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Abstract

In a market with one stock and one bond, a risk averse agent would normally follow

the principle of holding a positive amount of stock if and only if its mean rate of return is

strictly larger than the interest rate of the bond We provide an example to show that in the

latter case, it may be optimal not to invest in the stock.



§ 1 Introduction. This paper presents a counterexample to a commonly held belief

concerning single-agent consumption/investment decision problems. In this example, an

agent is endowed with some initial wealth and has available two assets in which he may

invest The assets of the example are special; nevertheless, they have the characteristics

of very general ones. One of them is riskless, a bond with zero interest rate. The other is

a stock, a risky asset with random but observable mean rate of return. The agent has a

strictly increasing, strictly concave utility function U, and he attempts to invest in the two

assets so as to maximize the expected utility from terminal wealth E U(XT).

Because of the concavity of his utility function, the agent will be risk averse, that

is, he will not invest in the risky asset unless it has a more favorable mean rate of return.

Moreover, in a continuous-time trading model, it is plausible that whenever the mean rate

of return on the stock is positive (i.e., strictly greater than the interest rate of the bond), the

optimal portfolio does hold a positive amount of the stock. In our model, the agent can

sell the assets short, and so one might also expect that whenever the mean rate of return

on the stock is negative, the optimal portfolio holds a short position in the stock. We call

this description of the form of the optimal portfolio the naive principle. The validity of this

principle can be observed in the work of Merton [2], who treated models with constant

mean rate of return and a restricted class of utility functions. The verification of the

principle for more general utility functions, but still with constant mean rates of return,

can be found in Karatzas & Shreve [1], p.387.

In our model, the utility function is quite simple, belonging to the class considered

by Merton. However, the mean rate of return of the stock is a stochastic process.

Because the mean rate of return is observable, one might hypothesize that the agent should

follow the naive principle. This is in fact not the case. The unique optimal portfolio we

find sometimes holds a neutral position in the stock when the mean rate of return is

positive and also sometimes holds a neutral position when the mean rate of return is



negative.

In section 2, we give the mathematical description of our model, and in section 3, the

mean rate of return of the stock is defined. Finally, in section 4, we obtain the explicit

solution to the problem stated in section 2.

§ 2 The Model. In order to model the uncertainty of return, we assume that there is a

complete probability space ( Q , 3 , P) , on which the process W={ w t , 31 > 0 < t < <» }

is a standard one- dimensional Brownian motion relative to the filtration { 31} . Let us

consider that the assets are traded continuously on the fixed time-horizon [ 0 , 4 ] . The

price of the bond is static, i.e.,

(2 .1) Po(t) = l, 0 < t £ 4 .

The price of the stock evolves according to the integral equation

(2 .2) p i ( t ) = l + P 9 s p i ( s ) d s + P pi(s)dws, 0 < t < 4 .
0 '0

Here the process 6 ={ 9t , 3 1 , 0 < t ^ 4 }, a bounded, adapted process defined in

section 3, is called the mean rate of return of stock*

Definition 2.1. A portfolio process rc = { r c t , 3 t > 0 < t < 4 } i s a measurable, adapted,

and real valued process for which

(2.3) E J 7C t
4dt<oo.

We envision now an agent who starts with an initial endowment x= e3 and

invests in the two assets described above. If the process TC = { 7 i t , 3 t , 0 < t < 4 }

is the portfolio process he chooses, Ihen his wealth at time t, denoted by X(t), satisfies

the differential equation (see[l], p.372)

(2 .4) dXt = 7itetdt + 7itdwt, 0 < t < 4 ,

XQ= e3.



Definition 2.2 A portfolio process is said to be admissible if the wealth process X of

( 2.4 ) satisfies

(2 ,5) X t £ 0 , 0<£t£4 ,a . s .

We denote the set of admissible portfolio process by D.

Assume the utility from the terminal wealth is measured by E j X4
2 / 3 . Then the

mathematical problem the agent faces is

EX^273maximize

( 2 . 6 )
subject to n e D .

§ 3 The Mean Rate of Return. Defining the process 8 takes several steps. First let

, O i v A J+l if ws > 0
(3.1) as = sgn ws ={ ^ -f ^ < Q

(3 .2) M t ^ \ a s d w s .
0

Then M={ Mt, 31> 0£t<<»} is a continuous square-integrable martingale. Let

(3 .3) Xi = inf{ t | t £ 0 , Mt^-1 }, T2 = inf{t |t2>0, Mt + j

where <M>t is the quadratic variation process of M. From ([1], p.7), Ti, 1:2 are stopping

times, and so is x = %i AX2. Notice that <M>t = I | a s |
2 ds = t, a.s.P. We have

J0

(3.4) x£4 a.s.P.

Now we define

(3.5) A t ^ a t x l { U X } , Bt

Foranyfixed t, tAX2 is a stopping time, {Xi<tAX2 }e3tAT2

Therefore, A t and B t are 3 radapted process. The mean rate of return of the stock is



defined by

( 3 . 6 ) 6 t ^ A t + i B t .

It is clear that the process 8 = { 6 t , 3 t > 0 £ t : £ 4 } i s a bounded, measurable, and

adapted process,

Remark 1: On the set { ( t , t o ) e [ 0 , 4 ] x Q |t<x(CD) }, Gt= A t takes both values

+1 and -1, but the optimal portfolio process we find in the next section is identically

zero on this set

§ 4. Solution of The Model. First we state an easily verified property of our utility

function.

i "\

Lemma 4.1. For every x̂ O, y>0, the inequality ry ~2+ xy £ ?x ^ holds, and

equality holds if and only if x=y ~3.

In order to describe the optimal portfolio process, we need to define processes

Z = { Z t , 3 t , 0 < a £ 4 } a n d Y = { Y t , 3 t , 0<£t£4}by

esdws-i J' es
2ds},

(4.2) Yt^exp(3+ J B s dw s - | J Bs
2ds + J Bs 6S ds).

0 0 0

By Ittf's rule, we have

(4.3) dZt= - 9 tZ t d wt, 0 ^ t < 4,

Zo=l,

(4.4) dYt =e t BtY t dt+B t Y t dw t ,0<t^4,

Yo=e3,

4.5) d(ZtYt)= Z^iYt + Y,dZt+d<Z,Y>t = Zt Yrf Bt - 6t) d w t, 0 < t < 4 .

From the boundedness of B and 8 we know that { ZtYt, 3 t , 0 < t < 4 } i s a



martingale, and, in particular,

(4.6) E ZtYt =E ZoYo= e3, V 0 <: t <£ 4 .

Lemma 4.2. The processes Z and Y satisfy

(4.7) Y4=Z4-3.

Proof: First notice that ln(Z4
3Y4)

= 3] esdws- y| 9s
2ds+ 3+f Bsdws- i f Bs2ds+ | Bs6sds

= -3 J Asdws-|x J As2ds -\ ] Bs2ds + 3
0

I - 3 x ( - l ) - | x x i - jx | (4 -x i ) + 3 if TI<T 2

•{ - 3 + 0+ 3 i f x i> T2

= 0.

The first equality comes from (3.6), and the second one comes from (3.3) and (3.5).

This means Z4
3Y4 = 1 a.s.; thus the lemma is proved.

From this lemma and (4.6) we immediately get

(4.8) EY42* = EZ4-2 = EZ4 Y4 = e3.

We are ready for the main result of this paper.

Theorem. The process ft* ={ B t Yt, 31 , 0 ̂  t ̂  4 } is the unique optimal portfolio

process.

Proof: First, for a given ne D, let X t be the corresponding wealth process defined by

(2.4). From Ittf's rule, we have c

dXtZt= ZtdXt + XtdZt+d<Z,X>t =(rct Z r etXtZt)d w t,

so {XtZt, 31, 0^t<4} is a non-negative semi-martingale, hence a supermartingale

(see[l], p.36). Therefore E Z4X4< E ZQXO= e3. From Lemma 4.1 we have



(4.9) §E X42*<E Z4X4 +^ETA2< C3 + je3= f e3.

Noticing that process ic* e D and the process Y is its wealth process,

from (4 .8) we have

(4.10) J (**) = ! EY4
2/3 = | e 3 -

This proves the optimality.

For uniqueness, define P(A)=E1AZ 4 forAe34 . From Girsanov's theorem we

have that P and P are mutually absolutely continuous and under the probability

measure P, the process Wt = J 0 sds+dws, 0<t<4 , is an { 31 }-Brownian motion.
0

Let %t be another optimal portfolio process in D, and let X t be the corresponding wealth

process. From (4.9) and Lemma 4.1 we have X4=Z4"
3, a.s.P, so

(4.11) X4=Y4, a.s.P.

We can rewrite equations (4.4) and (2.4) as

(4.12) dYt=BtYtdWt t Yo= e3,

(4.13) dXt=TCt4Wt , Xo=e 3 .

Note that 7ceD implies

~ f4 f4 1 a 1 ra
E J T C t ^ t ^ E J Zt7Ct2dt £ A / E J Z t

2 d t <\ E J n t
4dt < 00,

J0 J0 V J0 \ "b

f4

and this implies E I ( n rBtYO^t =E(X4-Y4)
2=0. Thus the theorem is proved.

Remaric 2: On the set { ( t , 0 ) ) e [0 ,4]xQ j t < x(co) },7tt*=BtYt=0. This proves the

assertion made in Remark 1.
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