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1. introduction

Let E be an oriented real euclidean two-dimensional

vector space,and let K be a convex disk (compact convex set

with non-empty interior) in E, with 0 in its interior. The

guage function of K,

(1) ||xi|R = minf >• : xeAK}, xr: E

determines a (not necessarily symmetric) "Minkowski metric".

For each rectifiable curve in E (rectifiability in terms of

the euclidean metric of E) it is then possible to define, in the

usual way, its K~length determined by this "metric".

in [2], Goiab discussed, apparently for the first time, the

self-circumferences of K, i.e., the K-lengths of the two simple

closed curves (one the opposite of the other) that describe the

boundary of K. If 3 K is this boundary, let ^ K and d K

be the simple closed convex (hence rectifiable) curves whose

image is bK; for definiteness, 5 K leaves K on its left

according to the given orientation of E. We let a (K) , a (K)

be the K-length of d K, 5 K, respectively; these are the self-



circumferences of K (with respect to 0). Further work on these

parameters appears in [3] and [1], and in papers there cited.

Let K! be the convex disk polar to K with respect to

the inner product of E. The purpose of this paper is to show

that cr+(K) = a (K
! ) , a (K) = o^(K< ) .

If instead of a single euclidean plane we had considered a

pair of oriented two-dimensional vector spaces in duality, we

could have stated our result without involving any Euclidean

structure. We shall not deprive the reader of the pleasure of

carrying out this reformulation in the general case. For disks

symmetric with respect to 0 such a reformulation is, however,

related to some geometric problems that will be mentioned at

the end of the paper.

2. The Main Result

We denote the inner product of u,veE with respect to the

euclidean structure of E by u-v. An oriented line I in E

is an oriented line of support of the convex disk K if it

contains a point of K and if K lies entirely in the left

closed half-plane determined by I and the orientation of E.

If l,V are oriented lines in E, the ordered pair {19V )

forms <a right angle if the (euclidean) unit vector of V is

obtained from the unit vector of I by a rotation of -TJT



according to the orientation of E.

It follows at once from (1) and from basic facts about con-

vex sets that

(2) ||x|| - maxf<p(x) : cp a linear functional on E, <p(K) c (-00,1]}

= max{x-y : yeKf } , xeE.

1- Theorem. Let K bje a. convex disk in the oriented real

euclidean two-dimensional vector space E, with 0 _in 1

interior. Let K! be the polar disk. Then a (K) = a (K1 ) ,

< M K ) = CT+(K» ).

Proof. 1. It is clearly sufficient to prove the first

equality: the second follows on reversing the orientation of E.

On account of the existence of an obvious approximation procedure,

it is sufficient to prove this first equality for polygonal K;

indeed, more specifically, for K satisfying

(3) K JLS ci polygonal disk, and the parallel through 0 bo each

side of K contains no vertex of K.

The polar disk of a polygonal disk is polygonal (with the same

number of sides)7 Condition (3) is easily seen to be equivalent

to

(4) K _i_s a. polygonal disk, and no side of K is perpendicular

to a side of the polygonal disk K! .



2. We now assume that K satisfies (4) and let n be

the number of its sides. We consider an ordered pair (*>,V)

of oriented lines in E forming a right angle, and such that

I is an oriented line of support of K and V an oriented

line of support of K! . We let this pair rotate counterclockwise;

as it does so, the pair of points where t supports K and V

supports K! describes a cyclic sequence ((u.,v.)), jcZ~ ,

such that

(5) or v. ^ v. . , but not both, for each jeZ9 •

This property is a consequence of (4). The fact that the sequence

has 2n terms follows from (5) and from the fact that each one

of the n vertices of K and the n vertices of Kf appears

in the sequence, each term introducing one of them for the first

time.

The sides of K, taken as oriented segments leaving K on

the left, are exactly the oriented segments u. u. for those

jeZ2 for which u. / u. . By the construction of the sequence

and by (2) we have

llu-~u- i IL - (u.-u. ,)*v. = u.«v. - u. *v. . jeZo , u. ̂ u. ,3 D-l K j j-r j jj 3-1 ]-l J 2n' 3 ;j-

where (5) was used for the last equality. Thus

(6) a+(K) = I ( u . . v . - u . ^ - v . ^ : j G Z 2 n , u. jt u . ^ } .



Using (5) to reshuffle (6), we find

(7) CF (K) =
j r Z2n

where

(8) Pj =

1 if u. ^ u. . and v. ^ v. n
3 3-1 3 3+1

-1 if v. ^ v. n and u. ^ u. _ j^Z_
3 3-1 3 3+1 2n

s 0 otherwise.

3. in order to compute a (K! ) , we apply the preceding line

of argument to K! instead of K, with the orientation of E

reversed. Since K?T = K, KT satisfies the analogue of (4) ;

the analogue of the construction at the beginning of Part 2 of

the proof yields the same lines with the opposite orientation,

paired in the opposite order, and rotating "backwards", i.e.,

in the new counterclockwise sense. The pair of points at which

K1 , K are supported then describes the sequence ((v .,u .)),

J€ZO , and we conclude that2n

(9) a (KM =

where



(10) p\ =

i f v j * v
j + l a n d

if u . * u j + 1 and_ . * _ j + 1 _ .
2n

0 otherwise.

Inspection of (8) and (10) shows that p?. = p ., jcZ^ 7
3 "3 2n

hence comparison of (7) and (9) yields a (K) = a (K) , as desired.

3. Normed Spaces and the Girth of Spheres

If X is a real normed space, we let £(X) denote its unit

ball. If dim X = 2, we denote by L(X) one-half the length

(in terms of the norm of X) of the simple closed curve describing

the boundary of the symmetric convex disk £(X) (see [4]). Thus,

if E is any oriented euclidean space coinciding algebraically

with X, we have L(X) = a (2(x)) = v (E(x)). Now the same vector

space, with the polar disk (£(X))f as unit ball, is congruent

to X , the dual space of X. We obtain the following consequence

of Theorem 1.

2. Corollary. If X is a^ real normed space with dim X = 2,

and X JLS its dual space, then L(X ) = L(X) .

More generally, if x is a normed space with dim X > 2,

one can define m(X) , the infinum of the lengths of rectifiable

curves with antipodal endpoints and lying entirely in the boundary

of 2(X); 2m(X) is the girth of £(x). We refer to [4] for a



detailed discussion of this definition. Corollary 2 then gives

an affirmative answer for dim X = 2 to the following conjecture,

which has been verified in a few isolated additional cases.

3. Conjecture. If X _is ei real normed space with

dim X > 2, and X ^s its dual space, then m(X ) = m(X) .

For the reader acquainted with f4] we remark that if we

replace the parameter m in the conjecture by either M or D,

the statement, while still true for dim X = 2 by Corollary 2,

becomes false for every other dimension.
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