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Abstract
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This paper concerns the Yukawa equation Au = M u

where p. is a real constant. Given a solution u(x,y)

of this equation then there is a conjugate function v(x, y)

satisfying the same equation and related to u(x, y) by a

generalization of the Cauchy-Riemann equations. This gives

rise to interesting analogies with logarithmic potential

theory and with complex function theory. In particular

there are generalizations of holomorphic functions, Taylor

series, Cauchy's formula, and Rouche's theorem. The

resulting formulae contain Bessel functions instead of

the logarithmic functions which appear in the classical

theory. However, as \i -» 0 the formulae revert to the

classical case. A convolution product for generalized

holomorphic functions is shown to produce another gen-

eralized holomorphic function.

* Prepared under Research Grant DA-AROD-31-124-G68O,
Army Research Office, Durham, North Carolina.



1. Introduction.

In the Newtonian potential theory, the potential of a

unit point charge is 1/r where r is the distance to the

point. Then the potential u of any distribution of

charges satisfies the Laplace equation Ai = 0 at points

of free space.

In order to have a nuclear force potential which

decays rapidly at infinity, Yukawa proposed that the

-Urpotential of a point charge be e /r. Here n is a

positive constant and Yukawa assumed that \i~ was of

the order of magnitude of a nuclear radius. It results

that the potential u of a charge distribution satisfies
2

the Yukawa equation Ai = |i u at points of free space.

Thus the Yukawa potentials,like those of Newton are

governed by a second order differential equation which is

invariant under the group of rotations and translations of

space. This very important property would be lost if an

arbitrary function were selected for the potential of a

point charge.

Another important property of Yukawa potentials is

that they approach those of Newton as |i approaches zero.

This property will be manifest in the formulas studied in

this paper.

The function e /r is a member of the Bessel family

of functions. Various other Bessel functions enter into

the analysis of the Yukawa equation. Thus this theory should

be appealing to Besselian scholars. For example in the



Newtonian theory the potential of a line charge is log r

In the Yukawan theory the potential of a line charge is

K (p.r) where K is the modified Bessel function of the
o o

second kind. For small r the function K (|ar) is

asymptotic to log r~ j However, for large r it is asymptotic

to e~^r(ir/2\ir)1/2 .

This paper is primarily concerned with the potentials

of line charges. In other words the potentials u are

functions of only two variables x and y. Many of the

properties of these two-dimensional Yukawan potentials

follow directly from corresponding properties of three-

dimensional Newtonian potentials by appeal to a simple

mapping. For example, an analog of Poisson's integral

formula is derived in this way.

In the Yukawan theory the Cauchy-Riemann equationshave

the analogy u - v = au + j8v, u + v = j8u - av where

2 2 2

a and /3 are real constants such that a + fi = \i .

Then f(x,y) = u(x,y) + iv(x, y) is termed a v-regular

function where V = a + ijS. The v-regular functions are

analogous to holomorphic functions of a complex variable.

In particular the v-regular functions can be expanded in

a series analogous to the Taylor series.

It proves possible to define contour integrals of

V-regular functions. This leads to an integral which is

v-regular. Also for a closed contour there is a direct

analog of the Cauchy integral formula.

The behavior of a v-regular function at a zero point



is essentially the same as that of a holomorphic function at

a zero point. Pursuing this idea shows that the theorem

of Rouche for holomorphic functionsapplies without change

to v-regular functions.

Unfortunately, a product of v-regular functions is not

a v-regular function,so here the analogy with holomorphic

functions breaks down. A similar difficulty was encountered

in the theory of discrete analytic functions (a difference

equation theory). There the difficulty was mitigated by the

introduction of a convolution product [4,5]. This work,

together with the work of H. Lewy [7] suggested a resolution

of the 'product problem1. Thus if f and g are two

v-regular functions, a convolution product f*g is so

devised to again be a v-regular function.

By means of a transformation some of the results in

this paper may be related to the very general theory of

pseudo-analytic functions developed by Bers, Vekua and

others [1]. However the equations treated here are simpler.

It results that the proofs given here are much simpler and

yield formulae in explicit analytic form. By another trans-

formation some of the concepts treated here can be related

to regular quaternion functions[3]. It would be of some

interest to study these comparisons but this will hot be

attempted.

It is worth noticing that Bessel potentials have certain

advantages over Newtonian potentials in functional analysis.

Such questions have been treated with great generality by

Aronszajn and Donoghue [2].



2. A correspondence principle.

Let a function u(x,y) satisfy the Yukawa equation

(i) afu + a?s _ 2
2 2 ~ ^

where \x is a non-negative constant. Then in this paper

we say that u is panharmonic at a_ point (x, y) if its

second derivatives are continuous and satisfy the Yukawa

equation in some neighborhood of the point. The function

u is said to be panharmonic in a_ closed region if u is

continuous in the region and panharmonic at interior points.

A region is regarded as the closure of a domain. If \i = 0

these are the standard definitions for harmonic functions

[6, p. 211].

Panharmonic functions in two variables x and y are

in one to one correspondence with a subclass of harmonic

functions in three variables x,y, and z. Thus given that

u(x,y) is panharmonic, this correspondence is defined by

the mapping

(2) U(x,y,z) = cos |iz u(x,y).

Then clearly

= 0
<3x 3y Sz

so U is a harmonic function. The virtue of this correspon-

dence is that panharmonic functions thereby inherit many

of the well-known properties of harmonic functions. The



following four theorems are consequences of the correspondence

principle.

Theorem 1. J[f u jls_ panharmonic in a_ compact region R

and if for a_ constant M > 0

(4) u(x,y) <̂  M jit. boundary points of R

Then

(5) u(x,y) < M art interior points of R.

Proof. Consider the cylindrical region R of three space

defined as

(6) (x,y) <= R and -v/2[i £ z £ rr/2\x.

On the top and bottom of this cylinder the corresponding

harmonic function U vanishes. On the sides of the cylinder

U <̂  M. Thus by the maximum principle for harmonic functions

it follows that at interior points of the cylinder R

(7) U(x,y,z) < M

unless possibly U is constant. But if U is constant,

then U = 0 because U vanishes on the ends of this cylinder.

Thus (7) is always true. Then Ufx,y,0) = u(x, y) so if

(x,y) is an interior point of R we see that (5) follows

from (7) and the proof is complete.

Theorem 2. jrf u L̂s_ panharmonic at a_ point it can be ex-

panded in a. power series about that point.

Proof. Let the point be (a,b) then the harmonic function

U(x,y,z) can be expanded in a power series in the variables



(x-a),(y-b), and z [6, p. 220]. Putting 2 = 0 gives a

power series for u(x,y).

Theorem 3. Let R be a compact region and let u.,u~,u_,... be— y> £> j

^ sequence of panharmonic functions in R._ I_f the sequence, —.

converges uniformly on the boundary _of R then it

converges uniformly throughout R, and its limit u _is

panharmonic in R.

Proof. For harmonic functions this is Haraack's first

convergence theorem [6, p. 248]. Applying the correspondence

principle to the cylindrical region R shows that it is

true for panharmonic functions.

Theorem 4. Let u-^P), u2(P), u3(P),... be an infinite

sequence of functions, panharmonic in a_ domain T, such

that for every P in T, u(P) < u .,(P), n = 1,2,3,...

Then if the sequence is bounded at â  single point 0 ^f

T, it converges uniformly in any compact region R _in T

to si function which is panharmonic in T.

Proof. For harmonic functions this is Harnack's B&corsd con-

vergence theorem [6, p. 26 3]. Apply the correspondence

principle for a cylindrical domain T with -1 < z < 1

and for a cylindrical region R with -1/2 £ z _£ 1/2.

But cos z > 0 so U (P) <2 U - (P) for every P in T .

n n+i *~

This is seen to complete the proof.

The next theorem gives an analog of Poisson's integral

formula.

Theorem 5. Let u(x,0) be ji continuous function such that

£.9r constants A and B

(8) A s u(x,0) / B
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for all real x. Then for y > 0 ji panharmonic function

u(x,y) JLS defined by the integral formula

-l r°° 2 2
(9) u(x,y) = w yp[(x-x') + y ] u(x',O)dx'

J-oo
where the kernel function p JLS_ defined as

do) P(t) = J°° COS
2^

Z\% , t > o.
o [z +t]

Also

(11) u(x,y) -» u(x,0) as y -» 0+

(12) p(t) ^ 0, and

(13) A £ e^Y u(x,y) £ B .

For y > 0 the inequalities (13) are strict unless u(x,0)

is £ constant.

Proof. Let U(x,0,z) be continuous and uniformly bounded

for all x and z. Then for y > 0 a harmonic function

U(x,y,z) is defined by Poisson's integral formula,

i i a. i 111 v v r i - ymx ,u,z ;QZ ax

\ J-ft) u ^x , y , z ; — - o o o T/O »

-oo -ao [(x-x1) +y +(z-z') ]

(15) U(x,y,z) -> U(x,0,z) as y -» Of.

In particular let us substitute U(x, 0,z) = cos |jz u(x, 0)

in this formula to obtain
U(x,y,z) = ^ | J

-oo -oo

y cos |jtz' u ( x ' , 0 ) d z ' d x '
2 2~~V2"

Make the change of variable z' = z" + z so

cos |az' = cos uz cos |iz" - sin (jz sin uz".



Then integrating with respect to z" i t is only necessary

to retain the part of the integrand which is even with

respect to z".

Thus

n , > TT. r . CCTS uz f00 f00 y cos uz" u'x',O)dz" dx'
(16) U(x,y,z) = 2 * J J •*- ^2 2 , ' 2.3/2

-oo -oo [fx-x') +y +(z") ] '

The integrand is absolutely convergent so we may evaluate

(16) as an iterated integral. Thus by the definition of

p(t) and u(x,y) we see that (16) simply states that

(17) U(x,y,z) = cos |az u(x,y).

Since U(x,y,z) is harmonic it follows from (17) that

tf(x, y) is panharmonic. This proves (9), the correspondent

of Poisson's formula. By taking z = 0 we see that (15)

and (17) prove (11).
2

To prove (12) suppose, on the contrary, that p(y ) < 0

for some value y > 0. Then it follows from (9) that there

is a function u (x, 0) J> 0 and of compact support such

that for some M > 0

(18) -uo(0,yo) ̂  2M.

It follows from the definition '10) that

(19)
2 t 23/2 T

[z +x +y ] ' x +y

This inequality together with the fact that u (x, 0)

is of compact support shows that
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2 2
u fx, y) -> O as x + y -» CD

Thus the panharmonic function -u (x,y) satisfies the

condition -u (x,y) <£ M on the boundary of a large

semicircle with center at the origin and containing the

point (0,y ). Thus by Theorem 1 -u (0,y ) <; M. This

contradicts (18) and thereby proves (12).

Making use of the hypothesis (8) and the fact just

proved that p >̂ 0 we find

,oo

-oo

1 '*<"3° 2 2
(20) u(x,y) £ 7T J y p[ (x-x») + y ]B dx' .

The function on the right is of the form v(y) and is

panharmonic,thus

dy2

Hence

(22) v = cx e-W + c2 e W .

But (19) and (20) show that v is bounded as y -» +oo, hence

c2 = 0. It now follows from (20) that c. = B, so v = B e ~ ^

This proves the right side of inequality (13). Moreover

if u(x,0) is not constant?then (20) is a strict inequality,

so (13) is a strict inequality.

The left side of inequality (13) follows by an analogous

argument, and this completes the proof of Theorem 5. There

are several other theorems which follow from the correspon-

dence principle but these questions will not be pursued.
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3. Modified Bessel functions.

The following result is the analog of the Gauss mean

value theorem.

Theorem 6. Let u(x,y) be panharmonic in the circular

2 2 2
disk (x-x ) + (y-y_) <1 a • Then

i r27r

(1) u(x ,y ) = ~ _ 7—r u(x +a cos 9,y +a s in9)d9o o ^TTI (ua) j o oo v r o

where I (r) is the modified Bessel function.

Proof. The panharmonic equation in polar coordinates is

(2) S^u , 1 5u 1 §\ _ 2
-> 2 + r Sr + 2 ^,2 ~ ^ u*
or r 39

Integrating this equation with respect to 9 gives

(3) d2u , 1 du 2 -
v — j + — -rr = |i u where

dr r a r

— 1 P27r

(4) u(r) = ~- u(x + r cos 9, y + r sin 9)d9

^ Jo °
The general solution of equation (3) is

(5) u = ai (|ir) + bKo(|ir).

Here I is the modified Bessel function of the first kind.

Of course I (x) = J (ix) ando o

(6) I (x) =
°

It is easy to check that letting

(7) K (x) = Io(x)
x xl (x)

gives an independent solution of equation (3). The function
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K (x) is the modified Bessel function of the second kind,
o

It follows from (6) and (7) that

(8) Kc/ X) ̂  l o g x a s x ~* Qf*

But u(r) is continuous at the origin so b = 0 in (5).

Then since u(0) = u (x ,y ) it results that

u(r) = u(xo,yo)l

Putting r = a gives (1) and the proof of Theorem 6 is

complete.

Theorem 7. The kernel function p of_ the Poisson formula

of Theorem 4 J^ given by

(9) p(r2) = - ± K^(nr)

where K is the modified Bessel function of the second
o -~—~~~~~^~ ____—— — ^ _ ^ _ ___ ̂ __

kind. Moreover K J^ a_ positive decreasing function for

r > 0.

Proof. The following formula is a well known integral

expression for the modified Bessel function of the second

kind.

r.CO(10) KQ([ir) = J COS |iZ
2 2,1/2 d Z *

o (r +z )

It is easy to prove this by substitution in the Bessel

equation (3). Differentiating (10) with respect to r gives

= r
2 3 / 2

o (r +z ) '

Comparing the right side with the kernel function p of

Poisson's formula proves (9).
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According to Theorem 4, p ^ 0. This together with (9)

proves the last statement of Theorem 7.

The next result is a sharpened form of the maximum

principle given in Theorem 1.

Theorem 8. Let u(x,y) be panharmonic in â  compact region

R. On the boundary of R suppose u <̂  M for some constant

M > 0. If (x ,y ) is an interior point of R it is

also interior to â  circle C contained in R. Then

Io(Hr)
(lla) U < W ^ M

where a JLS the radius of c and r jLs the distance from

(x ,y ) tcs the center of the circle. It is ja corollary

.of (lla) that

where d J_s_ the distance from (x ,y ) Ĵ o the boundary

.of R.

Proof. By virtue of Theorem 1 we have u ^ M on C. Let

w = MI (|ir)/l (|aa), so w is a panharmonic function of

r. Then the function U = u - w is panharmonic and U << 0

on C. By Theorem 1 this implies that U(x }y ) £ 0. This

proves (lla). Taking (xo>
v ) to be the center of a circle

of radius d proves (lib) because a = d, r = 0, and I (0) = 1.

It is worth noticing that Theorems 5,6 and 8 bring to

light a characteristic property of panharmonic functions.

The inference is that these functions decay exponentially

as a point moves away from the boundary into the interior of

HUNT LIBRARY
CARNEGiE-MELLON UNIVERSITY
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x 1/2

a region because I (x) ~ e / {2irx)

The next theorem gives an analog of Harnack's-inequality

[6, p. 262].

Theorem 9. Let u be panharmonic and non-neqative in the
2 2 2

disk (x-x ) + (y-y ) < a where a > 0.
Then

(12)
alo(iia)

r IQ(nr)dr

Proof. By integrating the mean value relation (1) we obtain

(13)

Here we take 0 < b < a. But

-̂  »b »2TT

2TT J Jo o

/I") = iim u(xo + h,y) - ufxo,yo)

This together with (13) gives

Io(^r)dr = u b cos 9 d8

Thus

|^| o J r Io(^r)dr ̂  ̂  J ud9 = u ( ^
o oo ^ J ^ o Q (Mb) .
o o

Allowing b to approach a in this relation proves the

Harnack type inequality (12).

In the limit as \i -» 0 we see that relation (11)

becomes

(14) Su
(xo^o>

2
a
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This is a Harnack type inequality for harmonic functions.

The modified Bessel function of order n is defined

by the series

4JL /X)tt n + (V2)2 (x/2)
n! (2> [1 + 1-(nfl) + 1- 2- (n+1) (n* 2)

It satisfies the Bessel equation

(16) y" + y'/x = (1 + n2/x2)y.

The corresponding modified Bessel function of the second

kind is defined as

r»O0
(17) K (x) = I (x) f

n n J.

dx
2

x xln (x)

It may be checked that K also satisfies equation (16).

Clearly K has a singularity at the origin.

Theorem 10. lf_ u(r,9) _is panharmonic in the circle

2 2 2
x + y <̂  a then for 0 <[ r < a

(18) u(r,9) = if^ cn Ijn|(^r)e
ine where

Proof. By virtue of the smoothness guaranteed by Theorem 2

it is possible to obtain the convergent Fourier series

(20) u(r,9) = if^ fnfr)e
in0 ,

(21) fn(r) = (2TT)"
1 J u(r,9)e~in° d6.

Letting f' denote differentiation with respect to r we

obtain
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1 7 7-2
f" +r L f -|i f -n r f =n 11 n n

(27f)~
1 J ^[ U " + r"1 u' -^2 u - n2 r~2 u]e" i n 6 d8

But u satisfies equation (2) so the right side becomes

An integration by parts shows that this vanishes. Hence

f satisfies the Bessel equation (16). But since f (r) is

finite as r -» 0 we must have f (r) = c Ii i (i-ir) . This

completes the proof.
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4. Analogs of the Cauchy-Riemann equations.

The replacement of a second order differential equation

by a system of first order equations has been of great im-

portance in mathematics and physics. For example the

Cauchy-Riemann equations replace the Laplace equation,

Maxwell's equations replace the wave equation, and Dirac's

equations replace the Klein-Gordon equation. Yukawa's

theory of nuclear force gave strong impetus to further

studies of first order systems like those of Dirac.

Among other things these studies have led to interesting

algebraic structures [8].

Here we wish to replace the two-dimensional Yukawa

equation by two first order equations. More precisely the

real Yukawa equation is to be replaced by a first order

complex equation. To this end the following operator notation

is convenient:

L = S/Sx + iS/dy- = 3 / 5z* ,

L* = d/dx - i9/dy = d/9z ,

LL* = 92/Sx2 + b2/hy2 = &.

Let v be a complex number termed the polarization vector

and let |v| = \±. Then we say that a function f(x, y) is

v-regular at a point if it has continuous second derivatives

and satisfies the equation

(1) Lf = vf*
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in the neighborhood of the point. The function f is said

to be v-regular in a closed region if f is continuous in

the region and is v-regular at all interior points.

Theorem 11. jEjf f _is v-reqular then f _is panharmonic.

Proof. ££ = L* Lf and

L* Lf = VL* f* = VV* f = H f Q.E.D.

Theorem 12. _if_ u jL§_ panharmonic then

(2) f = vu + (Lu)*

is v-reqular.

Proof.

Lf = VLu + LL*u* = vLu + \l2 u*

= V(LU + V* u*) = vf* . Q.E.D.

If f is v-regular l e t

(3) f = u + iv , v = a + ±/3

where u and v are real functions and a and /3 are

real constants. Then separating the regularity equation (1)

into real and imaginary parts gives:

_ au = — + Sv
9y

(4)
du o ~dv

—- - pu = — - ocv

ay ax
Clearly these are the analogs of the Cauchy-Riemann

equations. Then we may term (u,v) a pair of conjugate

panharmonic functions with polarization (cc,/3) .
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The regularity equations may be written in a third

form which is also significant. Let a complex number j, termed

the current vector, be defined as j = j +ij where
x y

(5) j = au - t"- , j = j3u - !"- .v ' Jx dx ' Jy M 3y

Let a complex number k, termed the conjugate current

vector, be defined as k = k + ikv where

Theorem 13. The function f _is v-regular if and only if

the current j and the conjugate current k satisfy

(7) k = ij .

Geometrically this signifies that the current streamlines and

the conjugate current streamlines form orthogonal vector fields

Proof. The Cauchy-Riemann equations(4) state that j = ky

and j = -k . Q.E.D.y x

The transformation between different directions of

polarization is brought out in the following two theorems.

Theorem 14. _if_ f _is v-regular and c jj; ji constant then

g = cf _is v' -regular where V = v (c/c*) .

Proof. Lg = cLf = vcf*= (vc/c*)g* . Thus Lg = v' g* and

the proof is complete.

Theorem 15. If f(z) _is v-regular and c is a constant

then h = f(cz) ±s^ v" regular where v" = vc* .

Proof. The notation f(z) is a short notation for f(x,y).

It is not meant to imply that f is a holomorphic function
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of z = x + iy. Thus if c = a + ib

h = f (X,Y) = f (ax - by, bx + ay)

Lh = (af + bf ) + i(-bf + af )
A x A X

Lh = (a-ib) (f__ + if__) = c* v h* .

This completes the proof.

Because of the last two theorems it suffices to work

with one direction of polarization. Thus the principal

direction of polarization is taken to be v = \i, a positive

number. In this case we shall say that f is right regular.

If v = -|i we say that f is left regular. If f (z) is

right regular it follows from Theorem 14 that if(z) is

left regular and it follows from Theorem 15 that f(-z)

is left regular.

The right regularity condition is

(8) Lf = |if* .

The corresponding Cauchy-Riemann equations are

Bx ^u " By
(9)

Bx Sv
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5. Contour integration and Cauchy's formula.

Of concern now are contour integrals of continuous

functions in the complex plane. The definition of contours

and contour integration given in elementary complex analysis

is sufficient for the purpose at hand.

Lemma 1. At points inside and on a_ simple closed contour T

suppose that a. function h(z) has continuous first derivatives

and that

(1) Re Lh(z) = 0.

Then

(2) Im I h(z)dz = 0-
Jr

Proof. Lh = h + ih and (Lh)* = h* - ih* .x y x y

Thus if h = p + iq where p and q are real,

2 Re(Lh) = Lh + (Lh)* = 2p - 2q .
x y

Hence p = q and by Green's theorem

0 = q dx + p dy = Im (p + iq) (dx + idy) .

This is the same as (2) so the lemma is proved.

Theorem 16. At; points inside and on a_ simple closed contour

T suppose that:

(3) the function f(z) _is_ v-reqular,

(4) the function g(z) _is_ -y*-regular.

Then
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(5) Im f f(z) g(z) dz = 0.

T
Proof. Let us define h = fg then

Lh = gLf + fLg = Vgf* - v*fg* .

Hence Re Lh = 0 so Lemma 1 applies and the proof is complete.

Theorem 16 is an analog of the Cauchy integral theorem.

Theorem 17. Ajt points inside and on â  simple closed contour

r suppose that;

(6) the function f(z) _is right regular,

(7) the function g, (z) =p(z) +q(z) is right regular,

(8) the function g (z) = p(z) - q(z) _is_ left regular.

Then

(9) f f(z)p(z)dz + ([ f(z) q(z) d z ) * = 0.
Jr dr

Proof. According to Theorem 14 the function ig,.

is left regular. Write

(10) J fg_ dz = J fpdz - J fqdz = P - Q

-n f i g+ dz = if f P d z + if f S d z = iP + iQ •
r •'r r

According to the previous theorem,relation (10) defines a

real number so (P-Q) - (P-QJ* = o. Likewise ril) defines

a real number so (P+Q) + (p+Q)* = o. Adding gives

P + Q* = 0. Q.E.D.

Corollary 1. If. f(z) _is rĵ ght regular and u(z) is pan-

harmonic inside and on T

f f z ) [ u x ( z ) " iuv(
z)]dz + [f f(z)uu*(z)dz]* = 01 -̂  "p

Proof. By Theorem 12 the functions
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(13) g = L* u - |iu* g^ = L* u + |iu*

are left and right regular so Theorem 17 applies.

The next result is an analog of Cauchy's integral formula,

Theorem 18. Let f (z) bje right regular inside and on a.

simple closed contour T. I_f r = | z - a| then

provided a JLS inside F. JEf a _is outside F the right

side vanishes.

Proof. First suppose a is outside F then Corollary 1

applies with u = K (ur). Thus if a = x + iy then

L*KQ(iar) = HK^d-tr) (illfo - i y ~ y o. _ | i r K_
° r r ' z-a

Substituting in relation (12) gives

0 = f f^f1 \ir K'(nr)dz+[ f f (z)|iK (|ir)dz] * .
j T-i z—a o j -p o

This proves the last statement of the theorem.

If a is inside T let it be the center of a circular

contour y of radius e. Then a is outside of the contour

r_ = r - y. It is then sufficient to show that (14) holds for

y. It is seen from formula (3-7) that

(15) K (x) ~ log 1/x as x -> Of,

(16) K Q (x) ~ -1/x as x -» Of.

From (15) it follows that

f(z)n K (nr)dz -» 0 as r -> o.
/ my W

From (16) it follows that as c -» 0

r f( ur K' (o \ f (z^ dz -> 2?ri f (a) . Q.E.D.
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6. Convolution integrals.

Of concern now are functions defined by contour integrals

on open contours.

Theorem 19. Let f (z) be_ right regular in ei simply connected

domain D. Let an integration contour connect two points z

and a jLn D. Then a right regular function F(z) is

defined by

a

+ [ij sinh |i(y-yf)f(z')dz1]*

(1) F(z) = j cosh n(y-y')f(z')dz'

Proof. Let a function g (z1) be defined as

(2) g+(z') = cosh M(y-y') + i sinh |i(y-y').

Then we see that

•g—7 g+(z') = -M. sinh H(y-y') - in cosh |i(y-y'),

Lg (z1) = -|ii sinh |i(y'-y) + |i cosh n(y'-y).

Thus g (z') is right regular. Likewise

(3) g_(z') = cosh l-L(y-y') - i sinh |i(y-yT)

is left regular. Then by Theorem 17

(4) f cosh ^(y-yMftz'Jdz1 + [f i sinh |i(y-y') f (z ') dz • ] * = 0

° r v

for any closed contour T in D because D is simply

connected. Relation (4) validates a standard argument about

line integrals. The conclusion of this argument is that

F(z) is a single valued function, independent of the choice
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of the contour connecting a fixed point a and a variable

point z.

First continue the contour beyond the point z as a

straight line parallel to the x axis. Then we see from

(1) that

(5) S =*<*>•

Next continue the contour beyond the point z as a straight

line parallel to the y-axis. Then

(6) |F = i f ( z ) + (*+ n r
Jo

+ [ ifi I cosh |i(y-y')flo

It then follows from (5) and (6) that LF = |jF* Thtis F

is right regular and the proof is complete.

It is worth noting that if a and z are both real

then (1) becomes

rx
(7) F(x) = f(x')dx' .

Ja

Thus we can term F an integral of f.

Theorem 20. Let f(z) and g(z) be right regular in â  simply

connected domain D. Let z and 0 be two points of D

and let â  convolution functi onal cp be defined as

(8) cp1 = J f(z')g(z-z')dz

where the integral is evaluated along a_ contour F, such

that if z! _iŝ  on T then z' and z-z' are both in D.

Then

(9) w = Im cp.
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is independent of the contour joining 0 and z and is a.

panharmonic function of z.

Proof, As a function of z1 it is seen that f(z') is

right regular and g(z-z') is left regular. Thus Theorem 16

is applicable and for a closed contour T

(10) Im f f(z')g(z-z')dz' = 0.
Jr

Suppose w had a different value for two contours

connecting 0 and z, say T, and F2. Then employing

a standard argument, relation (10) would be contradicted. This

proves the first part of the theorem.

The contour F, is arbitrary, so choose it such that

contiguous to z it becomes a line segment parallel to the

x axis. Then at z

-r-L= f(z)gfO) + f(z')g
ox J Q

a 9-, nz
( I D T" = f ( z ) g ( O ) + f ( z ) g (0) + f ( z ' ) g ( z - z ' ) d z

dx X x J Q xx

Likewise choose a contour F2 which contiguous to the point

z is a line segment parallel to the y-axis. This gives

the functional <E>2 and we see that

«z
= i f (z)g(O) + f ( z ' ) g ( z - z ' ) d z '

B cp2 . z
(12 ) — = i f ( z ) g ( O ) + i f ( z ) g (0) + f ^ z ' ) g ( z - z ' ) d z '

9y y x J o y Y
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Since f + if = (if* and g + ig = |ig* it follows from
x y x y

(11) and (12) that

(13) 3 % , B2cp2
— 2 ^ + — j ^ = nf*(z)g(O) + |if (z)g»(O) +

J f(z')gxx(z-z')dz' + J f(z')gvy(z-z')dz'.

Here the first integral is over F. and the second integral

is over Fn. But g is also right regular so the2 Jyy

imaginary part of these integrals can be evaluated by an

arbitrary contour. Taking the imaginary part of (13) gives

(14) ^ w + 9_w = Im J
Z
 f(zt) ^2 g(z_z,)dz, = M 2 w >

Bx Sy o

The continuity of the second derivatives can be shown easily,

so the proof of Theorem 2 is complete.

Corollary 2. Under the hypotheses of Theorem 26 a convolution

product of f (z) and g(z) _is denoted by

(15) h(z) = f(z)* g(z) = U + iv

and is defined by

rz

(16) U = lm[|i I f(zt)g(z-z')dzl +
Jo

rz

f(z)g(O) + ffz')g (z-z')dz']
Jo X

rz

(17) V = Im(-if(z)g(O) - f(z')g (z-z')dz•].

o y

Then the product h(z) _is_ commutative and is a. right regular

function of z.

Proof. If w is a real panharmonic function let
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(18) U = uw + w x , V = -w .

Then it is seen to be a consequence of Theorem 12 that

h = U + iv is a right regular function. If w is defined

as in Theorem 20,then (18) proves relations (16) and (17).

The proof of commutativity follows from

*, = f f(z')g(z-z')dz' = f f(z-zM)g(z")dz"
1 Jo Jo

when the change of variable z" = z - zT is made in the

first integral along the contour T giving the second

integral along the contour F2. Then ^ is the reflection

of I\. in the point z/2.
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7 . Expansion in pseudo-powers.

We have seen above that the function u = ce n

is panharmonic for any constant c. Thus according to

Theorem 12 the function z = |iu + (Lu)* is right regular.

Take c = nl 2 n li"11""1 and

T (^ - -1- r ^ n M + (*/2) 4 (x/2) l x.n
Lnv ' ni K2> L" T l(n+l) 1-2(n+1)(n+2)

Then

u = n< 2 n la"11"1 e i n 9 I (|ir) = z1 tf
n n

Note that Lz n = 0 and that

so Lz n * = z n L^n and

z ( n ) = z n

The following is a familiar Bessel identity

Substituting in the previous formula gives

(3) 2 { n ) = zn \

The right regular function z[n' may be termed a pseudo-

power. Likewise a left regular function is given by

(4) z[n) = z n *n(nr) - u(z*)
n + 1



30

Theorem 21. Let f(z) be right regular in the circular region

| zj £ b. Then for z _in this circle the function f (z)

can be expanded in the pseudo-power series.

(5) f(.) -

where the coefficients are defined as

<6> an =-h r e"ine f(b,e)d9/bn *

Proof. Of course the function f(z) is panharmonic in

the circle. Thus according to Theorem 10 there is an

expansion of the form

0D n OO _

(7) f = g an zn *n(kir) + L a_n (z*)n *n(|ir) ,

" ^ -in8
(8) a - - ^ f e~ i n 8 f(b,9)d9/bn T̂T wQ

Let 2p = z ( n ) + z^n) and 2q = z ( n ) - z ( n ) then

z = p + q and satisfies the condition of Theorem 17.

Thus

Jr
 z" V f ( z ) d z

Taking the contour F to be the circle |z| = b gives

f(b,0)d9 n[[Te" i n f i f(b,9)d9]*

=

b n + 1 *n+1(pk) 2(n+l) b n

Referring to (8) we see that this means

(9) an_x = 2 7 ^ a* n = 0,1,2... .
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But

(10) if a_n(z*)
n
 %(nr) = Jg° a ^ (z*)n

Substituting (9) in (10) proves(5).

Theorem 22. Suppose that f(z) îs. right regular and f(a) =0

but that f(z) does not vanish identically in the neighborhood

of the point a. Then for some positive integer m and some

constant a j4 0:

(11) f(z) = am(z-a)
m + o|z-aim+1 and

= m am(z-a)
m-1 + 0|z-a|ra.= m am(z-a)

Proof. Clearly it is sufficient to prove (11) and (12)

in the case a = 0. Then the pseudo-power series (5) of

Theorem 21 is valid for a sufficiently small radius b. Thus

a = 0 but not all the coefficients a vanish becauseo n

f(z) does not vanish identically. Let a be the first

coefficient which does not vanish. Then (11) is seen to

be a direct consequence of (5). Moreover (5) shows that

the two terms on the right side of (11) are power series in

X = x - Re a and Y = y - Im a. Differentiating (11) with

respect to x proves (12).

The conditions of Theorem 22 are said to define a zero

of multiplicity m.

Theorem 2 3. Let f (z) be_ right regular in a_ domain D and

suppose that there is an infinite sequence of distinct

zero points (a } c>f_ f(z) which have a limit point a in D.

Then actually f(z) vanishes at all points of D.



32

Proof. By continuity it follows that f(cc) = 0. Then it

follows directly from Theorem 2 that f(z) vanishes identically

in a neighborhood of a. Let /3 be another point of D

and let P be a polygonal path connecting a to j3.

Moving along P from a let y be the first point with

the property that f(z) does not vanish identically in

the neighborhood of the point. But f(z)=O at all the

points of P from a to y. Thus by what has just been

proved it follows that f vanishes in a neighborhood of y.

This contradiction shows that f(/3) = 0. Q.E.D.



33

8. The principle of the argument.

For holomorphic functions the principle of the

argument is based on contour integrals of the form (f.7f)dz,

The next theorem is aimed at developing an analogy of such

integrals for v-regular functions.

Theorem 24. Let f (z) be a. right regular function at every

point of a_ region whose boundary is ji finite set of simple

closed contours T* . t,et <f)(w) be_ â  holomorphic function

at corresponding points w = f(z). Then

(1) Im f {fc(f)f + |i Re[(|)(f)f*]}dz = 0.
J -p X

Proof. In order to employ Lemma 1 of Section 5 l e t

(2) h(z) = 2j)f - \ifyf* - |ij>*f.

But L*f = L*f + Lf - (if* = 2f - |if* so
5C

h =

Lh = L([)L*f + |3LL*f - (L*$> Lf

Lh = t>' LfL*f + <|)LL*f - (̂>'L

It is clear from this last relation that Re Lh = 0. Then

the proof of Theorem 24 follows from the extension of

Lemma 1 to multiple contours.

Theorem 25. Let f (z) be right regular inside and on a.

simple closed contour T and suppose f (z) -̂  0 for points

on F. Then the total number of zeros of f(z) inside T

is
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Proof. First suppose that f has no zeros inside F.

Then employ Theorem 24 with <()(w) = 1/w. It follows

that the expression N vanishes and this proves Theorem 2

in this case.

Next suppose f (z) has zeros. Then by virtue of

Theorem 23 there are a finite number of points a, ,0.9f • • • jOC,

where f vanishes. Let F, * F-, . . ., F, be circular contours

of radius e > 0 centered at the zero points. Let

(4) F* = F - T± - F2 - . . . - Fk .

Then f(z) does not vanish inside the contour F* so

(5) Re 77^ f = Re ^ - r f + . . . + Re ~ r F
v
 2TT 1 J -p., 2TT 1 J -p 2TT 1 J r .

1 xl xk

By virtue of Theorem 22 it is seen that

-f ~ 2 f~ §

where m. is the multiplicity of the zero at a,. Thus

'x
~ 2f" - 2f* ) d z = ml

1 f ,'x \if* of ,,
'2̂ Fi J r

 {T ~ 2f" - 2f* ) d z = m

Substituting (6) in (5) and letting e -» 0 gives

jJ = ml + m2 + '•• +

Here the right side is the total number of zeros. Q.E.D.

Tjheorem 26. The number N of_ Theorem 25 JLS_ equal to the

winding number of f relative to the contour F.

Proof. Write
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(7) f = u + iv = pelCp

where u,v,p, and cp are r ea l . Then

udv - vdu
(8) dcp = 2 2

u + v

The winding number N' is the net number of revolutions of

the vector f as z traverses T once in the positive

direction so

„ uv -vu uv -vu
(9) 2TF N« = [' 2

X
 2

 X dx + 2
Y

 2
 Y dy] .

r u +v u +v

The Cauchy-Riemann equations for a right regular function

give the relation

2 2
( 1 0 ) UV - VU = UU + VU + |J(U - V ) .

y y x x

S u b s t i t u t i n g t h i s r e l a t i o n in (9) we ge t 2TTN' = A + |JB

where

A =

(12) B

Note t h a t

r

j
T

U V ,

U

2
u 2
u

K ~ V U X

'+v2

2
- V

+ V

d x H

y-

uu + vv
X X2 2

u +v

(u-iv)(u + iv )= uu + vv + i(uv - vu )
5C X 5C 5C X• " •

so

n \ n - ^ . v / v U + I V ) r
(13) A = Im = ^ ^ - dz = Im -£ dz .

J r u + v J r f

Also note that

2 2 2 2
2(u - v ) = (u - iv) + (u + iv) so
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2
dz
2

t> T f (u-iv) + (u+iv) , _ f ,f* f v
B = Im 2 2 dz = Im (-= + -= )

JT 2u + 2v Jr f f

Then (13) and (14) prove N1 = N. Q.E.D.

The next result shows that the statement of Rouche's

theorem for holomorphic functions holds for v-regular functions

without change.

Theorem 4. Let f(z) and g(z) "be_ v-regular inside

and on â  simple closed contour T. Suppose

(15) |f(z) | > |g(z)| on T.

Then f(z) and f(z) - g(z) have the same number of zeros

ins ide T.

Proof. Let N, be the number of zeros of
A

(16) fA(z) = f(z) - Ag(z), 0 £ A £ 1

inside T. Then the integrand of the expression (3) for

N. is a continuous function of A. Hence INL is a con-
A A

tinuous function of A. But a continuous function which

is an integer must be a constant so N = N, . Q.E.D.

Papers [9] and [10] in the following list of references

have been added only to show that the electrical or thermal

flow in a plate with leakage is governed by the Yukawa

equation.
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