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1. Introduction.
Diffusional phase transitions in crystalline solids are often

isothermal and accompanied by deformation induced by a difference in
lattice parameters between the two phases. Examples of such
transformations are the Ostwald ripening of two-phase mixtures, and
the growth of second-phase domains from a supersaturated matrix. The
influence of deformation on the evolution of microstructure during
Ostwald ripening is clear: in its absence the microstructure is
statistically asymptotically time-invariant when scaled by the average
particle size (Lifschitz and Slyozov 1961), but in the presence of
deformation this scaled time-invariant structure no longer exists.
Indeed, as noted in the reviews of Johnson and Voorhees (1992) and
Voorhees (1992), the morphology and spatial distribution of the
particles change during ripening, and the theoretical studies of
Enomoto and Kawasaki (1989), Nishimori and Onuki (1990,1991), Leo,
Mullins, Sekerka and Vinals (1990), and Abinandanan (1991) and the
experiments of Miyazaki. Doi and Kozakai (1988) and Miyazaki and Doi
(1989) show that deformation can alter the temporal power-law for the
average particle size during ripening. Thus central to understanding
the kinetics of coarsening is a description of the dynamics of an
interface driven by mass transport and stress.

Deformation also has a pronounced effect on the equilibrium
shape of a particle in a matrix. For an isolated particle in the
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absence of deformation this shape minimizes interfacial energy under
the constraint of fixed volume (Wulff's problem); as proved by Taylor
(1978) and Fonseca (1991), the minimizing shape is necessarily convex
and independent of particle size. In contrast, the equilibrium shape of
a misfitting particle (a particle with nonzero stress-free
transformation strain) can depend on its size. This size dependence is
Illustrated by the particle morphologies shown in Figure 1. In this
case the Ni3A1 particles can be nearly spherical at small sizes,
cuboidal at intermediate sizes, and plate-like at large sizes. Further,
the recent experiments of Maheshwari and Ardeil (1992) show that the
equilibrium shape of a particle may be nonconvex. In addition, the
literature is replete with examples of the strong effect an applied
stress has on the shape of a particle (cf. Johnson and Voorhees 1992);
for example, an applied uniaxial stress can cause an array of particles
to transform to plates oriented parallel or perpendicular to the applied
stress. Unfortunately, there has been little work on the derivation of
variational principles that define the equilibrium shape of a particle of
variable composition in the presence of deformation due to either a
misfit or an applied stress.

It is our purpose here to develop a theory for the dynamics of an
interface in a two-phase elastic solid with kinetics driven by mass
transport and stress. Typically, such theories have been based on an
approximation of local equilibrium, wherein the thermodynamicai
conditions at an interface are determined as Euler-Lagrange equations
for a global Gibbs function to be stationary and then used to describe
a moving interface not in equilibrium. While this description is of
great utility, we show that It Is possible to develop a dynamical
description of a moving interface directly, thus circumventing the
assumption of local equilibrium.

We follow the theoretical framework developed by Gurtin (1988)
and Gurtin and Struthers (1990). We consider a two-phase system
consisting of bulk regions separated by a sharp interface endowed with
energy and capable of supporting force. We base our discussion on
balance laws for mass and force in conjunction with a version of the
second law — appropriate to a mechanical system out of equilibrium —
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Figure 1. A dark-field transmission-microscope picture of NI3A1
particles in a disordered NiAl matrix. The nonzero stress-free
transformation strain between the Ni,A1 and Ni lattices induces an
elastic stress which, in turn, results In a size dependence of the
equilibrium particle-shapes (Kaufman, Voorhees, and Biancanieiio
1966).



which we use to develop a suitable constitutive theory for the
interface. We assume that mass transport is characterized by the bulk
diffusion of a single independent species; we neglect mass diffusion
within the interface. In addition, we limit our discussion to a
continuous diffusion potential (chemical potential) and to a coherent
Interface, we neglect the elasticity of the Interface, and we consider
only infinitesimal deformations, neglecting inertia. (The generalization
to multi-component systems involves neither conceptual nor analytical
difficulty; the inclusion of inertia and the extension to finite strains
and interfacial elasticity follows as in Gurtin and Struthers 1990; the
extension to a discontinuous chemical potential can be carried out
using the analysis of Gurtin and Voorhees 1992.)

Our study is related to the thermodynamics of solid-liquid
interfaces developed by Caroli, Caroli, and Roulet (1984), which is a
nonequilibrium theory based on a treatment of immiscible fluids by
Bedeaux, Albano and Mazur (1976), Kovak (1977), and Vodak (1978). Our
work differs from that of Caroli, Caroli, and Roulet in many respects,
of which we mention two:

(i) Caroli, Caroli, and Roulet consider only one force system,
while we follow Gurtin and Struthers (1990) and consider two, each
with its own force balance: a deformationai system that arises as a
response to the motion of material points; an accretionai system
needed to describe the power expended on the motion of the interface.
That additional forces may be required is at least intimated by Gibbs
(1878) and Cahn (1980), who note that the area of a solid surface may
be changed by creating or destroying surface or by an elastic strain,
and that each of these kinematical processes leads to a conjugate
thermodynamic surface stress. This observation is strengthened by the
variational calculations of Alexander and Johnson (1985, 1986) and Leo
and Sekerka (1989) in which an additional scalar balance law arises as
an Euler-Lagrange equation corresponding to variations in the position
of the interface.

(ii) Caroli, Caroli, and Roulet postulate a Gibbs relation for the
interface and bulk phases; in contrast we apply an extension (Gurtin
1988) of a proceedure developed by Coieman and Noll for single-phase



systems to develop a thermodynamically consistent constitutive theory;
in our work the Gibbs relation - linking the free energy, composition,
chemical potential, stress, and strain - is a consequence rather than a
postulate.

Using this thermodynamic framework it is possible to derive the
field equations that describe mass flow in the bulk phases in a manner
consistent with the approximations employed in developing the
interface conditions. We show that the field equations can be
developed in a simple manner in terms of the chemical potential and
its time derivatives, as opposed to the usual formulation in terms of
concentration.

Natural consequences of the underlying thermodynamic framework
are Lyapunov functions for the resulting evolution problems. In this
manner we are led to a heirachy of variational principles that should
describe the equilibrium shapes of misfitting particles as well as
possible microstructures that might form; these principles are
applicable both in the absence and presence of an applied stress.

2. The interface. Notation.
We write <t>" for the time derivdtive of a function $(t) or of

a function 4>(x,t) holding x fixed; 32<t> for the partial (and

sometimes total derivative) of a function 4> with respect to a scalar,
vector, or tensor variable z; and $' for the derivative of a function
* of a single scalar variable.

We consider a body QcR3 consisting of two phases, labelled oc
and p, separated, at each time t, by an Interface ^(t) , and write
Qa(t) and Qp(t) for the subregions of the body occupied by phases oc
and p. We assume that the phase regions Qa(t) and Qp(t) are
closed regions with Q as their union and 4,(0 as their intersection;
and that 4,(0 is a smoothly propagating surface that does not
intersect 3Q. We orient 4,(0 by choosing the unit normal field
m(x,0 such that:

n(x,t) coincides with the outwdrd unit normdi to dQa(t).



We write V(x,t) for the normal velocity of 4,(0 in the direction
n(x,t) and K for (twice) the mean curvature (with K<0 for Qa

a ball).
We use the notation and results of Gurtin and Murdoch (1974) and

Gurtin (1988) concerning surfaces. In particular, we write <t>° for the
normal time-derivative of a function <t> (the derivative following the
Interface), and V^ and div^ for the surface gradient and surface
divergence on the interface. We then have the identity

l ^ . - V ^ V . (2.1)

Let t ( t ) denote a smoothly propagating subsurface of 4,(0 (see
Figure 1), and let V(x.t) with v-n * 0 denote the outward unit
normal to the boundary curve dn,(t). The motion of the curve
may be characterized intrinsically by the velocity field

v ^ - V l l * v (dl l ) tanv, (2.2)

where v(d^)tan> the tangential edge velocity, Is the velocity of

in the direction V: given any local parametrization x = r(u,t) for

dt (0 , v ( d O t a n (x ,0 -v(x , t )T t (u , t ) ( r t - d r / 8 t ) . We will refer to vdfl

as the Intrinsic velocity of d i .
Our theory is characterized by: (i) bulk fields, defined in Qa(t)

and Dp(t) for all t, that describe the bulk behavior of the individual
phases; (ii) Interfacial fields, defined on 4,(0 for all t, that
describe the behavior of the interface. We will generally not specify
regularity hypotheses other than to note that bulk fields are allowed
to suffer jump discontinuities across the interface. For * a bulk
field, we write 4>" and 4>+ for the limits of 4> as the interface is
approached from the a and p phase regions, and [4>] for the jump
in $ across the interface: for X€4,(0,



lim*(y,t). *+ (x,t ) - lim*(y.t). (2.3)
\i-*x y-»x

[*] « * + - *". (2.4)

Let t ( t ) denote a smoothly propagating subsurface of <Ut), and
let V(x,t) denote the outward unit normal to the boundary curve
dt(t). The following transport Identity, valid for any interfacial field
<p, will be useful:

{fepda}" - |(<p- - (pKV)da • |<pv(Wtands (2.5)

n, t dn.

(cf. Petryk and Mroz 1986; Gurtin, Struthers, and Williams 1989;
Estrada and Kanwal 1991; Jaric 1991).

R will dlwdys denote a control volume (subregion of Q) with
nR the outward unit normal on dR (see Figure 2). Let R contain the
interface, and let n, be the portion of the interface that lies in R:

(2.6)

Another important transport identity, valid for 4> a bulk field, is

*dv - | [ * ]Vda; (2.7)
R *i

this yields the limiting relation

{ | *dv } ' - * -|[4>]Vda (2.8)
R *t

as R shrinks to the interface. Further, nR has limit -to or in as

dR approaches the interface from phase a or phase J3, respectively.
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a

Figure 2. A control volume R.



Thus, for f a bulk vector f ield,

| f n R d a -> | [ f ] n d a . (2.9)

dR n.

We w i l l repeatedly use the surface divergence-theorem for

vector f ields f tangential to the interface and for superficial tensor

f ields C:

|f-vds - Jdiv^fda, |Cvds « (div^Cda (2.10)

(cf. Gurtin 1988).
The identity (2.7) - with R-Q, * ( x , t ) s 1 in Qa( t ) , 4>(x,t)sO

in Dp(t) — yields

v o K Q J ' « |Vda, (2.11)

where vol(A) denotes the volume of a set A. More generally, when
4> is spdtidlly constdnt in each of the phase regions,

{|*dv}' «-[$]vol(Qar (2.12)
Q

3. Basic quantities.
We assume that the motion of the phase interface is induced by

deformation and by the diffusion of a single independent chemicdl
component. We neglect mass flow within the interface, and therefore
consider the behavior of the body as characterized by the following
fields:

bulk fields
\ji(x,t), energy (volume),
p(x, t ) , densi ty (volume),
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u.(x,t), diffusion potential,
h(x,t), mass flux (area),
T(x,t), deformationai stress (area),
u(x,t), displacement,

Interfaciai fields
f(x,t), energy (area),
C(x,t), accretive stress (length),
iif(x,t), interaction (area),

where (volume) is shorthand for "per unit volume", and so forth. For
the bulk fields: y, p, and u. are scalar fields, h and u are
vector fields, and T is a symmetric tensor field. For the
interfacial fields: f is a scalar field, i Is a vector field, and C
is a tensor field.

A basic asumption of our theory is that:

the diffusion potential JJL and the displacement u
are continuous across the interface.

The continuity of u renders the interface coherent: the two phases
neither slip nor separate at the interface. A consequence is the jump
condition

[u*] « -v[Vu]n. (3.1)

We restrict attention to infinitesimal deformations, and therefore
characterize strains using the (infinitesimal) strain tensor

+ VuT), (3.2)

with Vu T the transpose of Vu.
We define the bulk Gibbs function w through

u « ty - jip. (3.3)



Our theory is purely mechanical: the only active processes are
deformation and mass transport. We use the terms "energy" and "Gibbs
function" in a generic sense; the thermodynamic potential actually
represented depends on which thermodynamic theory this purely
mechanical theory is meant to "approximate". For an isothermal
thermodynamic system our energy is the Helmholtz free energy, while
the Gibbs function is the grand canonical free energy.

The theory generalizes almost without change to N independent
species. An example with a single component arises when the mobile
atoms are interstitial and of the same species. An example with a
single independent component is a binary substitutional alloy all of
whose atoms lie on lattice points; here the densities and mass fluxes
of the individual components satisfy

p1 + p2 « constant, h1 - -h 2 ,

and our theory is applicable with

-P2>« h " hv H - ^ - u v

we could also take p - p v h « h v u^u^-u^, but then the Gibbs
function u) = \jj-pu. depends on the choice of independent component.

4. Balance of forces.
The results of this section are taken from Gurtin (1988) and

Gurtin and Struthers (1990). We consider two force systems, an
accretive force system, characterized by C and w, that acts within
the crystal lattice to drive the transformation process, and a
deformational force system, characterized by the more classical bulk
stress T, that acts in response to deformation; what is most
important,

we presume that each of these systems
is governed by its own force balance.
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We do not Include a deformationai stress within the interface, an
assumption equivalent to neglecting the dependence of interfacial
energy on strain (Cahn and Larche' 1982, Leo and Sekerka 1969, Gurtin
and Struthers 1990).

4.1. Accretive force-balance.
Let t ( t ) be a subsurface of *,(t), and let V(x,t) be the

outward unit normal to the boundary curve dt(t). The integrals

fCvds, (lards (4.1)

represent forces involved with the credtion of new surface: the first
gives the force exerted across dt by the portion of the interface
exterior to t ; the second represents forces exerted on n. by the
bulk material. We assume that these forces are balanced in the sense
of the accretive force-balance

jCvds + |iBfda « 0 (4.2)

for all subsurfaces t ( t ) of 4,(t). The surface divergence theorem
then yields the local force balance

div^C • w « 0. (4.3)

Let v be an arbitrary vector tangent to the interface at x and

t. The force C(x,t)V will generally have a component normdl to the

interface, a component characterized by the tdngent vector

c(x.t) - C(x,t)Tn(x,t),

which we call the surface shear. Using C(x,t) we can write C(x,t)

as a tensor Cten(x,t) that maps tangent vectors into tangent vectors
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plus the tensor n(x,t)®c(x,t). which maps tangent vectors into
normal vectors:

C(x,t)F - Ctan(x,t)v + [c(x,t)v]m(x,t).

We assume that the tangential stress C ten(x,t) is a scalar

surface tension cr(x,t) in the sense that C tan(x,t)v«cr(x,t)v for

all tangent vectors V. Then

C(x.t)v « tfCx.Ov • [c(x,t)v]mi(x,t). (4.4)

(Granted the results (6.5) and (7.15), the vector an + e is the |-
vector of Cahn and Hoffman (1974).) An argument of Gurtin and
Struthers (1990) may be used to prove that Ctan is necessarily a
surface tension a.

The interaction W represents the force exerted by the bulk
material on the interface, and the velocity conjugate to this force is
the velocity of the interface. The intrinsic motion of the interface is
normal to itself: tangential motion is irrelevant. The essential
component of W is therefore the normal Interaction

IT = v-n, (4.5)

which acts conjugate to the normal velocity V. The tangential
component of « is needed to balance forces, but other than that it is
irrelevant; we will regard this tangential component as indeterminate,
its value being determined by the tangential component of (4.3). On
the other hand, the normal component of (4.3), the normal force
balance

o*K + div^C + IT « 0, (4.6)

plays a central role in the theory. .
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4.2. Deformational force-balance.
Consider an arbitrary fixed control volume R. Since we neglect

inertia as veil as deformational stresses in the interface, balance of
deformationai forces has the simple form

|TnRda - 0, (4.7)

dR

which yields the classical relation

d i v T - 0 (4.8)

in bulk in conjunction with the interfacial balance

[T]Oi * 0. (4.9)

4.3. Expended power.
Let R be a control volume, let n, be the portion (2.6) of the

interface that lies in R, and let V> denote the outward unit normal
to da. The integral (4.1)1 characterizes the force exerted on R by
the portion of the interface exterior to a. This portion of the
interface also expends power on R, and a basic assumption of our
theory is that this power expenditure be reckoned using the intrinsic
velocity vd/u of the boundary curve da:

(Cv-v^ds. (4.10)

da

Accretive power balance. The accretive power expenditure
way be written in the form:

-J(o-KV + c-n° + Vn)da •

(4.11)



13

The term -trKV represents power expended In creating new
surface; - c n ° represents power expended in changing the orientation
of the interface; -nV represents power expended in the exchange of
matter between phases; crv(d^)ton represents power expended through
the tangential motion of d i .

To derive (4.11), note that, by (2.2) and (4.4),

Cv-v^ - crv(dll)tBn • v c v .

Further, by (2.1), div^(VC)«Vdiv^C - c-n°; the surface divergence

theorem and (4.6) therefore yield (4.11).
The power expended on R by the deformational stress is given

|TnR .u'da. (4.12)

dR

If R does not contain the interface, then, by (4.8) and the symmetry
of T,

|Tn R u'da = JT-E'dv; (4.13)

3R R

if R contains the interface, with n. the portion of the interface in
R, then (2.9), (4.7), and (4.9) yield the conclusion that, as R shrinks
to the interface,

| T n R u ' d a - • | T n [ u ' ] d s - -JVTm[Vu]mds . (4.14)
dR n, n.

Further, since the interface is coherent [Vu] t»O for every vector %
tangent to the interface; thus, since T Is symmetric,

Tn [Vu]ffD « T * [ E ] - [ T E ] . (4.15)
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5. Balance of mass.
Balance of mass is the requirement that

{Jpdv}' - -JhnRda. . (5.1)
R dR

for all control volumes R. Applying (5.1) to control volumes that
exclude the Interface leads to the the standard bulk relation

p ' - - d i v h (5.2)

(to be satisfied in each of the bulk regions for all time). On the other
hand, shrinking a control volume R (with t # 0 ) to the interface in
(5.1) using (2.8) and (2.9) yields the Interfaciai mass balance

[p]V « [h] us (5.3)

(to be satisfied on the interface for all time).

6. Global dissipation.
Within a mechanical theory of the type considered here, the

second lav is the assertion that the rate of energy increase cannot be
greater than the power expended plus the energy inflow due to
diffusion. Given an arbitrary control volume R,

• Jfda

1s the total energy of R. (4.10) gives the power expended on R by
the Interface. (4.12) gives the power expended on R by the bulk
stresses,
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- | j i h n R da

dR

Is the energy carried Into R by diffusion. The second law thus has
the form of the global dissipation Inequality

+ Jfda}' < JCV vd>tds + |TnRu'da - |u.hnRda (6.1)

R n, dt dR dR

to be satisfied for all time and for all control volumes R. This
version of the second law can be derived as a consequence of balance
of energy and growth of entropy under the assumption of constant
temperature (Gurtin 1991).

If we apply (6.1) to control volumes that exclude the interface,
we conclude, with the aid of (4.13), that

y' < TE 1 - div(u.h), (6.2)

which may be combined with (3.3) and (5.2) to give the bulk
dissipation Inequality

w' + pn" - TE f + h-Vjji < 0. (6.3)

The global dissipation inequality yields important results
regarding the interface. If we apply (6.1) to a control volume R (with
*t¥t0), and then shrink R to the interface, we conclude, with the aid
of (2.5), (2.8), and (4.11), that

n • ITE])V + f° • cn° + (o--f)KV •

dn. (6.4)

This inequality must hold for all smoothly propagating subsurfaces
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t ( t ) of the interface. Given any such *(t) and any time t0, we can
find another smoothly propagating subsurface that coincides with *v(t)
at t« t 0 , but has v ( K ) t a n an arbitrary scalar field at t» t 0 . The
coefficients of v(d>t)tari In (6.4) must therefore vanish, and this yields

cr - f. (6.5)

In analyzing this equality of surface energy f and surface tension cr
it must be remembered that cr involves only accretive forces: or
performs work only when new surface is created or destroyed.

Returning to (6.4), we may use (3.3), (5.3), and (6.5) to deduce the
Interfacial dissipation Inequality

f° + cmie + QV i O, (6.6)

with to the bulk Gibbs function (3.3) and

Q = IT - [u ] + [TE] . (6.7)

The energy dissipated in an arbitrary control volume R is the
right side of (6.1) minus the left, and is given by

£)(R) = |rdv + |rda > 0, (6.8)
R n,

with the Interfaciai and bulk energy dissipation, 7 and I",
defined by

- 7 - f • c.n- • QV < 0. ( 6 g )

-r - u" • pp.* - TE' • hVu. < 0.

7. Constitutive equations.
7.1. Bulk constitutive equations.

We consider bulk constitutive equations of the form
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u - wa(u.,p,E), p « pa(u.,p,E).

T-Ta(M.P.E). h«ha(u.,p,E), ( 7 1 )

In phase oc and

a) « up(|i,p,E), p « pp(u.,p,E).
T - Tp(ji.p.E), h - hp(n.p.E). ( 7 > 2 )

in phase p, with p - V u . the potential gradient and E the
infinitesimal strain (3.2).

We assume that the bulk constitutive equations are compatible
with the second law in the sense that

the bulk dissipation inequality (6.3) is satisfied
for all choices of the fields representing the
displacement and the diffusion potential.

To determine the consequences of this assumption, we restrict
attention to one of the phases and, for convenience, omit the
corresponding subscript oc or J3. Then, writing Z«(ji,p,E), we see
that, granted (7.1), (6.3) is equivalent to the inequality

dpu(Z)-p' + {a^oKZ) + p ( Z ) V • {dEu(Z) - T(Z)}E' + h(Z)p < 0.

and since we can always find fields u and u such that ji, p, E,
u.\ p', and E" have arbitrarily prescribed values at some chosen
point and time, we are led to the following constitutive restrictions,
which we write with the subscript a or p omitted:
(i) The Gibbs function, the density, and the stress are

independent of the potential gradient p and related through

p(u.,E) - -d^u(^.E), T(u.E) - dEco(ji,E); (7.3)
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(ii) the mass flux satisfies the inequality

h(ji.p.E).p < 0. (7.4)

The nonequilibrium restrictions (7.3) are similar to standard results
derived using equilibrium considerations.

The next lemma will simplify the study of inequalities such as
(7.4).

L e m m a . Let q ( w , z ) € R n be a smooth function of

(v ,z)€RpxRn , and suppose that

q(v,z)z $ 0 (7.5)

for all (v,z)€lRnx|RP. Then for each such (v,z) there is an nxn
matrix K(w,z), with K(w,0) positive semi-definite, such that

q(w,z) - -K(w,z)z. (7.6)

To prove this lemma, fix v and write (p(z)«q(w,z)z. By (7.5),
<p(z) has a maximum at z = 0; hence the first derivative of (p
vanishes at z » 0 , while its second derivative is negative semi-
definite. Thus q(w,0)-0 , so that q(v.z) has the form (7.6) with
K(v,0) positive semi-definite.

The lemma allows us to express the mass flux in the form

h(u.,Vu.,E) - -K(U,.VJI,E)VM, (7.7)

with K(u..O,E) positive semi-definite. We write Ka or Kp for K
when we wish to make the corresponding phase explicit, and we refer to
Ka or Kp as mobility tensors. Note that, by (7.3), we can write
(6.9)2 in the form

T « -h(u.,Vu.,E)-Vu. - Vu.-K(u..Vu.,E)Vu.. (7.6)
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7.2. Natural states. Transition potential.
We assume that, for each choice of the potential u., there are

unique strain-values Ea(u.) and Ep(u.) that minimize the Gibbs
functions of the a and p phases. By (7.3), these strains render the
bulk phases stress-free,

Ta(u.,Ea(u.)) - 0, V M p W ) - 0, (7.9)

and represent natural states of the individual phases; the difference
Ep(u.)-Ea(u.) represents the "misfit" in strain between the natural
states. It is convenient to measure the strain in each phase relative
to the natural state of that phase using the relative strain

e -
E - Ea(ji) in phase a,

(7.10)
E - Ep(u.) in phase p,

Let u.o satisfy

) (7.11)

so that the Gibbs functions of the two phases - in their natural states
- coincide at u.o. We will refer to potentials u.o with this property
as transit ion potentials; they (generally) characterize changes in
the relative stability of the bulk phases, and mark changes of phase in
the absence of stress and interfacial structure. (In addition, we will
assume, without loss in generality, that the Gibbs functions (7.11) at
u.o vanish.)

7.3. Interfacial constitutive equations.
We consider constitutive equations In which the interfacial energy

f, the surface shear c. and the normal interaction TT depend on the

diffusion potential u., the normal n, the normal velocity V, and

the values Vu.4 and V u 1 of the potential gradient and the
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displacement gradient at the interface:

f « f(Z), C - C(Z), TT«IT(Z), (7.12)

with

z - (ro,V,u.,Vu.",Vu.+,Vu~>Vu+).

By (6.7) and the bulk constitutive equations, a similar constitutive
relation applies to Q:

Q = Q(Z). (7.13)

We require that (7.12) be compdtible with the second law in the
sense that:

the interfacial dissipation inequality (6.6) is satisfied in
all motions of the interface for all choices of the fields
representing the displacement and the diffusion potential.

This requirement places strong restrictions on the constitutive
functions. Let \? denote the list £ with the argument n removed:

V « (V.u., Vj i" , Vu.+, Vu" , Vu + ). If we substitute the constitutive
equations into (6.6), we find that

{dnf(D + c(z)}-m° + a w f ( z ) ¥ ° + Q(z)V i 0. (7.14)

We can always find a motion of the interface and compatible bulk
fields u. and u such that Z, n°, and v ° have arbitrarily
prescribed values at some chosen point of the interface and time (cf.
Gurtin (1988) for the proof of analogous results). We are therefore led
to the constitutive restrictions:
(i) f and c depend only on n with
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c(n) - -dn f (n) ; (7.15)

(1i) there is a scalar function b(s) I 0 such that

Q - -b(z)V. (7.16)

Using (6.9)2 and the result (i) and (ii), we can rewrite the
Interfacial dissipation in the form

T - b(2)V2. (7.17)

Remark. We have established the thermodynamic restrictions
(7.3), (7.4), (7.15), and (7.16) as necessary conditions for the
satisfaction of the dissipation inequalities (6.3) and (6.6), but tracing
the argument backward we see that these restrictions are also
sufficient for the satisfaction of (6.3) and (6.6). Thus granted the
thermodynamic restrictions (7.3), (7.4), (7.15), and (7.16), consistency
with all of the relations expressing balance of force and mass ensures
satisfaction of the global dissipation inequality (6.1) in all processes.

6. The general free-boundary problem.
6.1. The problem.

Summarizing the results derived thus far, we have the bulk
equations

p1 «-divh, divT « 0. (6.1)

with

ptt(u.,E) - -a^ua(n.E). Ta(u.,E) - dEua(ji,E),

h = ha(u.,Vu.,E) (8.2)

in phase oc, and similarly in phase J3;
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the Interface condition

[u] - [TE] - fK - div^C + b(2)V ( 8 3 )

found using (4.6), (6.7), and (7.16); and the Interface conditions

Ip]v - Chin, [T]m - 0, ( 8 4 )

c(n) «-dn f (n) .

The general problem consists of (8.1)-(6.4) supplemented by:
(i) Initial conditions prescribing the initial diffusion-potential

u.(x,0) for all X€Q as well as the initial phase-regions Qa(O)
and (hence) Dp(0);

(ii) diffusive boundary conditions giving ji(x,t) on a portion of
dQ and h(x,t)nQ(x) on the remainder, with nQ(x) the outward

unit normal to dQ;
(iii) mechanical boundary conditions giving u(x,t) on a portion of

dQ and T(x,t)nQ(x) on the remainder.

Since we neglect inertia, initial conditions for the displacement are
not required.

8.2. Energy Identities. Energy-decay relations.
By (6.9), (7.8). and (7.17), we have a simple expression for the

total dissipation:

S(Q) « -[h-Vjidv - jQVda I 0. (6.5)
Q 4,

In view of the remark following (7.17) the global dissipation inequality
(6.1) holds whenever all of the constitutive equations and balance laws
are satisfied. Thus, taking R»Q in (5.1) and (6.1), and using the fact
that 4, does not intersect dQ, we arrive at the mass and energy
Identities:
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{ |pdv} ' « -|hnQda, (8.6)
Q dQ

v + ( fda} 1 - |TnQu'da • |u.hnQda - -©(Q) i 0. (8.7)

Q 4, dQ dQ

We now consider the general problem with quiescent boundary
conditions consisting of the diffusive boundary conditions

u. = u.* (= constant) on a portion M of
dQ and hn D «O on the remainder, (8.8)

in conjunction with the mechanicdl boundary conditions

u'«0 on a portion D of dQ,
T n Q « T * n D on the remainder, (8.9)

with T * symmetric and constant, so that the boundary tractions are
dead loads. (For D«dQ, simply take T * « 0 in the relations below.)
We wi l l consider two special cases of the diffusive boundary conditions
(8.8): one has M « 0 and corresponds to zero moss flow across the
boundary; for the other M has nonzero area, so that a nontrivial
portion of the boundary is at the constant potential u.*.

Energy-decay relations. Consider the general problem, with
quiescent boundary conditions. If there is no mass flow across the
boundary, then

{Jpdv}* - 0, {|(4.-T*-E)dv + |fda}' - -©(Q) < 0. (8.10)
Q Q <t,

If a nontrivial portion of the boundary is at the constant potential
\i*. then
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{ | ( * - T * E - u * p ) d v + Jfda}' « -»(Q) i 0. (8.11)

To establish these relations note that the mechanical boundary
conditions and the symmetry of T*. yield

|TnQufda - {jT*nDuda}' - { |T*Eda}\
dQ dQ Q (8.12)

The verification of (8.10) follows from (8.6), (8.7), and (8.12). On the
other hand, when a nontrivial portion of the boundary is at the constant
potential u.*, (8.6) implies

fuhnQda « u*JhnQda - - { | u * p d v } \ (8.13)

dQ dQ Q

and this wi th (8.7) and (8.12) yields (8.11).

9. Special theories.
In this section we will discuss special theories appropriate to

behavior near a given transition potential JJL0. One method of
generating such theories is to formally approximate the general
equations under the assumption that the potential difference

is small. A problem with this proceedure is that the resulting
approximate equations will generally not lead to conservation laws and
Lyapunov functions, chiefly because the underlying thermodynamic
structure is lost in the approximation. A procedure that ensures a
consistent thermodynamic structure begins with bulk Gibbs functions
(of a desired degree of approximation) and uses the thermodynamic
relations (3.3) and (7.3) as defining relations for the bulk energies,
densities, and stresses (cf. Gurtin 1986, Gurtin and Davi 1990). We
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will discuss two theories: one in vhich the bulk Gibbs functions are
quadratic in E and U, and one in which these Gibbs functions are
quadratic in E, but linear in U.

9.1. Gibbs function quadratic In strain and chemical potential.
We seek a theory In which the bulk PDE's are linear. Since this

requires constitutive equations for stress and density that are linear
in E and U. we are led. by virtue of (7.3). to consider Gibbs
functions that are quadratic in these variables. By hypothesis, for
fixed U the stress-free strains minimize the corresponding Gibbs
functions. Thus the Gibbs functions necessarily have the form

wa(u.,E) - -A a U - $XaU2 • Wa(e) ,

) - -ApU - iXpU2 + Wp(£),

where Aa,Ap,Xa,Xp are constant, while

Wa(£) - { e L a e , Wp(6) - j£L p 6, (9.2)

with La and Lp positive-definite symmetric linear transformations
from symmetic tensors into symmetric tensors (with the L's
independent of ji).

By (7.3)2, (9.1), and (9.2), the stress in each phase is linear in the
relative strain Z and given by

T « La6 in phase oc, T » LP6 in phase p; (9.3)

thus La and Lp represent elasticity tensors, while Wa(£) and
Wp(&) are strain energies. Further, the stress-free strains EK(u.)
and Ep()i) must be affine (for otherwise (9.1) would not be quadratic):

Eoa + UFa, Ep(*l) - EOp • UFp, (9.4)

with EOa, F a , Eop, and Fp constant symmetric tensors. The
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tensors Fa and Fp are analogous to the solute expansion tensor
used in other theories.

The relation (7.3)1 yields constitutive relations for the densities:

p » Aa + XaU + G a £ in phase a, ,g 5x

p « Ap + XpU + Gp£ in phase p,

with

G a « L a F a , Gp -LpFp ; (9.6)

and the relations (3.3) allow us to write the energies in the form

\jj • JXfcU2 + Wa(6) + UGa£ + u.op in phase oc,
(9.7)

\jj - JXpU2 + Wp(6) + UGrC + )iop in phase p.

Finally, we consider, as constitutive equations for the mass flux,

h « - K a V U in phase a, h - - K P V U in phase p, (9.8)

with constant, positive semi-definite mobility tensors Ka and Kp.

Regarding the interface, we assume that the restrictions
embodied in (7.15) are satisfied, and that the kinetic coefficient b in
(7.16) is constant, so that

Q « -bv\ (9.9)

w i t h blO.
The PDE's to be satisfied in bulk are then the diffusion equations

XaU* + GocX1 - div(KaVU) In phase a,

XplT + GpX" - div(KpVU) in phase j3,
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and the mechanical balance

divT - 0 (9.11)

supplemented by the stress-strain relations (9.3).
To determine the form of the Interface conditions, we write, for

any quantity with value, say, cpa in phase oc and <pp in phase J3,

<p(x,t) i
for X€Qa(t),

tpp for X€Qp(t),

so that [«p]»«pp- <Poc • In the same spirit, we write W(£(x,0) for the
function defined by

W(£(x,0)
Wa(6(x,0) for xeQa(t),

Wp(6(x,t)) for
(9.12)

Then

Ipl - [A] + [X]U + [B-t], Cw] - -[A]U - J[X]U2 + [W(O],

and the interface conditions (8.3) and (8.4) take the form

[A]U • J

[W(£)] - [TE] + fK • div^C - bV,

{[A] + [X]U • [6S] }V - [h].n, [T]n - 0.

(9.13)

Summarizing, the underlying problem for a Gibbs function,
quadratic in strain and chemical potential consists of (7.15), (9.2),
(9.3), (9.10), (9.11), and (9.13) supplemented by the initial and boundary
conditions stated following (8.4) (but phrased in terms of U).
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The energy-decay relations (8.10) and (8.11) have Interesting
consequences for this special theory. These are most easily expressed
using the auxiliary constants

(9.14)

the constants

P* « [A]U» +

and the stress-free strains

U* - * i * - * i0 .

at the boundary potential u.*. In addition, as in (9.12), we write
W(E(x,t)-E0) and W(E(x,t)-E*) for the functions defined by

W(E(x,t)-En)
Wa(E(x,t)-EOa) for X€Qa(t),

Wp(E(x,t)-Eop) for X€Qp(t).

W(E(x,t)-E*)

„,) for X€Qa(t),

Wp(E(x,t)-E%) for X€Qp(t).

In addition, it Is convenient to Introduce the "energy"

6 0 ( U A ) - ( {W(E-E 0 ) -T* -E}dv + |f(n)da,
Q &

(9.15)

which Includes the strain energy at the chemical potential u.o, the
energy of the dead loads, and the interfacial energy. (A knowledge of
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the Interface 4, Implies a knowledge of the phase regions Qa and
fip.) Similarly, we write

6* (UA) - f{W(E-E*)-T»E}dv + Jf(n)da (9.16)
Q 4,

for the analogous "energy" at the chemical potential u.*.

Energy-decay relations. Consider a solution of (7.15), (9.2),
(9.3), (9.10), (9.11), and (9.13) corresponding to quiescent bounddru
conditions. If there is no mdss flow dcross the boundary, then

{- [AJvoKQJ • |{2CU + G(E-E0 ) }dv} ' - 0, (9.17)
Q

{£0(UA) + |CU2dv}' «-S(Q) < 0. (9.18)
Q

If a nontrivial portion of the boundary is et the constant potential
JJL*, then

{ £ * ( U A ) + P*vol(Qa) + jC(U-U*)2dv}' --©(Q) < 0.
Q (9.19)

The relation (9.17) follows from (2.12), (7.10), (8.10), (9.4), (9.5),
and (9.14).

To verify (9.18), we first note that

y « CaLJ2 • Wa(E-E0ot) • \iop in phase a, ( g 2 Q )

\|» « CpU2 + Wfl(E-Eop) + jiop in phase p.

These relations are an Immediate consequence of (9.7) and the
following identity, which we write supressing the phase label:
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W(6) + U6S - W(E-E0) - U2W(F). (9.21)

The decay relation (9.18) follows from (8.10) and (9.20).
The verification of (9.19) follows along the same lines using, in

place of (9.20). the relation

y « -AU* - JXU*2 + C(U-L)*)2 • W(E-E*) + u*p

(with the phase label supressed), which is established using the
identity

+ (U-U*)G£ - W(E-E*) - (U-U*)2W(F).

Remark. If C>0 then the phases are "stable" in their natural
states, since (9.20) then expresses tj»-p.op in each phase as a
positive definite function of the strain and potential relative to the
natural state at j i0 . The condition C>0 resembles a condition found
by Cahn (1968) in his work on spinodai decomposition in the presence
of compositionally generated elastic stresses. Indeed, by (9.14), C is
a sum of two terms: one related to a second derivative of an energy
with respect to composition, and one involving an elastic energy.

9.2. G1bbs function quadratic In strain and linear In chemical
potential.

In many situations of interest the interface moves slowly
compared to the time scale for diffusion. An approximation consistent
with this type of behavior is developed by neglecting the terms
involving U' and 6" in (9.10). Such an approximation is generated as
an exdct theory within our framework by restricting the Gibbs
functions (9.1) of the quasi-linear theory to be affine In U, with no
terms Involving products of U and E. This is equivalent to taking

K - Xp - 0, Ftt - Fp - 0 (9.22)

and leads to constant densities, to constant stress-free strains
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Ea-Eoot and Ep»Eop, and to Ga-Bp«0, Ca-Cp-O.
The PDE's to be satisfied in bulk are then the equations

div(KaVU) - 0, div(KpVU) « 0 (9.23)

for the chemical potential in conjunction with the mechanical balance
law

divT - 0 (9.24)

supplemented by the stress-strain relations

T - La[E-E0ot] in phase a,

T - L p [ E - E o p ] in phase P; ( 9 2 5 )

while the interface conditions have the form

[W(E-E0)] - [TE] + fK + div^C - bV, (g

), [Tin - 0,

with

i « Ap - Aa.

The underlying problem then consists of (7.15), (9.2), (9.23)-(9.26), and
the initial and boundary conditions stated following (8.4) (with the
initial condition for U omitted). For this problem (9.17)-(9.20) yield
the

Energy-decay relations. Consider d solution of (7.15), (9.2),
dnd (9.23)-(9.26) corresponding to quiescent boundary conditions. If
there is no mass flow across the boundary, then



32

vol(Qar - 0. eo(UA)' - -8(Q) i 0. (9.27)

If d nontrividl portion of the boundary is dt the constant potential
f i * . then

{U**vo l (Q a ) + 6 * ( U A ) } ' »-©(Q) < 0. (9.28)

10. Variational problems.
In this section we continue to consider the special theories for

which the Gibbs function is quadratic in strain and either quadratic or
linear in chemical potential. For these theories the energy-decay
relations (9.17)-(9.19) and (9.27)-(9.2B) at least formally yield
variational principles for the characterization of equilibria and, in
particular, for the equilibrium shapes of particles. The right side of
each of these decay relations is the negative of the dissipation £>(Q);
thus and by (7.8) and (8.5), if the mobility tensors Ka and Kp are
positive definite, then one would expect equilibria, if they exist, to
have constant chemical potential u., and for that reason we assume
throughout this section that

U B constant. (10.1)

The statical version of the boundary condition for u in (8.9) is

u • g on D, (10.2)

with g(x) a prescribed function; we use the term admissible
displacement field for a field u that is consistent with (10.2).

For a Gibbs function that is quadratic in ji and E the energy
decay relations (9.17) and (9.18) of the quasi-linear theory suggest
the following variational problem for the shape of a misfitt ing
particle: given mo>O (the total mass of the chemical component).
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minimize &o(u,o,) + U2|Cdv (10.3)
Q

subject to -[A]vol(Qa) • |{2CU + G(E-E0 )}dv - m0

Q

over all Interfaces 4,«dQa, all admissible displacement fields u
that are continuous across $,, and all scalars U. This variational
principle corresponds to no mass flow across the boundary. If a
nontrivial portion of the boundary Is at the constant chemical potential
u.*, then (10.1) yields U E U * . and (9.19) suggests the variational
problem

minimize e*(u,<t,) • P*vol(Qa) (10.4)

over all <a,«dQa and all admissible u continuous across a,. The
functionals to be minimized, (10.3) and (10.4), do not involve the simple
sums &0(u,$,) and & * ( U A ) of elastic and interfacial energies: even
though the chemical potential is constant, there are additional terms
due to the coupling between stress and chemistry.

For a Gibbs function that is linear in u. and quadratic in E the
energy decay relations (9.27) - appropriate to a boundary across which
mass does not flow - suggest the variational problem: given vo>O,

minimize C 0 ( U A ) subject to vol(Qa)« v0 (10.5)

over all <u«dQa and all admissible u continuous across 6,.
Similarly, the appropriate problem for a nontrivial portion of the
boundary at constant potential u* is

minimize 6 * ( U A ) • U*Uvol(Qa) (10.6)

over all such 4,«dQa and u.
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In contrast to the variationai principles described above, one has
in the absence of stress - the classical Wuiff problem, which is to

minimize Jf(n)da subject to vol (Qa )»v0 (10.7)

over all $ , a

The variational problem (10.5) represents the simplest
generalization of the Wuiff problem to include bulk elasticity. In the
absence of an applied stress (T*«0) this principle has been used by
Johnson and Cahn (1984) and Johnson and Voorhees (1992), without
formal justification, to determine equilibrium particle shapes. An
interesting aspect of (10.5) is the absence of chemical potential in the
variational problem, an absence that follows from the constitutive
independence of stress and chemical potential for a Gibbs function
linear in j i . This is clearly not the case for a Gibbs function
quadratic in u., for there stress and chemistry are coupled whenever

Acknowledgment. This work was supported by the Army Research
Office (MG) and by the National Science Foundation (MG.PV). We would
like to thank David Kinderlehrer and Jose' Matias for valuable
comments.

References.
Abinandanan, T. A. 1991 Coarsening ofelastically interacting particles,

Ph.D. thesis, Carnegie Mellon University
Alexander, J. I. D. & Johnson, W. C. 1985 Thermomechanical

equilibrium of solid-fluid systems with curved interfaces, J.
Appl. Phys. 58, 816-824.

Johnson W. C. & Alexander, J. I. D. 1986 Interfacial conditions for
thermomechanical equilibrium in two-phase crystals, J. Appl.
Phys. 59, 2735-2746.

Bedeaux, D., Albano, A. M, & Mazur, P. 1976 Boundary conditions and
non-equilibrium thermodynamics, Physica B2A, 438-462.



35

Cahn, J. W. 1961 On spinodai decomposition, Act. Metail. Mat. 9, 795-
801.

Cahn, J. W. 1980 Surface stress and the chemical equilibrium of small
crystals, 1. The case of the isotropic surface, Act. Metail. Mat.
28. 1333-1338.

Cahn, J. W. & Hoffman, D. W. 1974 A vector thermodynamics for
anisotropic surfaces, 2. Curved and faceted surfaces Act. Metall.
Mat. 22. 1205-1214 (1974).

Cahn, J. W. & Larche1, F. 1980 Surface stress and the chemical
equilibrium of small crystals, 2. Solid particles embedded in a
solid matrix, Act. Metall. Mat. 30, 51-56.

Caroli, B., Caroli, C. & Roulet, B. 1984 Non-equilibrium thermodynamics
of the solidification problem, J. Cryst. Growth, 66, 575-585.

Cermeili, P. & Gurtin, M. E. The theory of coherent and incoherent
linearly elastic phase transitions. Forthcoming.

Coleman, B. D. & Noll, W. 1963 The thermodynamics of elastic
materials with heat conduction and viscosity, Arch. Rational Mech.
Anal. 13, 167-178.

Davi, F. & Gurtin, M. E. 1990 On the motion of a phase interface by
surface diffusion, Zeit. angew. Math. Phys. 41, 782-811.

Enomoto, y. & Kawasaki, K. 1989 Computer simulation of Ostwald
ripening with elastic field interactions, Acta Metall. Mat. 37,
1399-1406.

Estrada, R. & Kanwal, R. P. 1991 Non-classical derivation of the
transport theorems for wave fronts, J. Math. Anal. Appl., 159,
290-297.

Gibbs, J. W. 1878 On the equilibrium of heterogeneous substances.
Trans. Connecticut Acad. 3. 108-248. Reprinted in: The
Scientific Pdpers of J. WWdrd Gibbs, 1. Dover, New Uork (1961).

Gurtin, M. E. 1972 The linear theory of elasticity, Hdndbuch tier
Physik, vol. 6a/2, Springer-Verlag, Berlin.

Gurtin, M. E. 1986 On the two-phase Stefan problem with interfacial
and entropy, Arch. Rational Mech. Anal. 96, 199-241.

Gurtin, M. E. 1988 Multiphase thermomechanics with interfacial
structure. 1. Heat conduction and the capillary balance law. Arch.



36

Rational tiech. Anal. 104, 195-221.
Gurtin, M. E. 1991 On thermomechanical laws for the motion of a phase

interface, Zeit. angew. Math. Phys. 42, 370-388.
Gurtin, M. E. & Murdoch, A. I. 1975 A continuum theory of elastic

material surfaces, Arch. Rational Mech. Anal. 57, 291-323 (1975).
Gurtin, M. E. & Struthers, A. 1990 Multiphase thermomechanics with

Interfacial structure. 3. Evolving phase boundaries in the presence
of bulk deformation, Arch. Rational Mech. Anal. 112, 97-160.

Gurtin, M. E., Struthers, A. & W. 0. Williams 1969 A transport theorem
for moving interfaces, Quart. Appi. Math. 47, 773-777.

Gurtin, M. E. & Voorhees, P. W. 1992 On the thermomechanics of rapidly
evolving two-phase systems in the presence of mass transport,
Forthcoming

Jaric, J. P. 1991 On a transport theorem for moving interfaces,
Forthcoming.

Johnson, W. C. & Voorhees, P. W. 1992 Elastically-induced precipitate
shape transitions in coherent solids, Non Linear Phenomena in
Materials Science (ed. G. Martin) Forthcoming.

Johnson, W. C. & Cahn. J. W. 1985 Elastically induced shape
bifurcations of inclusions, Act. Metall. Mat. 32, 1935-1933.

Kaufman, M. J., Voorhees, P. W. & Biancaniello, F. S., Unpublished
research.

Kovak, J. 1977 Non-equilibrium thermodynamics of interfacial systems,
Physica 66A, 1-24.

Leo, P. H. and R. F. Sekerka 1989 The effect of surface stress on
crystal-melt and crystal-crystal equilibrium, Act. Metall. Mat.
37, 3119-3138.

Leo, P. H., Mullins, W. W., Sekerka, R. F., & Vinals, J. 1990 Effects of
elasticity on late stage coarsening, Acta Metall. Mat. 36, 1573-
1580.

Lifshutz, I. M. & Slyozov, V. V. 1961 The kinetics of precipitation from
supersaturated solutions, J. Phys. Chem. Solids 19 35-50.

Maheshwari, A. & Ardell, A. J., 1992 Elastic interactions and their
effect on f precipitate shapes in aged dilute Ni-Al alloys,
Scripta Metall. Nat. 26, 347-352.



37

Miljazaki, T., Doi, M., & Kozakai, T. 1988 Shape bifurcations in the
coarsening of precipitates in elasticaiiy constrained systems,
Solid State Phenomena 3,4, 227-236.

tiiyazaki, T. & Doi, M. 1989 Shape bifurcations In the coarsening of
precipitates In elasticaiiy constrained systems. Materials Sci.
Eng. A11O, 175-185.

Nishimori, H. & Onuki, A. 1990 Pattern formation in phase separating
alloys with cubic symmetry, Phys. Rev. B 42, 980-983.

Nishimori, H. & Onuki, A. 1991 Freezing of domain growth in cubic
solids with elastic misfit, J. Phys. Soc. Japan 60, 1208-1211.

Petryk, H. & 2. Mroz, Z. 1986 Time derivatives of Integrals and
functionals defined on varying volume and surface domains, Arch.
Mech. 38, 697-724.

Vodak, F. 1978 Non-equilibrium thermodynamics of a discontinuity
surface, Physica 93A, 244-254.

Voorhees, P. W. 1992 Ostwald ripening of two phase solids, Ann. Rev.
Materials Sci. 22, Forthcoming.

Voorhees, P. W., McFadden, G. B., & Johnson, W. C. 1992 On the
morphological development of second phase particles in
elastically stressed solids, Acta Metall. Mat., Forthcoming.



QCT 0 2 2003

01351 bli7


