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THE D-RANK IS EQUAL TO THE iJ-RANK

R. GROSSBERG, A. KOLESNIKOV, I. TOMASIC, AND M. VANDIEREN

ABSTRACT. Complete and self-contained proofs to theorems of Shelah as well
as some new results are presented:

Theorem 0.1. Let Abe a set of formulas closed under Boolean operations and
let p be a finite set of formulas. Ifp is A-stable then for A > ( 2 ' T ' ) + + we have

Theorem 0.2. R\p, A, A] = R\p, A, oo] for A > (2'T')++.
When R\p, A, oo] < oo then R\p, A, oo] < \T\+.

Theorem 0.1 is a generalization of Th II 3.11 from [Sha]. The proofs use the
concepts of p is A-stable and p is A-superstable; which appear only implicitly
in Shelah's work. We use the above functions to characterize p is A-superstable
(when p — {x = x} and A = L, p is A-superstable iff T is superstable).

The proofs presented here are simpler than Shelah's original presentation. We
still use Shelah's ideas but in a different form.

Let 51 be the "geometric" rank from the ACFA paper of Chatzidakis and
Hrushovski.

Theorem 0.3. Let p be a finite type. Ifp is stable then

Sl\p] = D\p, L, oo] = R\p, L, oo].

INTRODUCTION

Rank functions are important tools in studying properties of theories. In 1965,
Michael Morley published a proof to the categoricity theorem for countable sim-
ilarity types. That answered to a particular case of Los's conjecture [Lo] about
categoricity of first-order theories, the most important conjecture in model theory
of that time. To prove the categoricity theorem, Michael Morley [Mo] introduced
a rank function called Morley's rank often denoted by RM(p), where p is a set of
formulas not necessarily a complete type (RM(p) := R\p,L, No] see Definition
1.1). This prompted Shelah, Baldwin, and Lascar to introduce several additional
rank functions.

In 1970 Saharon Shelah (see [Sh31]) solved Los's conjecture in full generality.
For his solution, Shelah identified an important class of first-order theories, the
superstable theories, and developed several tools. Namely, in [Sh 10] he introduced
the rank Deg\p] (Deg\p] := Deg\p, L, oo] see Definition 2.2), suitable to deal with
superstable theories and a rank suitable to deal with stable theories, the function
R\p, A, Ho], both for p not necessarily complete and A a finite set of formulas.
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John Baldwin proved in his Ph.D. thesis that an Hi-categorical theory has fi-
nite Morely's rank (see [Bal]). The main device was a function named later
D[x = x, L, oo] by Shelah. Among other results Baldwin showed that
D[x = x, L, oo] = Morley's rank(p) for Hi-categorical theories (this was a prede-
cessor of Theorem 0.1).

Lascar in [La2] introduced Lascar rank which is another function suitable for
superstable theories U(p) is defined only when p is a complete type (the same
function is denoted by L(p) in [Sha]). Lascar's rank is different than the ranks we
discuss here (even for differentially closed fields, see [HS]).

In 1974, Baldwin and Blass introduced the basic axiomatic properties of the
rank functions in [BaBl]; the connected property is from Lascar [La2]. Later (in
his book [Sha] from 1978), Shelah presented two other families of rank func-
tions jD[p, A, A] and i?[p, A, A]. The first is a generalization of Deg[p] (since
Deg\p] = D\p, L, oo]) and the latter is a generalization of Morley's rank (since
RM\p] = R\p, L, HQ]). The functions JD[p, L, oo] and R\p, L, oo] (often denoted
also by oo-rank[p]) are well understood and their basic properties appear in sev-
eral monographs (e.g. John Baldwin's book [Ba2], Steve Buechler's book [Bu]
and Anand Pillay's [Pi]). However, some deep results in Section 3 of Chapter
II [Sha] relating the rank functions R\p, A, A] and D[p, A, A] were not covered by
any of the subsequent expositions known to us. (E. g. if T is superstable, then
i2[x = x ,L ,oo]< |T |+ . )

In the early nineties Ehud Hrushovski [Hr] introduced the function 51 he used
to study simple unstable groups. Hrushovski's s i was defined only for finite values
in the same unpublished paper he introduced and proved as well as the indepen-
dence theorem for theories with finite 51 rank f (this theorem was later generalize
renamed by Kim and Pillay [KP] as the amalgamation theorem for all simple theo-
ries). Some of Hrushovski's early results appeared in a restricted form in his papers
with Pillay [HP1] and later with Chatzidakis [CH].

The purpose of this article is to present the more difficult contents of Section 3
of Chapter II [Sha] in a complete, simplified, and more conceptual way. (As we
note below, Shelah's original proofs are not complete and contain several errors.)
To our surprise after writing up proofs to Shelah's theorems we realized that the
main combinatorial dividing line is an implicit use of the 51 function that was
introduced explicitly only more than 20 years later in a geometric context by Ehud
Hrushovski.

In our paper we show that Hrushovski's 51-rank is equal to R\p, L, oo] and we
use this to give a more conceptual proof of Theorems 0.1 and 0.2 than Shelah did.
As a byproduct of the hardest argument in this paper (Theorem 3.1), it is shown that
if R\p, L, oo] = £>[p, L, oo], then also D\p, L, oo] = 51[p, L). This was shown to
be true by Kim and Pillay [KP] under the assumption that T is simple when either
D\p, L, oo] or 51 [p] are finite. Here we get equality also for infinite valued rank,
but we assume local stability.

We introduce a rank function Deg\p, L, A] (which generalizes Shelah's function
from [Sh 10]). While for some trivial cases D\p, A, A] ^ Deg\p, A, A], it is not
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difficult to see that for interesting cases either

or at least

D\p, V, A] < v for all cp <=$> Deg\p, ip, A] < w for all (p.

This helps us to lower the complexity of Shelah's original treatment. Also from
Shelah's proofs we extract relativized notions of A-stability and A-superstability
that clarify the arguments significantly (compare with Harnik and Harrington [HH],
Bouscaren [Bo] and with Grossberg and Lessmann [GrLe]).

Lastly a function S2 is introduced, it relates to the Sl-rank in a similar way
to the relationship between Deg\p, A, A] and i?[p, A, A]. It is shown that when
51[p] = R\p, L, oo] then also Sl\p] = S2\p\.

To the expert: You may wonder as of what are the differences between this paper
and other expositions. More precisely, did not Baldwin, Buechler or Pillay in thier
books prove the same theorems? The answer is no. Baldwin [Ba2] deals with
superstable theories via what he calls the continuous rank. Pillay [Pi] is using the
same rank function. (We denote this function by Deg\p, L, (2lTl)++].) Buechler in
[Bu] is using a different rank to study superstable theories (the infinity rank). Here,
in addition to showing that the functions are equal (together with some additional
information on improved bounds) we deal with the local case. We do localize
not only from the theory to a realizations of a single formula (and sometime a
type) but we have another degree of localization. Namely, we allow to replace the
entire set of formulas of T with a relatively small set A. The more general results
require significantly more delicate treatment and more sophisticated combinatorial
set theory. For example, we present the necessary machinery to apply Shelah's
non-structure technology to show that for an unsuperstable theory T the class K :—
PC{T\,T) has 2A pairwise unembeddable models of cardinality A (for any T\DT
and any A regular greater than |Ti|). The devices presented in Baldwin's book are
sufficient to get the same conclusion under additional assumptions (he requires the
class /C to be an elementary class Mod(T) where T is an unsuperstable and stable
first-order theory).

Another natural question to ask is: Did not Shelah (in [Sha]) prove all these
theorems? The answer is yes and no. All the theorems with the exceptions of the
results connecting to the 51 rank are stated in Shelah's book. However there are
several inaccuracies and some of the proofs in our opinion are incomplete. Here
are some examples:

(1) Lemma 11.3.5(1) for the case X — D is false (when AL), this is one of the
reasons we introduced Deg\p, A, A] which is an interpolant to the continu-
ous rank and D\p, A, A] (references are to [Sha]).

(2) In the center of page 51 Shelah states Lemma B.I without proof, we prove
it in the second appendix.
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(3) Shelah's argument that for superstable theories the infinity rank is bounded
by |T|+ (see Theorem II.3.13) is incomplete. In the center of page 53 She-
lah's presents an outline of a proof, he writes "We can apply this construc-
tion to p U r;, etc. Hence we can define ...". Following this strategy will re-
quire writing about 10 pages of complicated arguments that he does not sup-
ply us with. Instead following his outline we present an alternative approach
that depends on the fact that we have shown already that Deg[- • .• ] = R[• • • ]
and we use the tree characterization (and the normalization) lemmas we have
obtained for Deg[- • • ].

The structure of this paper:

Section 1: Contains the definition of R[p, A, A] and basic properties. For the
sake of completness we have given concise proofs of the connections of
R[" - ] with the local order-property and local stability.

Section 2: The ranks D\p, A, A], Deg\p, A, A] and thier basic properties are
introduced as well as the tree characterization-lemma for Deg\p, A, A], the
weak tree property and the normalization lemma.

Section 3: Is dedicated to the main theorem (Theorem 3.1) where the equality

51b , A] = Deg\p, A, M+] - D\p, A, //+] - R\p, A, /x+].

is derived from the appropriate assumptions (see also Corollary 3.12).
Section 4: Here we characterize local superstability and derive the strong bound

on the oo-rank, namely: In Theorem 4.2 (1) ==> (5) it is shown that if T
is superstable then i?[x = x, L, oo] < |T | + .

Section 5: It is shown that the continuous rank is equal to the infinity rank;
Namely R\p, A, (2lTl)++] = R[p, A, oo] and the last step in the proof of
Theorem 3.1 is carried out in Claims 5.6 and 5.7.

Section 6: The function 52 which is an easy generalization of 51 is intro-
duced. Its relationship to 51 is analog to the relationship between R and
Deg.

Appendix A: Contains a proof of Claim 3.10.
Appendix B: Contains a proof to the end-homogeneity lemma we use in the

proof of Claim 5.6.
An effort was made to make this presentation as self contained as possible. The

notation is standard. Throughout the paper, T denotes a complete first-order theory
without finite models. The language of T is denoted L(T). The monster model is
denoted by <£.

We thank John Baldwin and Olivier Lessmann for reading a preliminary version
of this paper and offering us thier comments and to Ehud Hrushovski for clarifying
the history of the 51-rank.

1. LOCAL STABILITY AND THE J?-RANK

Definition 1.1. Let p be a set of formulas in x,
A C {</>(x; y) | tp € Fml(L(T))} and A a cardinality (can be finite) or oo.

(1) R\p, A, A] > a is defined by induction on a:
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(a) J?[p, A, A] > 0, if p is consistent;
(b) for a limit, R\p, A, A] > a if R\p, A, A] > /3 for every /3 < a
(c) R\p, A, A] > a + 1 if for every finite ? C p and every /i < A there are

{#i | i < /i} explicitly contradictory A-types such that
R[q U (ft, A, A] > a for every i < p. (When A = oo we interpret it as
no restriction on p).

(2) For an ordinal a denote by R\p, A, A] = a the statement

#[p, A, A] > a and R\p, A, A] ^ a + 1.

(3) We write R\p, A, A] = oo if R\p, A, A] > a for every ordinal a.

Remarks 1.2. (1) R\p, L, Ho] is Morley's rank often denoted by RM[p\.
(2) R\p, L, oo] is often called infinity rank, Buechler (in [Bu]) denotes it by

R°°\p}.
(3) R\p, A, Ho] is denoted in Pillay ([Pi]) by i?£0[p]-

We mention some of the basic properties of the .R-rank:

Lemma 1.3 (Invariance). For any set of formulas p and f G Aut((£),

Proof. Immediate. H

Lemma 1.4 (Monotonicity). (1) p h g implies R\p, A, A] < i?[g, A, A],
(2) fi < A implies R\p, A, A] < iZ[p, A, /x] a^J
(3) Ax C A 2 imp/i^ rtar i?[p, A i , A] < R\p, A2 , A]

Proof. (1) By induction on a show that i?[p, A, A] > a => i2[g, A, A] > a.
(2), (3) Immediate. H

Lemma 1.5 (Finite character). Given A C {(^(x;y) | (/? G Fml(L(T))}, a cardi-
nal X, and a set of formulas p , there is a finite subset q C p , such that R\p, A, A] =
R[q,A,\}.

Proof. By definition and Lemma 1.4(1). H

Lemma 1.6 (Ultrametric property). For A > Ho

{ \ / ^ } ) A , A ]

/ Maxi</<ni?[pU{^/},A,A] < R\p U {Vi<K n^/}, A, A] follows from
Lemma 1.4.

By induction on a show that

\ / ^ / } , A , A ] > a ^ M a x 1 < / < n i i [ p U { ^ } , A , A ] > a .
l<Kn

H

Lemma 1.7 (Extension property), i w A > Ho, a set of formulas p and a set A D
dom(p), there exists a complete type q^p with domain A such that R\p, A, A] =

[ A ]
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Proof. Let a := R\p, A, A], use Lemma 1.6 and apply the compactness theorem to
the set

Theorem 1.8 (Connected). Let p be a finite set of formulas in x. IfR\p, A, A] =
a < oo then for every (3 < a there exists a A-type q such that R\p U q, A, A] = /?.

Proof Suppose for the sake of contradiction that there are a finite p and ordinals
/? < a such that R\p, A, A] = a < oo and

(*) i?[pU<z,A,A]>/3 = * i?[pU<z,A,A]>/3+l
for every A-type g.

Using (*) we will contradict the hypothesis that R\p, A, A] < oo by showing that
for every A-type q and every 7 > /3

R\p U q, A, A] > f) implies i?[p U g, A, A] > 7.

We proceed by induction on 7 > (3.
For 7 = (3 there is nothing to prove. For 7 limit use the inductive hypothesis.
For 7 = C + 1 > /3, let g be a A-type such that R\p U q, A, A] > /3. By (*) we
have that R\p U g, A, A] > /3 + 1. Using the definition of i?, for every finite subset
VQ of q, for every /x < A, there exists {gi | i < /x} a set of explicitly contradictory
A-types such that

(**) i?[pUro U^i, A, A] >/3 for every i < //.

By the finite character choose finite q* C qi such that i?[p U ro U #*, A, A] =
J?[p U ro U qi, A, A]. An application of the induction hypothesis to (**) gives us
that

i2[pUr0Ug*,A,A] > C for every i < \i.

This, using the definition of R again, gives us that R\p U g, A, A] > C + 1- H

Parts (1) and (2) of the following definition were influenced by Harnik and
Harrington [HH], Bouscaren [Bo], Grossberg and Lessmann [GrLe].

Definition 1.9. Let p be a type in x and let A be a set of formulas such that for all
<peA,<p = (p(x\y).

(1) A type q G 5^ (x) (A) is called a (p, A)-type if p U q is consistent. The set of
all (p, A)-types is denoted by SPIA(A);

(2) p is called (A, \)-stable if for all J4, |J4| < A, we have | S P , A ( ^ ) | < A;
(3) p is called A-stable if there is A such that p is (A, A)-stable;
(4) p is called A-superstable if there is A such that p is (A,/x)-stable for all

/x>A;
(5) We say that <p(x; y) has the order property over p if there is a set {an | n <

at} with ^(an) = ^(y) such thatp U {<p(x; an) if fe^n | n < co} is consistent
for all k < oj\
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(6) We say that A has the order property overp if there is
<p(x; y) G A that has the order property over p.

Lemma 1.10. Let A be an infinite cardinal and let <p(x; y) be a formula. If there
is a set A such that \A\ < A and \SPi^y(A)\ > A, then tp has the order property
overp.

Proof. The proof is similar to that of Theorem 1.2.10 of [Sha]. H

The following is a generalization of Theorem II 3.13 and Lemma II.2.14 of
[Sha], with essentially the same proof.

Theorem 1.11. Let pbe a type in x and let A be a set of formulas. The following
are equivalent:

(1) For all A > No such that A = AlAl, p is (A, \)-stable;
(2) p is A-stable;
(3) A does not have the order property overp.

Proof (1) => (2) is immediate from the definition of stability.
(2) =>- (3) Suppose there is ip G A that has the order property over p. Given

A > |A| + No, let \i := Min{/x | 2^ > A}. Using the order property and the
Compactness Theorem, we obtain {a^ | 77 G ̂ -2} such thatpU{(/?(x; a^)^T?<Zexl/ |
7] G ̂ -2} is consistent for all v G ̂ -2 . Let A := {a^ | 77 G / i > 2} ; since 2<^ < A,
|A| < A. However, \SPy{(p}(A)\ > 2^ > A and since ^ G A, | 5 P I A ( A ) | >
I ^ ^ ^ - A ) ! > A. We get a contradiction to the condition (2).

(3) =$• (l) Suppose for contradiction that (1) fails. Let A > No be such that
A = A'AI and p is not (A, A)-stable. Let A be a set of cardinality A such that
\SpA(A)\ > A.

Let {ipi I i < |A|} be an enumeration of A and let S := rii<|A| ^p,{v?t}(^)-
Clearly, the mapping

q G SPiA(A) i-> q := (g<p0, 9<pi,. •.} e S

is an injection. Therefore, | 5 | > | 5 P > A(-^) | > A. So, there exists a <£ G A such
that |5 P i ^ } ( i l ) | > A. (Otherwise | 5 | - \IU<\A\ Sp,Wiy(A)\ < \Ui<\A\M =
AlAL) Finally, applying Lemma 1.10, we get the order property for (p G A, that
contradicts (3). H

The i?-rank can be used to characterize local stability of types. To see that, we
will need the tree characterization of the i?-rank.

Definition 1.12. Let p be a type in x, let v?(x; y) be a formula, and let a be an
ordinal. Denote

Tp(<p, a) := -Mx^; y ^ ) ^ | fi < a, r, G a2} U |J {p(x,) \r,

The following is a generalization of Theorem II.2.2 of [Sha]. For the sake of
completeness we include a proof.

Lemma 1.13. Let p be a type in x and let <p(x; y) be a formula. Then, for every
n < LJ, the following are equivalent:
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(1) rp(<p,n) is consistent;
(2) R\p,<p,2]>n.

Proof. By the compactness theorem we may assume that p is finite.
If n = 0, the assertion is trivial. Suppose that for all finite types p, R\p, (p, 2] > n

is equivalent to the consistency of r p ( ^ , n ) . We now prove the equivalence for
n + 1 .

If R\p, cp, 2] > n + 1, there are two explicitly contradictory {<p}-types q\ and
q<i such that R\p U gi, <p, 2] > n and R\p U <?2, ¥>> 2] > n. Since the types are
explicitly contradictory, there is an a such that y>(x;a) G q\ and -«p(x;a) G #2-
By monotonicity, R\p U {y?(x; a)}, cp, 2] > n and i?[p U {-><p(x; a)}, cp, 2] > n.

Given 77 G n + 1 2 , construct b^ and {a^j | / < n + 1} such that b^ |= p(x) U
M x j a ^ 1 \l<n + l}.

Case 1: 77 = ^(0) , v £ n2. Apply the induction hypothesis top(x) U {v?(x; a)}
to get b^ such that hu |= p(x) U {</?(x; a)} U {(^(x; a ^ M | Z < n}. Then clearly
b^ \— bj/, a /̂ = a^/, I < n, and a^ := a are exactly as required.

Case 2: 77 = ^(1) , ̂  G n 2. Here we apply the induction hypothesis to the type
p(x) U {-«/?(x; a)} to produce b^ and {a^ | I < n + 1} as needed.

This completes the induction step. Notice that all the implications in the above
proof can be reversed. H

Theorem 1.14. Suppose p is a set of formulas in x and <£>(x; y) is a formula. The
following are equivalent

(1) R\p,(p,2] <u,
(2) fl[p,¥>,2] <oo,
(3) i2[p,v,No] <oo,
(4) R\p, if, 00] < ex),
(5) the formula (p does not have the order property overp,
(6) p is {(p}-stable.

Proof The implications (1) => (2) =» (3) => (4) follow from the fact that i?[-, •, A]
is antitone in A. Notice that (5) <^ (6) is one of the statements in Theorem 1.11.

Let us show (1) => (5). If <p has the order property over p, we obtain the
consistency of Tp(ip, u) by extending the order property to an appropriately cho-
sen linear ordering on w - 2 (using compactness), which, by Lemma 1.13, implies
R(p, (p, 2) > us.

For (6) => (1), if R\p,(pj2] > a;, then, by Lemma 1.13, Tp((p,w) is consis-
tent and gives rise to many (p, {<p})-types, which contradicts the local stability
assumption on p.

All that is left to show is (4) => (1). By Proposition 4.1, there is a cardinality A
such that R\p, <p, 00] = R\p, (p, A]. If U[p, <p, 2] > a;, Lemma 1.13, along with the
Compactness Theorem, implies that Tp(<p, A) is consistent.

Let {a^ I 77 G A >2} be realizations of y^'s from the tree. Thus, for every 77 G
A >2, pv := p U {(̂ ?(x; a ^ ) 7 ^ | (3 < l(r))} is consistent. Since R\p, ip, A] < 00,
a 0 := m i n ^ f c ^ ^ A ] \ rj e A>2} is a well-defined ordinal. Let rj0 G

 A>2 be
such that R\pr)0, <p, A] = QQ.



THE DRANK IS EQUAL TO THE tf-RANK 9

For 7 < A, consider q1 := p^o- r i , where 07 is a sequence of O's of length 7.
Obviously qlx contradicts ql2 for 71 7̂  72 < A and by minimality of c*o, for every
7 < A, R[q7,(p, A] > ao- This implies that R\pm,<p,X\ > « 0 + 1, which is a
contradiction to the choice of pm. H

Corollary 1.15. Suppose p and A are sets of formulas in x. IfR\p, A, 00] < 00,
then p is A-stable.

Proof Suppose J?[p, A, 00] < 00. By monotonicity, R\p, </>, 00] < 00 for every
if G A. Theorem 1.14 implies that for all <p e A, (p does not have the order
property over p. Thus A does not have the order property. By Theorem 1.11 we
get that p is A-stable. H

Remark 1.16. In fact R\p, A, 00] < 00 implies thatp is A-superstable (see (6) = ^
(1) in Theorem 4.2)

Thus, the #-rank can be used to characterize superstability. Namely, the follow-
ing theorem holds:

Theorem 1.17. R[x. = x, L, 00] < 00 iffT is superstable.

This theorem will be derived from a more general result (Theorem 4.2).

2. Deg-RANK AND LOCAL SUPERSTABILITY

The following was introduced by Shelah (in [Sha])to study superstable theories

Definition 2.1. D\p, A, A] > 0 if p is consistent.
D[p, A, A] > a, fora limit, if for every (3 < a, D\p, A, A] > (3.
£)[p, A, A] > a + 1 if for every finite q C p, for every /i < A, there are a finite
i* 2 #> < (̂x; y) G A, n < to, and {a^ : i < fi} such that:

(1) set {</?(x; a^) : i < /i} is n-contradictory over r;
(2) for every i < JJ,, D[r U (£>(x; a;), A, A] > a.

In this section, we introduce the De#-rank, which is a simplification of the D-
rank, that will be used to characterize local superstability of types, to find bounds
for the D-rank and eventually prove the equality of R and D under certain con-
ditions. It is an interpolant of Shelah's ranks D\p, A, A] (from [Sha]) and Deg\p]
(from [Sh 10]).

Definition 2.2. Deg\p, A, A] > 0 if p is consistent.
Deg\p, A, A] > 5, for 5 limit, if for every a < 6, Deg\p, A, A] > a.
Deg\p, A, A] > a + 1 if for every finite q C p, for every /i < A, there exist
<p(x; y) e A, n < a; and {a^ : i < //} such that:

(1) set {<p(x; a;) : i < /x} is n-contradictory over g;
(2) for every i < ^, J?ep[g U y>(x; a;), A, A] > a.

Remarks 2.3. (1) When A = L, then trivially £)ey[p,A,A] = £>[p,A,A].
When A is a proper subset of the set of formulas of L than the ranks D and
Deg are different.
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(2) Deg\p,Ly (2lTl)++] is what Baldwin in [Ba2] calls the continuous rank,
denoted by Rc\p]> the same rank is denoted by Pillay (in page 72 of [Pi]) as
Dip).

(3) Notice that Buechler [Bu] denotes by R°°\p] the function R\p, L, oo] from
Definition 2.1.

The D and Deg ranks obey most of the basic properties of the i?-rank.

Lemma 2.4 (Invariance). For any set of formulas p and f G Aut(C),
D]p, A, A] = D[/(p), A, A] and Deg\p, A, A] = Deg[f(p), A, A]

Lemma 2.5 (Ultrametric property). For A > No

Deg\pU{ \ /

Proof Similar to the proof of 1.6. H

Lemma 2.6 (Extension property). For A > No, a set of formulas p and a set
A D dom(p), there exists a complete type q D p with domain A such that

Proof Similar to 1.7 using Lemma 2.5 instead of Lemma 1.6. H

Lemma 2.7 (Monotonicity). (1) p h q implies jD[p, A,A] < D[q, A, A] and
Deg\p,A,\]<Deg[q,A,\];

(2) fi < A implies D\p, A, A] < D\p, A, p] and Deg\p, A, A] < Deg\p, A, p\;
(3) Ai C A2 implies that D\p,AuX] < D[p,A2,A] anJ De^fp, Ax, A] <

Lemma 2.8 (Finite character). Given A C {(/?(x; y) | ^ G .FraZ(L(T))}, a
na/ A, and a set of formulas p, there is a finite subset q C p, swc/z ̂ /ia/ D[p, A, A] =
D[q, A, A] and Deg\p, A, A] = Deg[q, A, A].

Theorem 2.9 (Connected). Let p be a finite set of formulas in x.

(1) IfDeg\p, A, A] = a < oo then for every (3 < a there exists a A-type q such
thatDeg\pUq,A,\] = (3.

(2) Suppose A = L. //*J9[p, L, A] = a < oo then for all (3 < a and every A,
there is q € S(A) such that D\p U q, L, A] = (3.

Proofs of the above facts are similar to those of the corresponding properties of
the H-rank.

Remark 2.10. If A ^ L, then the D-rank may fail to have the property (2) in
Theorem 2.9.

The ranks R, D, and Deg always satisfy the following relations:

Theorem 2.11. For every p, A and\ > Nx, Deg\p, A, A] < D\p, A, A] < R\p, A, A].

Proof The fact that Deg\p, A, A] < D\p, A, A] is trivial from definitions and is
valid, of course, for any cardinal A.
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We show by induction on a that

D\p, A, A] > a implies R\p, A, A] > a.

By the finite character, without loss of generality, we assume that p is finite. For
a = 0, we are done by the definitions of D and R.

For a limit, use the induction hypothesis.
For a = ft + 1, let /x < A, /x > No- By the definition of D for some finite q D p

there are V>(x; y) E A, n < UJ and a set {b; | i < /x} such that
(1) £>[<? U {t/>(x; b;)}, A, A] > /3 for every i < \i and
(2) the set {^(x; bi) | i < /i} is n-contradictory over q.
By the inductive hypothesis we have that

R[q U {V>(x; b;)}, A, A] > (3 for every i < \i.

By the extension property (Lemma 1.7) for every i < n there exists

Pi E 5(dom q U {b^ | i < /x}) with q U {t/>(x; bi)} C p{ and

Since the set {?/>(x;b;) | z < /x} is n-contradictory over q and {p; | i < /i}
are all complete types over the same set of parameters, for any { p ^ , . . . ,Pin},
i i , . . . ,in < /x, pix cannot possibly contain all of the /0(x;b^)'s, for j £ {2 , . . . , n} ,
so there is a j E {2 , . . . ,n} such that ^ (x jb^ ) ^ p^ , i. e., -.^(xjb^.) E p^ .
Thus, among any n many p^A's, there are two explicitly contradictory A-types.
Since fi is infinite, there exists S C /j, + 1 of cardinality jx such that i ^ j E 5 =>
PiA ^ pjA and by the definition of i? we get that i?[g, A, A] > j3 4- 1. But q h p
implies i?[p, A, A] > /3 + 1 = a. H

It is well-known that the D-rank is not equal to i?-rank in some situations. The
following example shows that the ranks D and Deg do not necessarily coincide.

Consider L = (Pi, P2), where Pi is a unary and P2 is a binary predicate. Let T
be the following theory in L:

(1) Vx\/y(x — y «-»• ((Pi(x) «-» Pi(2/)) A P2(x,y))) (every element is com-
pletely determined by Pi and P2);

(2) Vx(Pi(x) -> 3y(-Pi(y)AP2(x,y)) A(-.Pi(x) ^ 3y(P1(y) AP2(x,i/))))
(there is a bijection between {x \ Pi (a;)} and {x \ ^Pi^x)});

(3) 3°°xPi(x) (in fact, this is a set of countably many axioms of the form
) A A + )

Claim 2.12. The theory T is consistent and categorical in every infinite cardinal-
ity.

Proof. Let A be an infinite ordinal and let \M\\ :•= {(a,b) \ a E {0,1},6 E A}.
If we define Pf^ := {(0,6) | b E A} and P^ := {((aub),(a2,b)) \ aua2 E
{0,1}, b E A}, then Mx := (\MX\, PX

M A , P 2
M A ) is a model for T.

Clearly, if M is a model of T of cardinality K, we can construct an isomorphism
between M and MK. H

Thus, T is a complete and superstable theory.
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Claim 2.13. lf%j)(x,y) = Px{x) V (x = y), then

(1) Deg[x = x,il>{x,y),\ko] = 0;
(2) 2?[x = x,^(x>») ,Ho]>l-

(In fact, D[x = x, V>(#, y), Ho] = 1 here.)

Proof. (1) Clearly Deg[x = x, ^(x, y), Ho] > 0. On the other hand, for all
ae \M\9il>(x>a)is realized by all b with P\(b). Therefore, we are not able to find
parameters a; such that {t/>(x, a*)} are contradictory over x = x.
So, De#[x = x, ^(x, y), No] = 0.

(2) We use ip(x) = -iPi(x) as the extension of x = x. In conjunction with (p,
the formula i/j(x,y) becomes equivalent to x — y. Let {ai \ i < a;} be different
elements in -<Pi, then obviously

(1) {V>(x? a^) : ^ < a;} are 2-contradictory over <p;
(2) for every i < a;, D[ip{x) A ̂ (x, y), A, A] > 0.

Therefore, D[x = x, i/>(x, y), Ho] > 1. It is also easy to see that
D[tp(x) A t/>(x, y), A, A] = 0, so in fact D[x - X,I/J(X, y), «0] = 1. . H

The following concept is the key to show that /(A, Ti, T) = 2A (for A > |Ti|
and Ti D T).

Definition 2.14. (1) Let A be an infinite cardinality (when \T\ is uncountable, A
can be less than \T\). We say that T has the X-weak tree property if there are
{<pn(x; y n ) | n < u} C L(T) and {a^ | ry G UJ> A} such that the set
{</?n(x; a^n) | n < a;} is consistent for all 77 G ^A, and for all 77 G u>A and all
infinite 5 C A the set {^(77)4-i(x; a ^ a ) | « G 5} is inconsistent.

(2) Let p be a type. We say that p has the X-weak tree property over A if there
are {</?n(x;yn) G A | n < u} C L(T) and {a^ | 77 G W>A} such that the set
pU{(^n(x; a^n) I n < u} is consistent for all 77 G WA, and for all 77 G W>A and all
infinite 5 C A the set p U {^(r/)+i(x; a ^ a ) | a G 5} is inconsistent.

Proposition 2.15. (1) Let X be an infinite cardinality. The following are equivalent

(1) T has the X-weak tree property,
(2) T has the fi-weak tree property for every /i > HQ and
(3) T has the fi-weak tree property for some fi > No-

(2) Let A be an infinite cardinality. The following are equivalent

(1) p has the X-weak tree property over A,
(2) p has the fi-weak tree property over A for every /i > Ho and
(3) p has the fi-weak tree property over A for some \i > Ho-

Proof Use the Compactness Theorem. H

Proposition 2.16. (1) IfT has the fi-weak tree property for some fi > No then T
is not superstable.

(2) Ifp has the fi-weak tree property over Afar some p, > Ho then p is not
A-superstable.
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Proof. For every A there exists /LA > A of cofinality No- By Zermelo-Konig's the-
orem /zHo > //. Use the jz-weak tree property (over A) to construct a set A of
cardinality /x such that \S(A)\ = /z*° > /i ( |5P IA(-A)| = M*° > A*). H

The Uey-rank can be used to characterize superstability and local superstability,
under the assumption of stability. To show that, we need the tree-characterization
and normalization lemmas for Deg-vank. In order to state the tree-characterization
lemma, we need to introduce the appropriate kind of trees.

Definition 2.17. h is (A, a)-functionfor x iff h : ds(a) -> A x a;, where

ds(a) := {rj G w > a : W < l[ri) - 1 {r,[(\ > *?[*+ 1])}

and

For U C c?5(a) define

r^(x;a),fc):=
{3x[0(x; a) A / \ [^(x; y^/ ) ] : 17 G 17 U

0<£<^(r;)

{ i 3 x [ / \ ^ ( x ; y ^ i ) A 0 ( x ; a ) ] :rj£U,wC^ \w\ =

The following is an important technical property of the previous trees:

Proposition 2.18. Leta, /x, 0(x;a), A and h be as in the previous definition.

r^ ( a ) (0 (x ; a), h) is consistent <=> r f ( a )(0(x; a),h) is consistent VA > HO.

Proof. Use the Compactness Theorem. H

Lemma 2.19 (Tree characterization lemma for Deg). Let 0(x; a) be given and let
cf jjb > \a\ + |T|. The following are equivalent:

(1) £es[0(x;a),A,/z+]>a;
(2) There exists a (A, a)-function h in x swc/z that Tp'ftfc a), /i) w consis-

tent.

Proof (2) =* (1): Let { b ^ : t; G ds(a),v G ^ / i } N r ^ ( a ) ( ^ ( x ; a ) , h). For
r; G d5(a) U {()} and v G e^fi define

JV, = {^(x; a)} U { ^ ( x ; h^ut) : 0 < I < l[r,)}.

Claim 2.20. For all 77 G ds(a), 1/ G '(7/)/z> Deg\pVit/, A, /i+] > 77̂ (77) - 1].

Proof By induction on 7 < 77̂ (77) - 1 ] show Deg\p^v, A, /x+] > 7. When 7 = 0,
De9\Pwi A, //+] > 0 since p^v is consistent by the first part of the tree. The case
when 7 is limit trivially follows from the induction hypothesis.
If 7 + 1 < 77̂ (77) - 1], then T/7 G ds(a). So by the induction hypothesis, for
alH < /i we have that Deglp^yi, A,/z+] > 7. Furthermore, by the second
part of the tree, we have that {^7(x;b^7 > l /^) : i < /x} is n^7-contradictory
over 0(x; a); in particular, the set is n^-contradictory overp^^. Additionally, for
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every i < jx, Deg\p^v U ^ 7 ( x ; V ^ ) , A, /x+] = Deg^^y^ A, /x+] > 7. By
the definition of Deg we have Deg\p^v, A, /x+] > 7 + 1. H

This is enough to conclude Dep[0(x; a), A, /x+] > a. When a is a limit or-
dinal, the claim shows that for all /3 < a, i < /x, Deg\p^)^, A,/x+] > /3.
Since p^),^) I" 0(x; a), we have that Deg[9(x\ a), A, /x+] > /? for every p < a.
Thus Deg[0(x] a), A, /x+] > a. When a = /3 + 1, from the claim we get that
for every i < /x, £ ) e ^ [ p ^ ^ , A,/x+] > /3. ^From the second part of the tree,
we get that { ^ ^ ( x ; b ^ ^ ) : i < /x} is n^-contradictory over 0(x;a), so

(1) => (2): By induction on a, we show that for all 0(x; a)
£>ep[0(x; a), A, /x+] > a implies that there exists a (A, a)-function h such that
r£ s ( a ) (0(x; a), h) is consistent.

The case when a = 0 is trivial.
For a limit, by induction hypothesis we have that for every (3 < a there is a

(A,/3)-function hp such that r£ s ( / 3 ) (0( x ; a )>M i s consistent. Define a (A,a) -
function h by h(rj) := /i^foj+i^), for 77 G d5(a). Now if for every /3 < a,
{b^i,} N T/x5 (0(x; a), /1/3), it is easy to check that the assignment

b ^ := b * 1 for ry G d5(a) and v G £(r?)/x realizes r£ s ( a )(0(x; a), h).
Now suppose that De^[0(x; a), A, /x+] > a — (3 + 1. There are

^(xjy) G A, n < a; and {a; : i < //} such that {-0(x;ai) : i < ji} is n-
contradictory over 0(x; a) and Vi < /x ̂ ?[0(x; a) A -0(x; a^), A, /x+] > f3. By the
induction hypothesis there are (A, f3)-functions h* and hi such that T^' (0(x; a), h*)
and TM

5^(0(x; a) A ̂ (x; a^), hi) are consistent for all i < \x.

For every % < [i define a (A, a)-function hl by

h*{ri) if r,eds(0)',

(^,n> if 17 = </3>.

It is enough to show that there is an i < /x such that 1 ,̂ ^(0(x;a), î1) is con-
sistent. Suppose not. For every i < /x there is a finite u(i) C ds(a) such that

T^^(0(x; a) , h{) is inconsistent. Apply the pigeonhole principle to the mapping
i »-> u(i) (from /x to a set of cardinality < \a\ + No) a nd get 5 C /x, and finite
tx C d5(a) such that l^l = /x and for every i e S, u(i) = u. Pick U C ds(a)
such that u C U and f7 is closed under taking initial segments. Now apply the
pigeonhole principle to i i-> /i*J7 (from /x to the set of cardinality < \T\) and get
iS" C 5, and /i such that | 5 ; | = /x and i E S ' implies tiU = h. But we will check
that rjf(0(x; a), h) is consistent, which will be a contradiction to the choice of U:

If, for all i G 5' ,

: n G ds((3), v G eMfi} H T^( /3)(0(x; a) A V(x; a*), fci), and

: 17 G cbO?),!/ G ^ / x } |= W
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then if we put

[ b ; , ifv €ds((3),

we have (after renumerating, we may assume S" = /x) that

Remark 2.21. In the previous theorem, the requirement cf /x > \a\ 4- \T\ is not
needed for (2) =» (1).

Corollary 2.22. Let JJ, > \T\ + Ho be a regular cardinality.
IfDeg[9(x.; a), A, /x+] > /x f/ien there exists a (A, ji)-function h such that

r^s( / i )(0(x; a), h) is consistent.

Proof. Since /x is a limit ordinal we have that jDe<7[0(x; a), A, /x+] > /x implies

(*) Deg[0(x; a), A, /x+] > a for every a < fi.

Since /x is regular and greater than \T\ we have that cf \x > \a\ + \T\.
Thus Lemma 2.19 applied to (*) gives that for every a < JJ, there exists a (A,a)-

function ha such that T^a\9(x] a), ha) is consistent.
For j] G ds(fi), let h{rj) := ^[0]+i(r?).

One can show that F^5 ^(^(x; a), /i) is consistent using a similar argument as in
the proof of the tree characterization lemma. H

The following lemma asserts that when a > \T\+, the tree of formulas given by
h in the Lemma 2.19 depends only on the length of rj.

Lemma 2.23 (Normalization Lemma). Let 0(x; a) be given.
Deg[0(x.; a), A, |T|++] > |T|+ iff there exists {ipk,nk \ 0 < k < cv} such that for

eveiy a the set r,^|+ (0(x; a), h) is consistent for a (A, a)-function h satisfying

Mr] G ds(a) h{n) =

Proof. (=>) : Denote by fi the cardinality |T |+ . Suppose that

Since \i is regular, by the above corollary the tree FAl
5^^(0(x; a), h) is consistent

for some (A, /x)-function h.
By induction on 0 < k < UJ define V>fc and n* < u

and a set {rfk E ds(fi)n k^\i < /x} such that for every i < fx:

(1) riilk-1] >i ,and
(2) for every 1 < / < k we have that h(rfkl) = {ipi^ni) for all i < /x.

For k = 1: Consider the mapping i i-» /i((i)). Since (̂77) = ( ^ ( x ; y), n^), the
range of the above mapping has cardinality < |A| + No < \T\ + Ho and its domain
has cardinality |T|+. So, there are ̂ 1 and rii and a set S C /x of cardinality /x such
that /i((i)) = (V>i(x;y),ni) for all i e S. Since 5 is unbounded in /x, for every
i < /x we can pick j * G S greater than i and define 77J as (jj).
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For k + 1: Suppose that {(V>i>ni),... , ( ^ , n^)} and
{rfk G ds(fjt) PI kn : i < /x} are defined.

Apply the pigeonhole principle to the mapping a M- h(r]^(a)) from /i = |T|+

into A x iv to get S C /x of cardinality \i and (t/>fc+i,nfc+i) such that for every
a € S, h(r)%~(a)) = (V>fc+i,nfc+i). Now for i < \i let r][+l := tjjf (a), where
a > i, a G S.

Let r := {rfk \ k < a;, i < / /}. Clearly for every rjGrwe have that
| {a < /z : 7f (a) € r}\ = /i. Thus pick / : ds(^i) - ) r a bijection that is level-
preserving and if rf(a) G ds(/i) then f(rf(a)) — /(r/)"(j9a) for some /3a > a.

Let h1 :— ho f. By the construction /i' is a (A, /i)-function satisfying that for
every 77 e d5(/x) we have that

Now let a be a given infinite ordinal. By the property of h\

rj»<a>(0(x;a),/i') - {3x[^(x;a) A f\ Mww) I ̂  G ^V}U

/ \ ^(x;y^-i)) K < w,w c \w\ =

Namely the sets r^ ( a ) (0( x ; a), /i') and r^(M)(6>(x; a),h') are equal (we are using
here only the assumption that a is infinite).

(<=) : Use the hypothesis for a := \T\+. Apply (2) =» (1) from Lemma
2.19. H

Corollary 2.24. Let 0(x; a) be given.
(1) Deg[0(x; a), A, |T|++] > |T|+ iffDeg[9(X; a), A, |T|++] = oo.
(2) Pe^(x;a)>A,|T|++] = ooiJ

{ ( ) | } { | 77 G

Vr; G "| T|+ {0(x; a)} U {^fc(

is consistent and for every 0 < k < UJ and for every 7] G k~l\ T|+ we have
that

{^/.(xja^) I i < |T|+} is n^-contradictory over 0(x;a).

/ (1) Suppose that Dep[0(x; a), A, |T|++] > | r | + . By the Normalization
Lemma there is h such that for every a the set r£s^(0(x;a),/i) is consistent.
Using now the Compactness Theorem and

Lemma 2.19 we get that
Deg[0(x] a), A, |T|++] > a for every a, namely Deg[0(x; a), A, |T|++] = 00.

The converse is trivial.
(2) Apply the Normalization Lemma to Deg[0{x] a), A, |T|++] > |T|+ to pro-

duce a (A, |T|+)-function h as there. Let { a j \= r^s(a)(0(x; a), h).
For the converse, use ̂ (77) := (V7^), nt{ri))to s h o w that the set r£^ a ) (0(x; a), h)

is consistent for every infinite a and apply Lemma 2.19. H
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Corollary 2.25. Let 0fca) be given. If Deg[O(x.\a), A, |T|++] > \T\+ then
0(x; a) has the X-weak tree property over Afar every A > No-

Proof. Take A = |T|+. Application of Corollary 2.24 gives us {a,, | TJ £ u>\}.
The formulas ipk obtained from Corollary 2.24 will witness the A-weak tree prop-
erty of 0(x; a) over A. By Proposition 2.15, 0(x; a) has the A-weak tree property
over A for every A > No- H

Corollary 2.26. (1) If Deg[x = x,L, |T|++] > \T\+ then T is not super-
stable.

(2) IfDeg[0(xi] a), A, |T|++] > |T|+ then 0(x; a) w nor A-super stable.

Proof. By the previous corollary and Proposition 2.16. H

3. MAIN THEOREM

Theorem 3.1 (Main Theorem). Let p be a finite type. Suppose that JJ, is regular
satisfying fx > \T\+ and A is a set of formulas which is closed under Boolean
operations.

If
(1) i?[p,A,M+] <ootf/-
(2) p is A-stable and for every {fj,{ \ i < |A| + KQ} cardinalities all less than

I1' riz<|A|+No Âi ^ M holds (e.g. \i = (2'T ' ')+ is such a cardinality),
then

Before proving this theorem, we present another rank function. The rank func-
tion SI was introduced By Hrushovski in the early nineties (in [Hr] unpublished
notes) see [HP1] and [CH]; its definition (see below) is motivated by algebraic di-
mension theory. Here, it will facilitate the proof of the Main Theorem. We find it
surprising that in the quest to settle a combinatorial problem one naturally discov-
ers such a geometric object.

Definition 3.2. 51 [p, A] > 0 if p is consistent.
Sl\p, A] > a, for a limit, if for every 0 < a, 51[p, A] > (3.
Sl[p, A] > a + 1 if for every finite po C p there exists i/jfcy) e A and {bn |
n < UJ} indiscernibles over dom(po) such that

(1) Sl[po U {V (̂x; b n ) } , A] > a for every n < UJ and
(2) Sl\po U {^(x; b n )} U {^(x; b m ) } , A] < a for m ^ n < UJ.

Lemma 3.3. Given sets of formulas p and q and Ai, A2 C {<p(x;y) | (p E
Fml(L(T))}:

(1) (Invariance of SI rank) For f £ Aut(£), 5l[/(p),Ai] = Sl\p,Ai\.
(2) (Monotonicity of 51 rank) If q \- p and Ax C A2, then Sl[q, Ai] <

51[p,A2].
(3) (Finite Character for Si rank) There exists po Cfin p such that SI [p, A] =

5l[po ,A].
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(4) (Ultrametric property for 51 rank) For n < u> and {tpi \ I < n} a set of
formulas, 5l[pU{Vi</<n^}, A] = Max{51[pU{<M, A] I 1 < / < n}.

(5) (Extension property for 51 rank) Given a set A D dom(p), there exists
p' e S^iA) such that 51[p, A] = 5l[p', A].

Proof (1) Immediate.
(2) By induction on a show that 51 [g, Ai] > a => 51 [p, A2] > a.
(3) By definition and (2).
(4) Max{51[pU {t/>/}, A] : 1 < I < n} < 51[pU {Vi<Kn </>/}, A] follows

from (2).
By induction on a show that

51[pU{ V il>i},A] >a=>Max{511pU{^},A] : 1 < I < n} > a.

(5) By the Ultrametric property, (4).
-\

Theorem 3.4. Let A be a set of formulas in x closed under Boolean operations;
and let A be an infinite cardinal. //*^(x;a) is A-stable, then 51[0(x;a), A] <

Proof. By induction on ordinals a, we show for all finite p that

51b, A] > a => Degfa A, A] > a. (*)a

If a = 0, then (*)a holds by the definitions of the ranks. For a a limit ordinal,
(*)a follows from the continuity of the ranks and the induction hypothesis. Let
a — (3 + 1 be such that 51[0(x; a), A] > a and (*)£ is true. By the definition
of the 51 rank, there are {b n \ n < u} indiscernibles over a and a formula
^K*1; y) G A as in the definition. By invariance of the 51 rank and Compactness
Theorem, there is an indiscernible sequence {hi \ i < A} over a, such that

(1) 51[<9(x; a) A t/>(x; b;), A] > (3 for every i < A and
(2) 51[0(x; a) A V(x; b») A V(x; b,-), A] < /? for i + j < A.
Since #(x; a) is A-stable, by Theorem 1.11 no formula in the set A has the order

property over 0(x; a). Therefore, there is a number n < u> witnessing the failure
of the order property for t/>(x; y), i. e. , such that for no {d* \l <n}

0(x;a)A
k<n

holds.
For each i < A, define

Kn

Since 51[0(x; a) A ̂ (x ; b i 4 . n ) , A] > /3 and V>(x; b*-i-n) is logically equivalent
to

Kn
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by the Ultrametric property, Lemma 3.3, we obtain

0 <Sl[0(x;a)AV(x;b i+n),A]
= max{Sl[0(x; a) A V*(x; cj, A],

Sl[0(x; a) A [Vkn V-(x; b,)] A i/,{x; b i + n ) , A]}.

19

Notice that the second member in the above maximum is less then 0. Indeed,
applying the Ultrametric property again, by the choice of V*(X5 y) anc* parameters
hi, we get

;a) A [V/<n^(x;b/)] A V(x;bi+n), A]
= max{Sl[0(x;a) AV>(x;b/) A^(x;bi+ n) , A] | I < n} < 0.

Therefore, Sl[0(x;a) A y0*(x;ci), A] > 0 and by the induction hypothesis, we
have

Vi < A Z?eff[fl(x; a) A t/>*(x; c,), A, A] > 0.

Next, the set {T/>*(X;C;) | i < A} is n-contradictory over 0(x;a). Otherwise,
there are {i(l) \ I < n} such that

\=3x 0(x;a)A / \

e., by the definition of »̂* and Cjm,

f=3x ; a) A / \ ^ ( x ; b/) A / \ V(x; b i ( 0 + n)

In particular, for every k < n,

(x; a) A A

Kn

n - 1

A / \

And by indiscernibility of {b{ \ i < A} over a, we get

n - 1

0(x;a) A / \ -V(x;b/) A / \

which is a contradiction to the choice of n, witnessing the failure of the order
property over 0(x; a) for ip.

Thus, we have found a formula ^*(x;y) G A and a sequence of parameters
{ci \i < A} such that

(1) Deg[6(x; a) A <0*(x; C i ) , A, A] > 0 for alH < A and
(2) the set {V>*(x; Ci) \i < A} is n-contradictory over 0(x; a).

Therefore, Deg[0{^ a) , A, A] > 0 + 1 = a. H

The following fact now trivially follows from Theorems 3.4 and 2.11.
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Corollary 3.5. Let Abe a set of formulas in x closed under Boolean operations;
and let A > Ni. //0(x; a) is A-stable, then

Sl[0(x;a), A] < jDe<;[0(x;a), A, A] < £>[0(x;a), A, A] < J?[0(x;a), A, A].

In order to prove the main theorem, we need to show that i?[0(x; a), A, A] <
51[0(x; a), A] under appropriate assumptions.

Lemma 3.6. Suppose that p, is a regular cardinal satisfying fi > \T\+ and A is a
set of formulas which is closed under Boolean operations. //*i?[0(x; a), A, //+] >
(3 +land

(1) fl[0(x;a),A,/*+]<oo0r
(2) 0(x;a) is A-stable and for every set {fii \ i < |A| + No} of cardinalities

all less than p,, we have IIi<|A|+No W < A* (£•£• M = (2 l T ' ) + w swcft a
cardinality),

then there is a formula </2*(x, y) G A am/ a S£f {c; | i < /x} swc/i

(1) i2[5(x;a) A^*(x,Ci),A,/x+] >p for alii < \i;
(2) iJ[5(x;a) A ̂ *(x,c;) A ̂ *(x , C j ) , A,/x+]

Proof. Since i?[0(x; a), A, /x+] > /3 + 1, there are {pi \ i < /x} explicitly contra-
dictory A-types such that J?[{0(x; a)} U p», A, /i+] > /3 for all i < /i. Using the
hypothesis of the lemma, we get

Claim 3.7. There are a set A, a formula y?(x; y) € A
{pi | 2 < /x} C 5A(^4) -SWC/I thatpiip 7̂  pjcpfor every i ^ j and
jR[{6>(x; a)} U p^, A, ytx4"] > p holds for every i < /JL.

Proof The argument is by cases corresponding to the hypothesis of the lemma.

(1) Suppose that i?[0(x;a), A, fi+] < oo. Using Theorem 1.8 (by replacing
the p^s by extensions) we may assume that il[{0(x; a)} U pi, A, ji+) — (5
for all i < /I. By the finite character there are <# Qfinite Pi s u ch that

; a)} U # , A, /x+] - 0 for all i < /x.

Subdaim 3.8. For every i < fithe set {j < p, \ qi C p^} î  bounded.

Proof Otherwise, there is S C /x of cardinality /i such that there exists io
satisfying ft0 C pj for all jf G 5. Namely by monotonicity we have that
#[{0(x; a)} U qio U pj , A, /*+] = /? for every j e S. This, by the definition
of R9 implies that i?[{0(x; a)} U qi0, A, /x+] = /3 + 1 in contradiction to the
choice of ft. H

Thus by induction on i < /i we can define an increasing sequence
{j(i) < \i | i < p,} such that q^ %. p^ for all £ < i. By renumerating the
set {pj(t) I i < M} w e maY assume that {pi \ i < /i} a l s o satisfies ft g pj
for all i < j . Since A is closed under Boolean operations, the formula
W := y\ ft is a A-formula. Consider the mapping m ^ . Since the domain
is a regular cardinal larger than |T|, there are a formula <p(x; y) E A and a
set S C /z of cardinality /x such that ipi = ip for all i G S. Since ft 2 Pj f° r
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j > i, we have that (pi £ pj, and since the types are complete this entails
that -Mfi G pj.

We have shown that i ^ j implies thatpi<p ¥" Pj<P-
(2) For this part we do not use the local stability assumption; we just use

that Ili<|A|+No Mi < M f° r every {//; < \x \ i < | A| + No}- If there is no set
of /x many types as required then let

AV : ~ \{Pi<P : * < A*} I < A* for every tp G A.

However, the mapping i »->> (picp)^^ is an injection from /x
i n t o YlipeAiPW : * < A*}» which contradicts the above cardinal arithmetic
assumption.

H

Claim 3.9. i?[0(x; a), (p(x; y), 2] < u.

Proof. We have two arguments according to the two assumptions of Theorem 3.1:

(1) By monotonicity, i2[0(x;a),<p, oo] < R[6(x] a), A, //+], and by Theorem
l.I4(l),iJ[e(x;a) jV7,2] < a;.

(2) Since ^(x;a) is A-stable, it is {(/?}-stabIe for every cp G A. By Theo-
rem 1.14 this entails R[9(x; a), <p, 2] < a;.

H

By the above claim, i?[^(x; a),<p(x;y),2] is a natural number. Let no :=

Claim 3.10. If the set $ := {g G 5^ (A) | ^(x;a)Ug is consistent} = S^y
has cardinality K > KQ //?<?/Z //^/^ ev/5^ {n C pi G $ | i < K} such that

(1) N - n 0 + 2,
(2) /<?r every i<K,ifqe§ and r{ C q then q = p ^ and
(3) i ^ j implies pi ^ pj.

We present the proof of Claim 3.10 in the Appendix.
We know that for $ := {q G S<p(A) | i?[<9(x;a) U g, A,/i+] > /3}, | $ | > /i

holds, since every p;</? G $, i < fi. Apply the previous claim to $ and get {r; :
i < fi} as in the claim.

For i < /x define ^*(x;Ci) := t\n ( since y>*(x;y) = An<no+2 ^( x ;yn) it
does not depend on i).

Since r* C p i? for all i < /x, and i2[0 U p;, A, /x+] > /?, we get

fl[«(x; a) A </>*(x; c^), A, //+] > 0.

However, if i ^ j , then

; a) A y>*(x; Ci) A V*(x; c,-), A, /i*] < /3.

Otherwise, by the Extension Property there would be a g G ^ ( ^ l ) extending
</?*(x; Ci) A <p*(x; c^) such that i?[0(x; a) Ug, A, /x+] > 09 which would contradict
the uniqueness clause (2) from the construction of r»'s from Claim 3.10. H
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Theorem 3.11. Suppose that \x is regular cardinal satisfying \i > (2^)+ and A
is a set of formulas which is closed under Boolean operations.

(1)
(2) 0(x; a) is A-stable and for every {/x* j i < | A| + No} cardinalities all less

than /x, rii<|A|+Ko Mi < M

holds, then 51[0(x; a), A] > J2[0(x; a), A, ji+].

/ We show that for all ordinals a,

(*)a #[<9(x; a), A, /i+] > a =» Sl[0(x; a), A] > a.

We proceed by induction on a. For a = 0, (*)a holds by the definitions of
ranks. For a a limit ordinal, (*)a follows from the continuity of the ranks and the
induction hypothesis. Suppose i?[0(x; a), A, fj] > a — (3 + 1 and that (*)/3 holds.
Then by Lemma 3.6 we have a formula <£>*(x; y) G A and a set {c^, i < /x} such
that

(1) fl[0(x;a) A<p*(x;Ci),A,/x+] > P for alH </x;
(2) fl[0(x; a) A V*(x; a) A v*(x, c,), A, /x+] < /3 for i ^ j < /i.

By (*)/3 this gives us 51[^(x; a) A <£>*(x; c^), A] > (3. Consider the mapping
taking i •-» tp(ci, a, £). By our choice of fi and the pigeon-hole principle, there
exists / C /x of cardinality CJ such that {c^ | i £ 1} are indiscernible over a. By
Corollary 3.5 and 2 from above, weget51[#(x;a) A</?*(x;Ci)A{</?*(x;cj)}, A] <
/3fori ^ j E I. By definition of 51 rank, we have Sl[0(x; a), A] > a, completing
the induction. H

Corollary 3.12. Suppose that /J, is regular satisfying JJ, > (2lTl)+, p is a finite type,
and A is a set of formulas which is closed under Boolean operations.

if
(1) R[p,A,fi+}<cx>or
(2) p is A-stable and for every {/Xj : i < | A| + Ho} cardinalities all less than

V- rii<|A|+Ko Mi < M
holds, then

Slfcp, A] = Dep[p, A,/x+] - D[p, A, p+] - U|p, A, M
+ ] -

Proof Follows from Theorems 2.11, 3.4, and 3.11. H

Now, in particular, we obtain Theorem 0.1 which was announced in the Abstract.

4. CHARACTERIZATION OF LOCAL SUPERSTABILITY

Proposition 4.1. For every type p and set of formulas A there exists a cardinal-
ity AAJ> such that for every \x > A^,p we have that R\p, A,/i] = R\p, A,oo].
Moreover, there exists a cardinality AJR(T) such that

R\p, A, fi] = ii[p, A, oo] /or a// jx > A H ( T ) , for every p and every A.
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Similarly for the D-rank and Deg-rank, there exist \D{T) and \Deg(T) such that

D\p, A, /i] = D\p, A, oo] for all /x > AjD(T) and
Deg\p, A, /x] = Deg\p, A, oo] for all /x > XDeg{T).

Proof Since /x > A implies that R\p, A, fj] < R\p, A, A], one can show that there
exists A = AA,P such that

R\p, A, /J] = R\p, A, oo] for every /i > AA,P.

To obtain XR(T), use finite character and invariance properties together with the
fact that \D(T)\ < 2lTl

The arguments for D and Deg-ranks are analogous. H

An interesting (and difficult) problem is finding the least XR(T) and XDeg(T) as
in the above Proposition. In the next section, we will establish in particular that an
upper bound on XR(T) turns out to be |T | + + . This is much harder to prove than
just the existence of XR(T).

Theorem 4.2. Let p be a finite type and let A be a set of formulas closed under
Boolean operations. The following conditions are equivalent:

(1) pis A-superstable,
(2) p does not have the X-weak tree property over A for some X > Ko,
(3) pis A-stable andDeg\p, A,\T\++] < |T|+,
(4) p is A-stable and Deg\p, A, oo] < |T|+,
(5) fl[p,A,oo]<|T| +
(6) R[p, A,oo] < oo,
(7) p is A-stable and Deg[p, A, oo] < oo.

Proof (1) => (2) By Proposition 2.16, if A has the A-weak tree property over p
for some A > HQ, then p is not A-superstable.

(2) => (3) If p is not A-stable, then of course p has the A-weak tree property
over A for all infinite A. The fact Dcg\p, A, \T\++] < \T\+ follows from Corol-
lary 2.25.

(3) => (4) Follows from monotonicity of the Deg-mnk.
(4) =» (5) Suppose Deg\p, A,oo] < |T|+. Let XR(T) and XDeg(T) be as in

Proposition 4.1; let A := max{A#(T), XDeg(T)} and let \i := (2A)+.
By the choice of /x, we have Deg\p, A, /i+] = Deg\p, A, oo] < |T|+ . In addi-

tion, fj, satisfies cardinal-arithmetic assumptions of the second clause of Corol-
lary 3.12 and we are assuming that p is A-stable. Therefore according to the
Corollary 3.12, R\p, A,/z+] = Deg\p, A,/i+] < |T|+. By the choice of/x, we
get R\p, A, oo] = R\p, A, |i+] < |T|+.

(5) => (6) Immediate.
(6) =̂  (1) Let a := R\p, A,oo]. By Proposition 4.1 there exist A such that

a := i2[p, A,/x] for every /x > A. We will show that p is A-stable in every
/ x > | A | + A + | a | . Suppose for the sake of contradiction that this is not the case.
Then by instability in /x there exists a set A of cardinality /x such that the cardinality
of the set of (p, A)-types over A is greater than /x. Let {pi \ i < /x+} C SA(A) be
an enumeration of this set.
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By the finite character of R for every i there is a finite qi C p{ such that R\p U
gi, A, /i] = R\p U pi, A, jx]. Consider the mapping i K-> <&. The domain is //+,
which is greater than the cardinality of the range, which is

|{pj(x;aj) : I < k < a;, a/ € A,y>i(x;yj) G A} | = /z.

There exists S C /x+ of cardinality jx+ and there is a finite (p, A)-type q* (with
parameters from A) such that for every i e S we have that qt = q*. To summarize,
we have that for every i e S,

Thus for every K < n there are {rj \ j < n} C {p^ | i G 5} which are distinct pair-
wise contradictory complete (p, A)-types extending q* with jRfpUg* Ur^, A, fi] =
a* for every j < \x. This by the definition of R implies that R\pUq*, A, /x] > a*+1
which is a contradiction.

Thus the statements (l)-(6) are proven to be equivalent. To conclude the proof,
we show two implications:

(4) =» (7) Trivial.
(7) => (6) Shown analogously to the implication (4) => (5).

H

Replacing p by x = x and A by L, we get

Corollary 4.3. The following conditions are equivalent:

(1) T is superstable,
(2) T does not have the X-weak tree property for some A > Ho,
(3) T is stable and Deg[* = x, L, |T|++] < |T|+ ,
(4) T w 5mW^ and Deg[x = x, L, oo] < |T|+ ,
(5) i?[x = x ,L ,oo]< |T |+ ,
(6) JR[X = x, L, oo] < oo,
(7) T z*5 stable and Deg[x = x, L, oo] < oo.

Remark 4.4. Even more is true in Theorem 4.2 and Corollary 4.3: we can add
conditions R\p,A, (2lTl)++] < |T|+ and i?[x = x,L, (2lTl)++] < |T|+, respec-
tively; see Proposition 5.4.

5. BOUNDS ON RANKS

Proposition 5.1. For any set of formulas A and cardinal A,
(1) ifDeg[x = x, A, A] < oo, then Deg[* = x, A, A] < (2lTl)+;
(2) i/fl[x = x, A, A] < oo, then #[x = x, A, A] < (2lTl)+.

Proof Use Theorems 1.8 and 2.9, finite character and the invariance together with
the fact that \D{T)\ < 2'TL H

In this section we will show several improvements of the above proposition.

Proposition 5.2. Let p be a set of formulas. For every A > | T | + +

Deg\p, A, A] = Deg\p, A, oo].
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Proof. By finite character, we may assume that p is a finite type. By monotonicity
of Deg\p, A, •] and Proposition 4.1, it suffices to show that for all /z > A

Deg\p, A, A] > a = > Deg\p, A, /x+] > a for every a.

Suppose Deg\p, A, A] > a. Since A > |T|+ , by monotonicity

Deg\p,A,\T\++]>a.

There are two possibilities: a < |T|+ or a > \T\+.

In the first case we use the Tree Characterization Lemma to obtain a (A,a)-
function h such that r,^|+ (0,/i) is consistent, where 0 = /\p. Using Proposi-
tion 2.18 we get that also lV'a '(p, h) is consistent and the Tree Characterization
Lemma gives us that Deg\p, A, /i+] > a.

In the second case we use the Normalization Lemma to get that for every a there
exists an (A, a)-function h such that

p^\e, h) is consistent and h(rj) = (ipe{v),ne{ri)).

Since h does not depend on a using the compactness theorem and the consistency
of r,^|+ (0, h) we can show that

F + (0, h) is consistent for every a.

Thus by the Tree Characterization Lemma we have Z)[p, A, ^+] > a. H

Theorem 5.3. (I) If A is a set of formulas closed under Boolean operations
and
R[p, A, oo] < oo, then R[p, A, oo] < |T|+ .

(2) IfDeg[p, A,oo] < oo, r/zer/i Dep[p, A,oo] < |T|+ .

Proof (1) By finite character, there is a finite po C p such that i?[po> A, oo] < oo.
Apply Theorem 4.2 to eet i?[po, A, oo] < |T| + . By monotonicity. R\p. A. oo] <

(2) Suppose Deg[p, A, oo] < oo, but Deg\p, A, oo] > |T |+ . By monotonicity,
we get Deg\p, A, |T|+ +] > |T|+ . By Corollary 2.24, we get Deg\p, A, |T|++] =
oo and from Proposition 5.2 we conclude Deg\p, A, oo] = oo, a contradiction to
our hypothesis. H

Proposition 5.4. Let p be a type and let A be a set of formulas closed under
Boolean operations. For every A > l l

Proof By monotonicity, R\p, A, A] > R\p, A, oo]. If R\p, A, oo] = oo, we have
nothing to prove. Otherwise, by Theorem 4.2 we get that p is A-superstable; in
particular, p is A-stable and we are in the conditions of Corollary 3.12, clause (2).
Taking into account Proposition 5.2, by the choice of A we get

R\py A, A] = Deg\p, A, A] = Deg\p, A, oo] = R\p, A, oo].

H
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Remark 5.5. This proposition enables us to prove Theorem 0.2 from Abstract,
because when A is finite, the claim follows from Theorem 1.14 if R\p, A, A] > u,
and from Lemma II.2.9 in [Sha] (using compactness) if R\p, A, A] < a;.

Thus we may assume A is infinite, |A| = |T|, and by Corollary II.1.8 in [Sha]
without loss of generality A is closed under Boolean operations, so we are able to
apply Proposition 5.4.

Our goal now is to obtain the equality of R and Deg-mnks under weaker as-
sumptions than those of Corollary 3.12. Namely, we prove our Main Theorem 3.1:

Proof. Denote by 0(x; a) the formula /\p. By Theorem 2.11 it is enough to show
that for every a

(*)a flfcp, A, /z+] > a => Deg\p, A, M
+] > a.

We show that it suffices to prove (*)a just for a < |T|+:

Claim 5.6. Suppose that (*)a holds for every a < \T\+.
IfR\p, A, AZ+] > |T|+ then Deg\p, A, /x+] = oo

Proof Since R\p, A, /x+] > \T\+ we have by the definition of R that
R[p, A, /i+] > a for every a < |T | + . By (*)a and the definition of Deg this gives
Deg\p, A, /x+] > |T | + . By an application of Corollary 2.24(1) we are done. H

If a — 0, then (*)a is true by the definitions of the ranks. In the case when a is
limit, use the definition of R, the inductive hypothesis and the definition of Deg.

For a = (3 + 1, we have i?[p, A, jX^] > /3 + 1 and we are in the conditions of
Lemma 3.6. Thus, we get a formula 99*(x, y) G A and a set
{ci I i < /x} such that

(1) fl[p U {</?*(x, C i )} , A, /x+] > /3 for all i < /x;
(2) i ? [pU{^*(x , c i )A(^*(x , c J )} ,A ) M

+ ]< i 0fo r2^ j< /x .

From the conditions of the theorem it follows that the 0(x; a) is A-stable. By
local stability of #(x;a), as in Theorem 3.4 we conclude that there is ni < CJ
witnessing the failure of the order property for </?* (x; y), i. e., for no {d/ : I < n\}

3x 0(x; a) A
Kni

holds.
For every i = ( t [0] , . . . , «[T»I]> € [/ i]n i + 1 define:

Using the Ultrametric property of the i?-rank, by the choice of <p*(x; y) we get
i?[0(x; a) A ̂ (x; c*),A, /i+] > /3 for every 1 e [/x]ni+1. (The argument is similar
to that of Theorem 3.4.)

Applying the induction hypothesis to 0(x; a) A -0(x; c*), we get

Vt e [/i]ni+1 Deg[0fr a) A ̂ (x; c1), A,n+) > (3.
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By the Tree Characterization Lemma for Deg, for every % there is a (A, /3)-function
hi such that r£ s^(0(x; a) A V>(x; c*), /i») is consistent.

Also, since i?[0(x; a), A, /x+j > /3, by the induction hypothesis,
Deg[0(*\ a), A, /x+] > /3. So there is a (A, /?)-function h* such that
r^s(/3)(6>(x; a), K) is consistent.

Now for every i define a (A, a)-function h%:

for r/ G
if T] eds{(3);
if r; = (/3)V;
if 77 = </3>.

It is enough to show that there is an % e [/i]ni+1 such that r^^a^(0(x;a)5/i')
is consistent; or using compactness, it is enough to show T^ '(0{x.; a), hl) is
consistent.

Suppose not; then for each i there is a finite u(i) C ds(a) such that
r^r)(0(x;a), V) is inconsistent. Define, forz G [M]ni+1>

Now apply the Combinatorial Lemma from the Appendix B to the function F,
|dom(F)| = JJ, (regular > |T|+), |rge(F)| < \T\ (since |a| < |T|), and get
S < \i and an increasing sequence {'y(k) < 6 : k < u} such that for every
IQ < " ' < Ini < V,

Claim 5.7.
over #(x; a).

u} is m-contradictoiy

q/i By Theorem I. 2. 4. in [Sha) we may assume that {c7(/j | / < a;} is a A*-
ni-indiscernible sequence over a, where
A* := {V>n(yo,... ,ym;z) | n < n i } a n d

k<m

If {^(x; d/) | / < a;} is not n\-contradictory over 0(x; a), then there are
{l(k) | k < n i} such that

0(x;a)A A
k<ni

i. e., using the definition of ip and dt(k\,

/ \ -.y>*(x; / \ ^*(x;
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In particular, for every n < ni ,

m-i

0(x;a)A f\ ^*(x;c7( fc ))A / \ ^*(x;c7(ni

fc=n

Now by the A*-ni-indiscernibility of {c7(/) \l < UJ} over a, we get

|= 0(x;a)A / \ ^*(x ;c 7 ( f c ) )A / \ <^*(x;<
k<Cn /C=TI

which is a contradiction to the choice of n i , witnessing the failure of the order
property over 0(x; a) for </A H

But then, for

(u,h) := J P ( 7 ( Z 0 ) , . . . , 7 ( ' n i - i ) , * ) = ^(7(^0), • • • , 7 ( ^ 1 - 1 ) , 7 ( n i + 0)>

for every Z < a;, we may assume that u is closed under taking initial segments and
F^o(#(x; a) , h) is consistent:

i f {b*,i/ : ^ ^ d^(/3), i/ G ^(r?)K0} |= r^5
o

(/3)(6>(x; a) , /i*), and

then by putting %{ := ( 7 ( 0 ) , . . . ,7(711 - 1), 7(711 + Z)), d/ := cIz, Z < a;, and

for 77 G u, 1/ G ^ N o > w e n a v e

choice of u and we are done.
f= r^o(6(x;a), ti). This contradicts the

H

6. 52-RANK

The following is a generalization of the 51 rank.

Definition 6.1. Let p be a set of formulas in x.
52[p, A] > 0 if p is consistent.
52[p, A] > a, for a limit, if for every 0 < a, S2[p, A] > a.
52[p, A] > a + 1 if for every finite po C p there exists t/>(x, y) G A, Z < a; and
{b n I n < u} indiscernibles over dom(po) such that

(1) S2[po U {t/>(x, b n ) } , A] > a for every n < u and
(2) 52[p0 U {Aneu ^(x , b n ) } , A] < a whenever u G 'a;.

Remark 6.2. Given A C {y?(x;y) | <p G FmZ(L(T))}, closed under Boolean
operations, and a set of formulas p in x such that p is A-stable, one can show that

[ ] [
The inequality 51 [p, A] < 52[p, A] is trivial and holds without any restrictions

on A and p.
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One then can show that £2[p, A] < Deg\p, A, A], where A is infinite cardinal,
using a similar argument to that which was used to prove Theorem 3.4.

APPENDIX A. PROOF OF CLAIM 3.10

Proof. (Of the Claim 3.10) Define r^pi by induction on i < K. Suppose we have
defined {rj,pj : j < i}. Now define an equivalence relation Ei'.

for a , bG *(y)A, a£;b & (Vj < i)[y>(x;a) G pj <=> <^(x;b) G pj].

Subclaim A.I. | ^ y ) A / ^ | < K.

Proof. For every j < i, let Cj |= pj. Suppose for the sake of contradiction that
{sik/Ei I k < K} are distinct equivalence classes.
Let qk := tp^fak/ ^j<i cj)- Let k ^ I < K be given. Then a^/i^ ^ SLi/Ei. By
the definition of Ei, there is a j < i such that -«(</?(x; a^) G p^ <-> ̂ (x; a/) G p^).
Without loss of generality we may assume that <p(x; a/.) G p_y and -«y>(x; a/) G p^.
Since ĉ  (= p -̂, we have that </?(cy;y) G g/c and -K/^(cJ;y) G g/. Thus for k ^ I <
K, qk ^ qi-

Since i < K, we get that | Uj<{ Cj| < K. But ̂ ^(Uj^c^)! > K. By Lemma 1.10
this contradicts our stability assumption. H

Subclaim A.2. \{q G $ : a ^ b => [y?(x; a ) G g ^ > y?(x; b) G <?]}| < «.

Proof Let

5 : = {? G $ | Va, b G ^ ( y ) A ( a ^ b => (^ (x; a ) G ^ ^ ( x ; b ) G (?)}.

For the sake of contradiction, suppose that | 5 | = K. Let A \~ e^A/Ei. By
subclaim A.I, we have that |.A| < K,; but, we have an obvious injection S ->

) , so 15^(A)| > K, which is a contradiction to the stability assumption. H

By induction on / < no define pl G C5, a [ f l and t(l) G {0,1} such that:

; a) U r\, <p, 2] < n0 - I or 3!^ G *, q D r\.

For I — 0, by Subclaims A.I and A.2 there exists p° and aj, SL\ such that aQ
and y?(x; 4 ) ^ P°, ̂ ^(x; a\) G p°. Put t(0) := 1.

Suppose we have defined everything for /. If 3!<? G $, q 2 rj, let aj+ 1 = a},
t(l + 1) = *(/) andp /+1 = g. If | { 9 G $ : r\ C g}| > 1, then, since * C S^A),
for some a}+1 G * ^ A there are qo,qi e 3>, r\ U {^Cxjaj^j)*)} C qt. ^From
definition of J?, there is t(l + 1) G {0,1} such that

i?[{0(x; a)} U r\ U {^(x; aj + 1 )^ + 1 ) } , ^, 2] < fl[{fl(x; a)} U rj, V> 2] < n0 - I

andputp/+1 :=g t( /+i).
Now, it is clear from the construction that r^0+1 has a unique extension in *

and |r^0+1| < n0 + 2. Put r» := r£0+1, adding eventually some formulas from the
unique extension of rx

nQ+1 to satisfy the requirement |r*| = no + 2. H



30 R. GROSSBERG, A. KOLESNIKOV, I. TOMASIC, AND M. VANDIEREN

APPENDIX B. A COMBINATORIAL THEOREM

Claim B.I (A combinatorial lemma). Let K > No and suppose that /i > nis reg-
ular. For every n < u> and every F : [/x]n+1 —> K there exists a limit ordinal
S < /x such that for every £ < /x satisfying £ > 6 there exists an increasing
{j{k) | k < a;} C S such that for any t$ < - - < ln < u we have that

Proof Let x > No be a regular cardinal large enough such that {/x, F} C H(x)-
Let

Where \x stands for a unary predicate interpreted by the set of ordinals less than /i,
F is interpreted by the function F and a is an individual constant interpreted by
the corresponding ordinal.

By the Downward Lowenheim-Skolem-Tarski theorem pick an increasing and
continuous elementary chain {55; -< 23 | i < /x} satisfying

(1) ||93;||</iand
(2) i C ji^ for all i < \x.

Since we have that \i — Ui<M M^N there is a closed unbounded subset C of the set

{
Pick 5 e C. We show that this 6 is as required in the claim. Since JJL is a limit

ordinal we have that

03 |= \/x[x G fj, -> x + 1 G ft].

Since 23^ -< 5S we have

23,5 |= Vx[o; G /i -> x- + 1 G /i].

Since 5 G C we get that

G 5 -> x + 1 G 6].

Thus 5 is limit.
The definition of {i(fc) | k < a;} is by induction on k:

Fix any 7(0) < 7(1) < • • • < 7(n - 1) < S. Suppose {<y(j) \ j < k} are
defined (for k > n - 1). Let ip(x) be the following formula (with parameters

4 - 1 < fc,a < K,

Since 55 |= V(£)» w e h a v e t h a t ® N 3x^(x). Since all the parameters of ip are in
53(5, 93* -< 55 and ̂  > 7(fc) there exists 7(fc + 1) < 5 such that j(k + 1) > 7(fc)

H
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