » (x(t),y(t)) is a geodesic, then t » (y(t),x(t)) is a

geodesic.

In particular the geodesic a : [-b,b] -» 2) satisfying a(0) = 0 and

1 £CT(O) = (— , — ) lies on the line x = y.

Fact 3.9: T (x,y) = - cos(a(x,<p))d<p. Thus
x J0

0 I sgn(y)Tx(x,y) > - |y| and nrx(x,y) = 0 iff y = 0,

and

0 > sgn(x)nr (x,y) > - |x| and nr (x,y) = 0 iff x = 0.

3.10: The domain of expn contains (6TT/2)(—, — ) for some 6 > 1.

42" >f2

Proof: Let a : [-b,b] -* IR . a(t) = (x(t),x(t)) be the geodesic satisfying

a(0) = 0 and CT(O) = (—. -^). Let u(t) = x(t) for all t.

>f2



Since llcr(t)li = 1 for all t,

u(t) =
cos -r(x(t),x(t)))

2 cos J (x(t),x(t))

and so,

x(t) = u(t) =
2 cos(ir/4 - |a(x(t) ,x(t)))

(cos(|a(x(t),x(t))) + sin(ia(x(t),x(t)))'

Let 9 € [0,1]. Then,

15

(3.19)

04 06 n 0211 0 0xS6
i | ( ) n | | 0 ^ (3.21)

and hence,

fi2

1 _ |_ < c o s 9. (3.22)
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Similarly

fi3
9 - |j- < sin 9. (3.23)

Now suppose that t > 0 is small enough that 0 < x(t) < 1. Then by (3.11),

Thus

|a(x(t),x(t)) < | ( l + ^

cos(|a(x(t),x(t)) + sin(|a(x(t),x(t))

- |(±a(x(t),x(t))2 + |a(x(t).x(t)) - ±(a(x(t)

ga(x(t),x(t))

I I f f x f t ^ 2 - 2 2
 f x f t U 6 _ ( x ( t ) ) . ( ,

Hence in (3.19),

x( t ) <
,. _,_ 17 , 2 2 6 '(1 + -^ (x - 2J-X )

and

i 17 f Y i •fr' 1 i *^4 7

N^ ^X^t; f ^ 3 7Y91V4Q ^^V^J;
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By taking derivatives we see that the left hand side is monotone increasing

when x increases from 0 to 1. When x = 1, the left hand side is greater

than ir/2. Since (1,1) € 2) the integral curve t » a(t) exists for all

t € [-67T/2, Sir/2] where 6 > 1.

Remark 3.11: In the previous lemma there exists 6 > 1 such that

|x(t)| < 1 for all |t| < dir/2 along the integral curve o.

2

We would like to find an i some try from some subset of S into 2) such

that the south pole is mapped to the origin. Hence some longitude would be

mapped to the geodesic a which we had just considered and in particular

O(TT/2) would correspond to a point on the equator on S . We now produce as a

candidate for the equator a geodesic passing through a(ir/2) and orthogonal

to a.

Lemma 3.12: Consider the geodesic v of (2>,g) such that jx(O) = a(ir/2) and

u(0) is a unit vector such that (JLI(O) ,a(ir/2)) forms a positively oriented

orthonormal basis. Then ]i can leave 2) fl {(x,y) : x > 0, y > 0} by

crossing the x-axis and no other part of the boundary.

Proof: Let

»+ = 2) fl {(x,y) : x £ 0, y ^ 0}.
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(x,x) = expn(|<^-, -^)), and *i(t) = (x(t),y(t)), t € [0,T], where T is
0 2 T f0 2

chosen such that fi(t) € int(2>+) for all t € [0,T]. Then sin(nr(M.(t)) is

bounded away from 0 and x(t) is bounded above for all t € [0,T]. In

particular,

x(t) csc(-r(fi(t))) is bounded on [0,T].

Now consider u and v as in equation (3.18). By fact 3.9 we obtain,

v(t) < x(t) cot(-r(»x(t)))v2.

Hence - ^ y + ^ j <. J X(T) cot nr(n(-r))dT < » for any t € [0,T].
'0

Thus v(t) never changes sign in [0,T] and since v(0) < 0,

v(t) < 0 for all t € [0,T]. Therefore,

y(t) < y(0) = x for all t € (0,T].

Also by fact 3.9,

i (u(t) + v(t ) ) = T C1 -.cos <y) u2 + t (X - , c o s <r> u2 < 0 for t € [0.T].d t v v y v " x sin T y sin nr L J

Since u(0) + v(0) = 0 , it follows that

u(t) + v(t) < 0 for all t € [0,T].

Now the conditions v(t) < 0 and u(t) + v(t) < 0 for all t € (0,T] imply
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that the curve jx(t), (t € (0,T]) is in the triangle A, bounded by the lines

{(x,0) : 0 £ x < ̂ x } , {(x,x) € 0 £ x < x} and {(x.2x" - x ) : x < x < 2x"}.

Since the line {(x,2x - x) : 0 < x < 2x} is in the interior of 2) , \x

does not leave 2) by crossing the curve xy = ir/2 or y = IT.

Moreover, the curve jz does not cross the line {(x,x) : 0 < x < x} for

t € [0,T], since if it does, there is a geodesic triangle contained in A the

sum of whose interior angles is greater than 7r/2. However, since the

Gaussian curvature of g is equal to 1 and since the measure of A (with

respect to the measure induced by g) is less than 1, this contradicts the

Gauss Bonnet Theorem.

Since v(t) < 0, t € [0,T], it follows that the geodesic *z ultimately

leaves % by crossing the x-axis.

Let 2) be the closed region bounded by the line x = y, the geodesic jz,

and the positive x-axis.

We now show that we can construct a dif feomorphism of a segment of the

hemisphere into 2). We introduce Gauss coordinates to do so.

Lemma 3.13: The map

* : [0,TT/4] x [0,TT/2] -• fl defined by

>// (8,t) = expQ(t(cos 6, sin 9))

is well defined, and it is the inverse of a Gauss coordinate system on

the sector 2).
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Proof: Let yi be the geodesic constructed in lemma 3.11.

Thus we wish to show that all geodesies in 23 which start radially from

the origin meet \i orthogonally; i.e., that,

U := {6 € [0,TT/4] : >K0.[°.§] € 2), ^(G,ir/4) € pi, and ^->//(G,ir/2) is orthogonal

to v} is all of [0,TT/4].

Clearly ir/4 € U. Let 0 Q € U. Then the map t » >K0Q,t), t € [0,ir/2]

is a geodesic by definition. Also by our construction the curvature on

% is 1 and hence for each tn € [0,TT/2] there exists an isometry from a

neighborhood of ^(^oftn^ * n onto an open subset of the standard sphere.

It follows from the compactness of [0,ir/2] that there exists an open subset V

of 8 Q in [0,TT/4] such that \{/(V x [0,7r/2]) is isometric to a triangular

sector around ^ ( Q Q X [0,ir/2]) of the standard sphere with a vertex at the

south pole and a base on the equator. Now >//(V x TT/2) is mapped onto the

equator, thus V C U. Therefore U is an open subset of [0,TT/4]. Since U

is closed by the continuity of >//, U = [0,TT/4]. In particular, \p is defined

and Rng(^) C A. Since >//(0 x [0,TT/2]) is a subset of the horizontal axis and

X/>(TT/4 x [0,TT/2]) is along the line x = y and >P([0,TT/4] X TT/2) contains ji,

it follows that X//([0,TT/4] X [O.TT/2]) contains S. We claim that $ is one

to one. In order to show this we use the following fact from [0KU1]. Let

p € M where M is a Riemannian manifold, and let r(p) = sup{r > 0 such
r€K

that exp : Br(0) C T M -» M is injective}. r(p) is called the injectivity

radius at p. Then exp : B f .(0) C T M -• M is a diffeomorphism onto some
P r(p) P

open set (and this is a Gauss coordinate system).

Now consider <p : B^/2^0^ "* ® given by

<p(9,t) = expQ(t(cos 6, sin 9))
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where (t,0) are polar coordinates on the disc. If <p is not one to one, then

the injectivity radius is less than or equal to TT/2. It follows [OKU1] that

there are 2 geodesies T ^ . ^ in S eminating from the origin of the same

length r(0) < TT/2 which meet. Let the parameter t denote arclength

parameterization on each geodesic. Since expQ : B rQ^(0) -» 2> is the inverse

of a Gauss coordinate system, we have an isometry from expo(B #-Q%(0)) to a

southern polar cap of radius r(0) of the sphere. By considering the isometry,

we conclude that the distance d(i71(t) ,TJ2(t)) is increasing with t.

But this is a contradiction since ^(rfO)) = ru(r(O)). Since <p is

one to one it follows that >// is one to one. We have now seen that the

injectivity radius at the origin is greater than ir/2 and hence >// is a

dif feomorphism providing a sectorial Gauss coordinate system.

We have now established that ^ : [0,7r/4] X [O.TT/2] -» 2> is a bi jection.

Also, no point in 2) is antipodal to the origin along any geodesic. Hence

>p is a Gauss coordinate system on % and therefore % can be mapped

isometrically onto the subset of S in the closed southern hemisphere

bounded between longitudes 0 and 90 degrees.

By symmetry there exists an isometry from the closed southern hemisphere

into 2) such that the image is contained in the interior of 2). Since Gauss

coordinates have open domain, we can increase the domain slightly and obtain a

surjective isometry <p '• W » W such that W is an open subset of S

and contains the closed southern hemisphere and W is an open subset of 2).

Moreover, we can use the inverse of <p : W -» K to construct a Tchebychev net

S . This concludes the proof of the Main Theorem.on
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