
ar
X

iv
:c

s/
05

09
02

5v
3 

 [
cs

.A
I]

  6
 A

pr
 2

00
6

A formally verified proof of the

prime number theorem∗

Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff

January 19, 2006

Abstract

The prime number theorem, established by Hadamard and de la Vallée

Poussin independently in 1896, asserts that the density of primes in the

positive integers is asymptotic to 1/ lnx. Whereas their proofs made

serious use of the methods of complex analysis, elementary proofs were

provided by Selberg and Erdös in 1948. We describe a formally verified

version of Selberg’s proof, obtained using the Isabelle proof assistant.

1 Introduction

For each positive integer x, let π(x) denote the number of primes less than or
equal to x. The prime number theorem asserts that the density of primes π(x)/x
in the positive integers is asymptotic to 1/ lnx, i.e. that limx→∞ π(x) ln x/x = 1.
This was conjectured by Gauss and Legendre around the turn of the nineteenth
century, and posed a challenge to the mathematical community for almost a
hundred years, until Hadamard and de la Vallée Poussin proved it independently
in 1896.

On September 6, 2004, the first author of this article verified the following
statement, using the Isabelle proof assistant:

(λx. pi x * ln (real x) / (real x)) ----> 1

The system thereby confirmed that the prime number theorem is a consequence
of the axioms of higher-order logic, together with an axiom asserting the exis-
tence of an infinite set.

One reason the formalization is interesting is simply that it is a landmark,
showing that today’s proof assistants have achieved a level of usability that
makes it possible to formalize substantial theorems of mathematics. Similar
achievements in the past year include George Gonthier’s verification of the four
color theorem using Coq, and Thomas Hales’s verification of the Jordan curve

∗To appear in ACM Transcations on Computational Logic. Work by the first author has
been supported by NSF grant DMS-0401042.

1

http://arXiv.org/abs/cs/0509025v3


theorem using HOL-light (see the introduction to Wiedijk [19]). As contem-
porary mathematical proofs become increasingly complex, the need for formal
verification becomes pressing. Formal verification can also help guarantee cor-
rectness when, as is becoming increasingly common, proofs rely on computa-
tions that are too long to check by hand. Hales’s ambitious Flyspeck project
[10], which aims for a fully verified form of his proof of the Kepler conjecture,
is a response to both of these concerns. Here, we will provide some information
as to the time and effort that went into our formalization, which should help
gauge the feasibility of such verification efforts.

More interesting, of course, are the lessons that can be learned. This, how-
ever, puts us on less certain terrain. Our efforts certainly provide some indica-
tions as to how to improve libraries and systems for verifying mathematics, but
the data still need to be processed and better understood. Here, therefore, we
simply offer some initial thoughts and observations.

The outline of this paper is as follows. In Section 2, we provide some back-
ground on the prime number theorem and the Isabelle proof assistant. In Sec-
tion 3, we provide an overview of Selberg’s proof, our formalization, and the
effort involved. In Section 4, we discuss some interesting aspects of the formal-
ization: the use of asymptotic reasoning; calculations with real numbers; casts
between natural numbers, integers, and real numbers; combinatorial reasoning
in number theory; and the use of elementary methods. Finally, in Section 5 we
offer some brief conclusions.

Our formalization of the prime number theorem was a collaborative effort on
the part of Avigad, Donnelly, Gray, and Raff, building, of course, on the efforts
of the entire Isabelle development team. This article was, however, written by
Avigad, so opinions and speculation contained herein should be attributed to
him.

2 Background

2.1 The prime number theorem

The statement of the prime number theorem was conjectured by both Gauss
and Legendre, on the basis of computation, around the turn of the nineteenth
century. In a pair of papers published in 1851 and 1852, Chebyshev made
significant advances towards proving it. Note that we can write

π(x) =
∑

p≤x

1,

where p ranges over the prime numbers. Contrary to our notation above, x
is usually treated as a real variable, making π a step function on the reals.
Chebyshev defined, in addition, the functions

θ(x) =
∑

p≤x

ln p

2



and
ψ(x) =

∑

pa≤x

ln p =
∑

n≤x

Λ(n),

where

Λ(n) =

{

ln p if n = pa, for some a ≥ 1
0 otherwise.

The functions θ and ψ are more sensitive to the presence of primes than π,
and have nicer analytic properties. Chebyshev showed that the prime number
theorem is equivalent to the assertion limx→∞ θ(x)/x = 1, as well as to the
assertion limx→∞ ψ(x)/x = 1. He also provided bounds

B < π(x) ln x/x < 6B/5

for sufficiently large x, where

B = ln 2/2 + ln 3/3 + ln 5/5 − ln 30/30 > 0.92

and 6B/5 < 1.11. So, as x approaches infinity, π(x) ln x/x, at worst, oscillates
between these two values.

In a landmark work of 1859, Riemann introduced the complex-valued func-
tion ζ into the study of number theory. It was not until 1894, however, that
von Mangoldt provided an expression for ψ that reduced the prime number the-
orem, essentially, to showing that ζ has no roots with real part equal to 1. This
last step was achieved by Hadamard and de la Vallée Poussin, independently, in
1896. The resulting proofs make strong use of the theory of complex functions.
In 1921, Hardy expressed strong doubts as to whether a proof of the theorem
was possible which did not depend, fundamentally, on these ideas. In 1948,
however, Selberg and Erdös found elementary proofs based on a “symmetry
formula” due to Selberg. (The nature of the interactions between Selberg and
Erdös at the time and the influence of ideas is a subtle one, and was the source
of tensions between the two for years to come.) Since the libraries we had to
work with had only a minimal theory of the complex numbers and a limited real
analysis library, we chose to formalize the Selberg proof.

There are a number of good introductions to analytic number theory (for
example, [1, 12]). Edwards’s Riemann’s zeta function [9] is an excellent source of
both historical and mathematical information. A number of textbooks present
Selberg’s proof, including those by Nathanson [14], Shapiro [16], and Hardy and
Wright [11]. We followed Shapiro’s excellent presentation quite closely, though
we made good use of Nathanson’s book as well.

We also had help from another source. Cornaros and Dimitracopoulos [8]
have shown that the prime number theorem is provable in a weak fragment of
arithmetic, by showing how to formalize Selberg’s proof (based on Shapiro’s
presentation) in that fragment.1 Their concerns were different from ours: by
relying on a formalization of higher-order logic, we were allowing ourselves a

1For issues relating to the formalization of mathematics, and number theory in particular,
in weak theories of arithmetic, see Avigad [3].

3



logically stronger theory; on the other hand, Cornaros and Dimitracopoulos
were concerned solely with axiomatic provability and not ease of formalization.
Their work was, however, quite helpful in stripping the proof down to its bare
essentials. Also, since our libraries did not have a good theory of integration,
we had to take some care to avoid the mild uses of analysis in the textbook
presentations. Cornaros and Dimitracopoulos’s work was again often helpful in
that respect.

2.2 Isabelle

Isabelle [20] is a generic proof assistant developed under the direction of Larry
Paulson at Cambridge University and Tobias Nipkow at TU Munich. The HOL
instantiation [15] provides a formal framework that is a conservative extension
of Church’s simple type theory with an infinite type (from which the natural
numbers are constructed), extensionality, and the axiom of choice. Specifically,
HOL extends ordinary type theory with set types, and a schema for polymorphic
axiomatic type classes designed by Nipkow and implemented by Marcus Wenzel
[17]. It also includes a definite description operator (“THE”), and an indefinite
description operator (“SOME”).2

Isabelle offers good automated support, including a term simplifier, an au-
tomated reasoner (which combines tableau search with rewriting), and decision
procedures for linear and Presburger arithmetic. It is an LCF-style theorem
prover, which is to say, correctness is guaranteed by the use of a small number
of constructors, in an underlying typed programming language, to build proofs.
Using the Proof General interface [21], one can construct proofs interactively
by repeatedly applying “tactics” that reduce a current subgoal to simpler ones.
But Isabelle also allows one to take advantage of a higher-level proof language,
called Isar, implemented by Wenzel [18]. These two styles of interaction can, fur-
thermore, be combined within a proof. We found Isar to be extremely helpful in
structuring complex proofs, whereas we typically resorted to tactic-application
for filling in low-level inferences. Occasionally, we also made mild use of Is-
abelle’s support for locales [7]. For more information on Isabelle, one should
consult the tutorial [15] and other online documentation [20].

Our formalization made use of the basic HOL library, as well as those parts
of the HOL-Complex library, developed primarily by Jacques Fleuriot, that deal
with the real numbers. Some of our earlier definitions, lemmas, and theorems
made their way into the 2004 release of Isabelle, in which the formalization

2The extension by set types is mild, since they are easily interpretable in terms of predicate
types σ → bool . Similarly, the definite description operator can be eliminated, at least in
principle, using Russell’s well-known interpretation. It is the indefinite description operator,
essentially a version of Hilbert’s epsilon operator, that gives rise to the axiom of choice.
Though we occasionally used the indefinite description operator for convenience, these uses
could easily be replaced by the definition description operator, and it is likely that uses of the
axiom of choice can be dispensed with in the libraries as well. In any event, it is a folklore
result that Gödel’s methods transfer to higher-order logic to show that the axiom of choice is
a conservative extension for a fragment the includes the prime number theorem.

4



described here took place. Some additional theorems in our basic libraries will
be part of the 2005 release.

3 Overview

3.1 The Selberg proof

The prime number theorem describes the asymptotic behavior of a function
from the natural numbers to the reals. Analytic number theory works by ex-
tending the domain of such functions to the real numbers, and then providing
a toolbox for reasoning about such functions. One is typically concerned with
rough characterizations of a function’s rate of growth; thus f = O(g) expresses
the fact that for some constant C, |f(x)| ≤ C|g(x)| for every x. (Sometimes,
when writing f = O(g), one really means that the inequality holds except for
some initial values of x, where g is 0 or one of the functions is undefined; or
that the inequality holds when x is large enough.)

For example, all of the following identities can be obtained using elementary
calculus:

ln(1 + 1/n) = 1/n+O(1/n2)
∑

n≤x

1/n = lnx+O(1)

∑

n≤x

lnn = x lnx− x+O(ln x)

∑

n≤x

lnn/n = ln2 x/2 +O(1)

In all of these, n ranges over positive integers. The last three inequalities hold
whether one takes x to be an integer or a real number greater than or equal to
1. The second identity reflects the fact that the integral of 1/x is lnx, and the
third reflects the fact that the integral of lnx is x lnx − x. A list of identities
like these form one part of the requisite background to the Selberg proof.

Some of Chebyshev’s results form another part. Rate-of-growth comparisons
between θ, ψ, and π sufficient to show the equivalence of the various statements
of the prime number theorem can be obtained by fairly direct calculations.
Obtaining any of the upper bounds equivalent to ψ(x) = O(x) requires more
work. A nice way of doing this, using binomial coefficients, can be found in
Nathanson [14].

Number theory depends crucially on having different ways of counting things,
and rudimentary combinatorial methods form a third prerequisite to the Selberg
proof. For example, consider the set of (positive) divisors d of a positive natural
number n. Since the function d 7→ n/d is a permutation of that set, we have
the following identity:

∑

d|n

f(d) =
∑

d|n

f(n/d).

5



For a more complicated example, suppose n is a positive integer, and consider
the set of pairs d, d′ of positive integers such that dd′ ≤ n. There are two ways
to enumerate these pairs: for each value of d between 1 and n, we can enumerate
all the values d′ such that d′ ≤ n/d; or for each product c less than n, we can
enumerate all pairs d, c/d whose product is c. Thus we have

∑

d≤n

∑

d′≤n/d

f(d, d′) =
∑

dd′≤n

f(d, d′)

=
∑

c≤n

∑

d|c

f(d, c/d).
(1)

A similar argument yields
∑

d|n

∑

d′|(n/d)

f(d, d′) =
∑

dd′|n

f(d, d′)

=
∑

c|n

∑

d|c

f(d, c/d).
(2)

Yet another important combinatorial identity is given by the partial summation
formula, which, in one formulation, is as follows: if a ≤ b, F (n) =

∑n
i=1 f(i),

and G is any function, then

b
∑

n=a

f(n+ 1)G(n+ 1) = F (b+ 1)G(b + 1) − F (a)G(a+ 1)−

b−1
∑

n=a

F (n+ 1)(G(n+ 2) −G(n+ 1)).

This can be viewed as a discrete analogue of integration by parts, and can be
verified by induction.

An important use of (2) occurs in the proof of the Möbius inversion formula,
which we now describe. A positive natural number n is said to be square free
if no prime in its factorization occurs with multiplicity greater than 1; in other
words, n = p1p2 · · · ps where the pi’s are distinct primes (and s may be 0).
Euler’s function µ is defined by

µ(n) =

{

(−1)s if n is squarefree and s is as above
0 otherwise.

A remarkably useful fact regarding µ is that for n > 0,

∑

d|n

µ(d) =

{

1 if n = 1
0 otherwise.

(3)

To see this, define the radical of a number n, denoted rad(n), to be the greatest
squarefree number dividing n. It is not hard to see that if n has prime fac-
torization pj1

1 p
j2
2 · · · pjs

s , then rad(n) is given by p1p2 · · · ps. Then
∑

d|n µ(d) =

6



∑

d|rad(n) µ(d), since divisors of n that are not divisors of rad(n) are not square-

free and hence contribute 0 to the sum. If n = 1, equation (3) is clear. Other-
wise, write rad(n) = p1p2 · · · ps, write

∑

d|rad(n)

µ(d) =
∑

d|rad(n),p1|d

µ(d) +
∑

d|rad(n),p1∤d

µ(d),

and note that each term in the first sum is canceled by a corresponding one in
the second.

Now, suppose g is any function from N to R, and define f by f(n) =
∑

d|n g(d). The Möbius inversion formula provides a way of “inverting” the

definition to obtain an expression for g in terms of f . Using (2) for the third
equality below and (3) for the last, we have, somewhat miraculously,

∑

d|n

µ(d)f(n/d) =
∑

d|n

µ(d)
∑

d′|(n/d)

g((n/d)/d′)

=
∑

d|n

∑

d′|(n/d)

µ(d)g((n/d)/d′)

=
∑

c|n

∑

d|c

µ(d)g(n/c)

=
∑

c|n

g(n/c)
∑

d|c

µ(d)

= g(n),

since the inner sum on the second-to-last line is 0 except when c is equal to 1.
All the pieces just described come together to yield additional identities

involving sums, ln, and µ, as well as Mertens’s theorem:

∑

n≤x

Λ(n)/n = lnx+O(1).

These, in turn, are used to derive Selberg’s elegant “symmetry formula,” which
is the central component in the proof. One formulation of the symmetry formula
is as follows:

∑

n≤x

Λ(n) lnn+
∑

n≤x

∑

d|n

Λ(d)Λ(n/d) = 2x lnx+O(x).

There are, however, many variants of this identity, involving Λ, ψ, and θ. These
crop up in profusion because one can always unpack definitions of the various
functions, apply the types of combinatorial manipulations described above, and
use identities and approximations to simplify expressions.

What makes the Selberg symmetry formula so powerful is that there are two
terms in the sum on the left, each sensitive to the presence of primes in different
ways. The formula above implies there have to be some primes — to make
left-hand side nonzero — but there can’t be too many. Selberg’s proof involves

7



cleverly balancing the two terms off each other, to show that in the long run,
the density of the primes has the appropriate asymptotic behavior.

Specifically, let R(x) = ψ(x) − x denote the “error term,” and note that by
Chebyshev’s equivalences the prime number theorem amounts to the assertion
limx→∞R(x)/x = 0. With some delicate calculation, one can use the symmetry
formula to obtain a bound on |R(x)|:

|R(x)| ln2 x ≤ 2
∑

n≤x

|R(x/n)| lnn+O(x ln x). (4)

Now, suppose we have a bound |R(x)| ≤ ax for sufficiently large x. Substituting
this into the right side of (4) and using an approximation for

∑

n≤x lnn/n we
get

|R(x)| ≤ ax+O(x/ ln x),

which is not an improvement on the bound |R(x)| ≤ ax with which we began.
Selberg’s method involves showing that in fact there are always enough suffi-
ciently large intervals on which one can obtain a stronger bound on R(x), so
that for some positive constant k, assuming we have a bound |R(x)| ≤ ax that
valid for x ≥ c1, we can obtain a c2 and a better bound |R(x)| ≤ (a−ka3), valid
for x ≥ c2. The constant k depends on a, but the same constant also works for
any a′ < a.

By Chebyshev’s theorem, we know that there is a constant a1 such that
|R(x)| ≤ a1x for every x. Choosing k appropriate for a1 and then setting
an+1 = an − ka3

n, we have that for every n, there is a c large enough so that
|R(x)|/x ≤ an for every x ≥ c. But it is not hard to verify that the sequence
a1, a2, . . . approaches 0, which implies that R(x)/x approaches 0 as x approaches
infinity, as required.

3.2 Our formalization

All told, our number theory session, including the proof of the prime num-
ber theorem and supporting libraries, constitutes 673 pages of proof scripts, or
roughly 30,000 lines. This count includes about 65 pages of elementary number
theory that we had at the outset, developed by Larry Paulson and others; also
about 50 pages devoted to a proof of the law of quadratic reciprocity and prop-
erties of Euler’s ϕ function, neither of which are used in the proof of the prime
number theorem. The page count does not include the basic HOL library, or
properties of the real numbers that we obtained from the HOL-Complex library.

The overview provided in the last section should provide a general sense of
the components that are needed for the formalization. To start with, one needs
good supporting libraries:

• a theory of the natural numbers and integers, including properties of
primes and divisibility, and the fundamental theorem of arithmetic

• a library for reasoning about finite sets, sums, and products

8



• a library for the real numbers, including properties of ln

The basic Isabelle libraries provided a good starting point, though we had to
augment these considerably as we went along. More specific supporting libraries
include:

• properties of the µ function, combinatorial identities, and the Möbius
inversion formula

• a library for asymptotic “big O” calculations

• a number of basic identities involving sums and ln

• Chebyshev’s theorems

Finally, the specific components of the Selberg proof are:

• the Selberg symmetry formula

• the inequality involving R(n)

• a long calculation to show R(n) approaches 0

This general outline is clearly discernible in the list of theory files, which can
be viewed online [2]. Keep in mind that the files described here have not been
modified since the original proof was completed, and many of the proofs were
written while various participants in the project were still learning how to use
Isabelle. Since then, some of the basic libraries have been revised and incor-
porated into Isabelle, but Avigad intends to revise the number theory libraries
substantially before cleaning up the rest of the proof.

Once the basic libraries are in place, our formal proof follows Shapiro’s
presentation quite closely, though for some parts we followed Nathanson instead.
A detailed description of our proof would amount to little more than a step-by-
step narrative of (one of the various paths through) Selberg’s proof, with page
correspondences in texts we followed. For example, one of our formulations of
the Möbius inversion is as follows:

lemma mu_inversion_nat1a: "ALL n. (0 < n −→

f n = (
∑

d | d dvd n. g(n div d))) =⇒ 0 < (n::nat) =⇒

g n = (
∑

d | d dvd n. of_int(mu(int(d))) * f (n div d))"

This appears on page 64 of Shapiro’s book, and on page 218 of Nathanson’s
book. We formalized a version of the fourth identity listed in Section 3.2 as
follows:

lemma identity_four_real_b: "(λx.
∑

i=1..natfloor(abs x).

ln (real i) / (real i)) =o

(λx. ln(abs x + 1)^2 / 2) +o O(λx. 1)"

In fact, stronger assertions can be found on page 93 of Shapiro’s book, and on
page 209 of Nathanson’s book. Here is one of our formulations of the Selberg
symmetry principle:

9



lemma Selberg3: "(λx.
∑

n = 1..natfloor (abs x) + 1.

Lambda n * ln (real n)) + (λx.
∑

n=1..natfloor (abs x) + 1.

(
∑

u | u dvd n. Lambda u * Lambda (n div u)))

=o (λx. 2 * (abs x + 1) * ln (abs x + 1)) +o O(λx. abs x + 1)"

This is given on page 419 of Shapiro’s book, and on page 293 of Nathanson’s
book. The error estimate given in the previous section, taken from 431 of
Shapiro’s book, takes the following form:

lemma error7: "(λx. abs (R (abs x + 1)) * ln (abs x + 1) ^ 2) <o

(λx. 2 * (
∑

n = 1..natfloor (abs x) + 1.

abs (R ((abs x + 1) / real n)) * ln (real n))) =o

O(λx. (abs x + 1) * (1 + ln (abs x + 1)))"

We will have more to say, below, about handling of asymptotic notation, the
type casts, and the various occurrences of abs and +1 that make the formal
presentation differ from ordinary mathematical notation. But aside from calling
attention to differences like these, a more detailed outline would not be very
interesting.

There are additional reasons that it does not pay to describe the formal
proofs in great detail. For one thing, they are not particularly nice: our efforts
were designed to get us to the prime number theorem as quickly as possible,
and so the proofs could use a good deal of cleaning and polishing. Second, and
more to the point, we know that our formalization is not optimal. It hardly
makes sense for us to describe exactly how we went about proving the Möbius
inversion formula, for example, until we are convinced that we have done it
right; that is, until we are convinced the we have made the supporting libraries
as generally useful as possible, and configured the automated tools in such a
way to make the formalization as smooth as possible. We therefore intend to
invest more time in improving the various parts of the formalization and report
on these when it is clear what we have learned from the efforts.

In the meanwhile, we will devote the rest of this report to conveying two types
of information. First, to help gauge the usability of the current technology, we
will try to provide a sense of the amount of time required to seeing the project
through to its completion. Second, we will provide some initial reflections on the
project, and on the strengths and weaknesses of contemporary proof assistants.
In particular, we will discuss what we take to be some of the novel aspects of the
formalization, and indicate where we believe better automated support would
have been especially helpful.

3.3 The effort involved

As we have noted in the introduction, one of the most interesting features of our
formalization of the prime number theorem is simply its existence, which shows
that current technology makes it possible to treat a proof of this complexity.
The question naturally arises as to how long the formalization took.

This is a question that it hard to answer with any precision. Avigad first
decided to undertake the project in March of 2003, having learned how to use

10



Isabelle and proved Gauss’s law of quadratic reciprocity with Gray and Adam
Kramer the preceding summer and fall. But this was a side project for everyone
involved, and time associated it includes time spent learning to use Isabelle,
time spent learning the requisite number theory, and so on. Gray developed
a substantial part of the number theory library, including basic facts about
primes and multiplicity, the µ function, and the identity (2), working a few
hours per week in the summer of 2003, before his thesis work in ethics took
over. Donnelly and Avigad developed the library to support big O calculations
[5] while Donnelly worked half-time during the summer of 2003, just after he
completed his junior year at Carnegie Mellon. During that summer, and working
part time the following year, Donnelly also derived some of the basic identities
involving ln. Raff started working on the project in the 2003-2004 academic year,
but most of his contributions came working roughly half-time in the summer
of 2004, just after he obtained his undergraduate degree. During that time, he
proved Chebyshev’s theorem to the effect that ψ(x) = O(x), and also did most
of the work needed to prove the equivalence of statements of the prime number
theorem in terms of the functions π, θ, and ψ. Though Avigad’s involvement
was more constant, he rarely put in more than a few hours per week before the
summer of 2004, and set the project aside for long stretches of time. The bulk
of his proof scripts were written during the summer of 2004, when he worked
roughly half-time on the project from the middle of June to the end of August.

Some specific benchmarks may be more informative. Proving most of the
inversion theorems we needed, starting from (2) and the relevant properties
of µ, took Avigad about a day. (For a “day” read eight hours of dedicated
formalization. Though he could put in work-days like that for small stretches,
in some of the estimates below, the work was spread out over longer periods
of time.) Proving the first version of the Selberg symmetry formula using the
requisite identities took another day. Along the way, he was often sidetracked
by the need to prove elementary facts about things like primes and divisibility,
or the floor function on the real numbers. This process stabilized, however, and
towards the end he found that he could formalize about a page of Shapiro’s text
per day. Thus, the derivation of the error estimate described above, taken from
pages 428–431 in Shapiro’s book, took about three-and-a-half days to formalize;
and the remainder of the proof, corresponding to 432–437 in Shapiro’s book,
took about five days.

In many cases, the increase in length is dramatic: the three-and-a-half pages
of text associated with the proof of the error estimate translate to about 1,600
lines, or 37 pages, of proof scripts, and the five pages of text associated with the
final part of the proof translate to about 4,000 lines, or 89 pages, of proof scripts.
These ratios are abnormally high, however, for reasons discussed in Section 4.2.
The five-line derivation of the Möbius inversion formula in Section 3.1 translates
to about 40 lines, and the proof of the form of the Selberg symmetry formula
discussed there, carried out in about two-and-a-half pages in Shapiro’s book,
takes up about 600 lines, or 13 pages. These ratios are more typical.

We suspect that over the coming years both the time it takes to carry out
such formalizations, as well as the lengths of the formal proof scripts, will drop

11



significantly. Much of the effort involved in the project was spent on the follow-
ing:

• Defining fundamental concepts and gathering basic libraries of easy facts.

• Proving trivial lemmas and spelling out “straightforward” inferences.

• Finding the right lemmas and theorems to apply.

• Entering long formulas and expressions correctly, and adapting ordinary
mathematical notation to the formal notation in Isabelle.

Gradually, all these requirements will be ameliorated, as better libraries, auto-
mated tools, and interfaces are developed. On a personal note, we are entirely
convinced that, although there is a long road ahead, formal verification of math-
ematics will inevitably become commonplace. Getting to that point will require
both theoretical and practical ingenuity, but we do not see any conceptual hur-
dles.3

4 Thoughts on the formalization

In this section, we will discuss features of the formalization that we feel are wor-
thy of discussion, either because they represent novel and successful solutions to
general problems, or (more commonly) because they indicate aspects of formal
mathematical verification where better support is possible.

4.1 Asymptotics

One of our earliest tasks in the formalization was to develop a library to support
the requisite calculations with big O expressions. To that end, we gave the
expression f = O(g) the strict reading ∃C ∀x (|f(x)| ≤ C|g(x)|), and followed
the common practice of taking O(g) to be the set of all functions with the
requisite rate of growth, i.e.

O(g) = {f | ∃C ∀x (|f(x)| ≤ C|g(x)|)}.

We then read the “equality” in f = O(g) as the element-of relation, ∈.
Note that these expressions make sense for any function type for which the

codomain is an ordered ring. Isabelle’s axiomatic type classes made it possible to
develop the library fully generally. We were able to lift operations like addition
and multiplication to such types, defining f + g to denote the pointwise sum,
λx.(f(x) + g(x)). Similarly, given a set B of elements of a type that supports
addition, we defined

a+o B = {c | ∃b ∈ B (c = a+ b)}.

3For further speculation along these lines, see the preliminary notes [4].

12



We also defined a =o B to be alternative input syntax for a ∈ B. This gave
expressions like f =o g +o O(h) the intended meaning. In mathematical texts,
convention dictates that in an expression like x2 +3x = x2 +O(x), the terms are
to be interpreted as functions of x; in Isabelle we had to use lambda notation
to make this explicit. Thus, the expression above would be entered

(λx. x^2 + 3 * x) =o (λx. x^2) +o O(λx. x)

This should help the reader make sense of the formalizations presented in Sec-
tion 3.2.

An early version of our big O library was presented at IJCAR [5]. That
version is nonetheless fairly close to the version used in the proof of the prime
number theorem described here, as well as a version that is scheduled for the
2005 release of Isabelle.4

There is one feature of our library that seems to be less than optimal, and
resulted in a good deal of tedium. With our definition, a statement like λx. x+
1 = O(λx. x2) is false when the variables range over the natural numbers, since
x2 is equal to 0 when x is 0. Often one wants to restrict one’s attention to
strictly positive natural numbers, or nonnegative real numbers. There are four
ways one can do this:

• Define new types for the strictly positive natural numbers, or nonnegative
real numbers, and state the identities for those types.

• Formalize the notion “f = O(g) on S.”

• Formalize the notion “f = O(g) eventually.”

• Replace x by x + 1 in the first case, and by |x| in the second case, to
make the identities correct. For example, “f(|x|) = O(|x|3)” expresses
that f(x) = O(x3) on the nonnegative reals. Various similar tinkerings
are effective; for example, the relationship intended in the example above
is probably best expressed as λx. x+ 1 = O(λx. x2 + 1).

These various options are discussed in the IJCAR paper [5], and all come at
a cost. For example, the first requires annoying casts, say, between positive
natural numbers, and natural numbers. The second requires carrying around
a set S in every formula, and both the second and third require additional
work when composing expressions or reasoning about sums (roughly, one has to
make sure that the range of a function lies in the domain where an asymptotic
estimate is valid).

In our formalization, we chose the fourth route, which explains the numerous
occurrences of +1 and abs in the statements in Section 3.2. This often made

4Improvements in the more recent versions include better and more general theorems in-
volving summations, theorems to handle composition of big O equations, and support for
reasoning about asymptotic inequalities. Also, in the most recent version, we have dispensed
with expressions of the form O(S), where S is a set of functions. It seems that uses of these
are easily eliminable, and having O notation for both functions and sets of functions led to
annoying type ambiguities.

13



some of the more complex calculations painfully tedious, forcing us, for example,
the following “helper” lemma in Selberg:

lemma aux: "1 <= z =⇒ natfloor(abs(z - 1)) + 1 = natfloor z"

On the general principle that formalization goes most smoothly when the for-
malization is as close as possible to the informal text, it is probably worth
extending the library in the ways described above. We do not have a good
sense, however, as to how much this would have simplified our task.

Donnelly and Avigad have designed a decision procedure for entailments
between linear big O equations, and have obtained a prototype implementation
(though we have not incorporated it into the Isabelle framework). This would
eliminate the need for helper lemmas like the following:

lemma aux5: "f + g =o h +o O(k::’a=>(’b::ordered_ring)) =⇒

g + l =o h +o O(k) =⇒ f =o l +o O(k)"

We believe calculations going beyond the linear fragment would also benefit
from a better handling of monotonicity, just as is needed to support ordinary
calculations with inequalities, as described in the next section.

4.2 Calculations with real numbers

One salient feature of the Selberg proof is the amount of calculation involved.
The dramatic increase in the length of the formalization of the final part of the
proof (5 pages in Shapiro, compared to 89 or so in the formal version) is directly
attributable to the need to spell out calculations involving field operations, log-
arithms and exponentiation, the greatest and least integer functions (“ceiling”
and “floor”), and so on. The textbook calculations themselves were complex;
but then each textbook inference had to be expanded, by hand, to what was
often a long sequence of entirely straightforward inferences.

Of course, Isabelle does provide some automated support. For example,
the simplifier employs a form of ordered rewriting for operations, like addition
and multiplication, that are associative and commutative. This puts terms
involving these operations into canonical normal forms, thereby making it easy
to verify equality of terms that differ up to such rewriting. More complex
equalities can similarly be obtained by simplifying with appropriate rewrite
rules, such as various forms of distributivity in a ring or identities for logarithms
and exponents.

Much of the work in the final stages of the proof, however, involved verifying
inequalities between expressions. Isabelle’s linear arithmetic package is complete
for reasoning about inequalities between linear expressions in the integers and
reals, i.e. validities that depend only on the linear fragment of these theories.
But, many of the calculations went just beyond that, at which point we were
stuck manipulating expressions by hand and applying low-level inferences.

As a simple example, part of one of the long proofs in PrimeNumberTheorem
required verifying that

(1 +
ε

3(C + 3)
) · n < Kx

14



using the following hypotheses:

n ≤ (K/2)x

0 < C

0 < ε < 1

The conclusion is easily obtained by noting that 1 + ε
3(C+3) is strictly less than

2, and so the product with n is strictly less than 2(K/2)x = Kx. But spelling
out the details requires, for one thing, invoking the relevant monotonicity rules
for addition, multiplication, and division. The last two, in turn, require verify-
ing that the relevant terms are positive. Furthermore, getting the calculation
to go through can require explicitly specifying terms like 2(K/2)x (which can
be simplified to Kx), or, in other contexts, using rules like associativity or
commutativity to manipulate terms into the the forms required by the rules.

The file PrimeNumberTheorem consists of a litany of such calculations. This
required us to have names like “mult-left-mono” “add-pos-nonneg,” “order-
le-less-trans,” “exp-less-cancel-iff,” “pos-divide-le-eq” at our fingertips, or to
search for them when they were needed. Furthermore, sign calculations had
a way of coming back to haunt us. For example, verifying an inequality like
1/(1 + st) < 1/(1 + su) might require showing that the denominators are pos-
itive, which, in turns, might require verifying that s, t, and u are nonnegative;
but then showing st > su may again require verifying that s is positive. Since s
can be carried along in a chain of inequalities, such queries for sign information
can keep coming back. Isar made it easy to break out such facts, name them,
and reuse them as needed. But since we were usually working in a context where
obtaining the sign information was entirely straightforward, these concerns al-
ways felt like an annoying distraction from the interesting and truly difficult
parts of the calculations.

In short, inferences like the ones we have just described are commonly treated
as “obvious” in ordinary mathematical texts, and it would be nice if mechanized
proof assistants could recognize them as such. Decision procedures that are
stronger than linear arithmetic are available; for example, a proof-producing
decision procedure for real-closed fields has recently been implemented in HOL-
light [13]. But for calculations like the one above, computing sequences of partial
derivatives, as decision procedures for the real closed fields are required to do, is
arguably unnecessary and inefficient. Furthermore, decision procedures for real
closed fields cannot be extended, say, to handle exponentiation and logarithms;
and adding a generic monotone function, or trigonometric functions, or the floor
function, renders the full theory undecidable.

Thus, in contexts similar to ours, we expect that principled heuristic pro-
cedures will be most effective. Roughly, one simply needs to chain backwards
through the obvious rules in a sensible way. There are stumbling blocks, how-
ever. For one thing, excessive case splits can lead to exponential blowup; e.g. one
can show st > 0 by showing that s and t are either both strictly positive or
strictly negative. Other inferences are similarly nondeterministic: one can show
r+ s+ t > 0 by showing that two of the terms are nonnegative and the third is

15



strictly positive, and one can show r+ s < t+ u+ v+w, say, by showing r < u,
s ≤ t+ v, and 0 ≤ w.

As far as case splits are concerned, we suspect that they are rarely needed
to establish “obvious” facts; for example, in straightforward calculations, the
necessary sign information is typically available. As far as the second sort of
nondeterminism is concerned, notice that the procedures for linear arithmetic
are effective in drawing the requisite conclusions from available hypotheses; this
is a reflection that of the fact that the theory of the real numbers with addition
(and, say, multiplication by rational constants) is decidable.

The analogous theory of the reals with multiplication is also decidable. To see
this, observe that the structure consisting of the strictly positive real numbers
with multiplication is isomorphic to the structure of the real numbers with
addition, and so the usual procedures for linear arithmetic carry over. More
generally, by introducing case splits on the signs of the basic terms, one can
reduce the multiplicative fragment of the reals to the previous case.

In short, when the signs of the relevant terms are known, there are straight-
forward and effective methods of deriving inequalities in the additive and mul-
tiplicative fragments. This suggests that what is really needed is a principled
method of amalgamating such “local” procedures, together with, say, proce-
dures that make use of monotonicity and sign properties of logarithms and
exponentiation. The well-known Nelson-Oppen procedure provides a method
of amalgamating decision procedures for disjoint theories that share only the
equality symbol in their common language; but these methods fail for theories
that share an inequality symbol when one adds, say, rational constants to the
language, which is necessary to render such combinations nontrivial. We be-
lieve that there are principled ways, however, of extending the Nelson-Oppen
framework to obtain useful heuristic procedures. This possibility is explored in
Avigad and Friedman [6].

4.3 Casting between domains

In our formalization, we found that the most natural way to establish basic
properties of the functions θ, ψ, and π, as well as Chebyshev’s theorems, was
to treat them as functions from the natural numbers to the reals, rather them
as functions from the reals to the reals. Either way, however, it is clear that the
relevant proofs have to use the embedding of the natural numbers into the reals
in an essential way. Since the µ function takes positive and negative values, we
were also forced to deal with integers as soon as µ came into play. In short,
our proof of the prime number theorem inevitably involved combining reasoning
about the natural numbers, integers, and real numbers effectively; and this, in
turn, involved frequent casting between the various domains.

We tended to address such needs as they arose, in an ad-hoc way. For
example, the version of the fundamental theorem of arithmetic that we inherited
from prior Isabelle distributions asserts that every positive natural number can
be written uniquely as the product of an increasing list of primes. Developing
properties of the radical function required being able to express the unique

16



factorization theorem in the more natural form that every positive number is
the product of the primes that divide it, raised to the appropriate multiplicity;
i.e. the fact that for every n > 0,

n =
∏

p|n

pmultp(n),

where multp(n) denotes the multiplicity of p in n. We also needed, at our
disposal, things like the fact that n divides m if and only if for every prime
number p, the multiplicity of p in n is less than or equal to the multiplicity of p in
m. Thus, early on, we faced the dual tasks of translating the unique factorization
theorem from a statement about positive natural numbers to positive integers,
and developing a good theory of multiplicity in that setting. Later, when proving
Chebyshev’s theorems, we found that we needed to recast some of the facts about
multiplicity to statements about natural numbers.

We faced similar headaches when we began serious calculations involving
natural numbers and the reals. In particular, as we proceeded we were forced
to develop a substantial theory of the floor and ceiling functions, including a
theory of their behavior vis-a-vis the various field operations. In calculations,
expressions sometimes involved objects of all three types, and we often had to
explicitly transport operations in or out of casts in order to apply a relevant
lemma.

When one extends a domain like the natural numbers to the integers, or
the integers to the real numbers, some operations are simply extended. For
example, properties of addition and multiplication of natural numbers carry all
the way through to the reals. On the other hand, one has new operations, like
subtraction on the integers and division in the real numbers, that are mirrored
imperfectly in the smaller domains. For example, subtraction on the integers
extends truncated subtraction x .− y on the natural numbers only when x ≥ y,
and division in the reals extends the function x div y on the integers or natural
numbers only when y divides x. Finally, there are facts that depend on the
choice of a left inverse to the embedding: for example, if n is an integer, x is a
real number, real is the embedding of the integers into the reals, and ⌊·⌋ denotes
the floor function from the reals to the integers, we have

(n ≤ ⌊x⌋) ≡ (real(n) ≤ x).

This is an example of what mathematicians call a Galois correspondence, and
category theorists call an adjunction, between the integers and the real numbers
with the ordering relation.

Our formalization of the prime number theorem involved a good deal of ma-
nipulation of expressions, by hand, using the three types of facts just described.
Many of these inferences should be handled automatically. After all, such issues
are transparent in mathematical texts; we carry out the necessary inferences
smoothly and unconsciously whenever we read an ordinary proof. The guiding
principle should be that anything that is transparent to us can be made trans-
parent to a mechanized proof assistant: we simply need to reflect on why we are

17



effectively able to combine domains in ordinary mathematical reasoning, and
codify that knowledge appropriately.

4.4 Combinatorial reasoning with sums

As described in Section 3.2, formalizing the prime number theorem involved a
good deal of combinatorial reasoning with sums and products. Thus, we had
to develop some basic theorems to support such reasoning, many of which have
since been moved into Isabelle’s HOL library. These include, for example,

lemma setsum_cartesian_product:

"(
∑

x∈A. (
∑

y∈B. f x y)) = (
∑

z∈A <*> B. f (fst z) (snd z))"

which allows one to view a double summation as a sum over a cartesian product.
A more interesting example is

lemma setsum_reindex:

"inj_on f B =⇒ (
∑

x∈f‘B. h x) = (
∑

x∈B. (h ◦ f)(x))"

which expresses that if f is an injective function on a set B, then summing h
over the image of B under f is the same as summing h◦f over B. In particular,
if f is a bijection from B to A, the second identity implies that summing h
over A is the same as summing h ◦ f over B. This type of “reindexing” is often
so transparent in mathematical arguments that when we first came across an
instance where we needed it (long ago, when proving quadratic reciprocity), it
took some thought to identify the relevant principle. It is needed, for example,
to show

∑

d|n

h(n) =
∑

d|n

h(n/d),

using the fact that f(d) = n/d is a bijection from the set of divisors of n to
itself; or, for example, to show

∑

dd′=c

h(d, d′) =
∑

d|c

h(d, c/d),

using the fact that f(d) = 〈d, c/d〉 is a bijection from the set of divisors of c to
{〈d, d′〉 | dd′ = c}. The reindexing lemma is a discrete analogue of integration
by substitution, so it is likely that methods developed to support such inferences
will be more generally useful.

In Isabelle, if σ is any type, then σ set denotes the type of all subsets of σ.
The predicate “finite” is defined inductively for these subset types. Isabelle’s
summation operator takes a subset A of σ and a function f from σ to any
type with an appropriate notion of addition, and returns

∑

x∈A f(x). This
summation operator really only makes sense when A is a finite subset, so many
identities have to be restricted accordingly. (An alternative would be to define
a type of finite subsets of σ, with appropriate closure operations; but then work
would be required to translate properties of arbitrary subsets to properties of
finite subsets, or to mediate relationships between finite subsets and arbitrary

18



subsets.) This has the net effect that applying an identity involving a sum
or product often requires one to verify that the relevant sets are finite. This
difficulty is ameliorated by defining

∑

x∈A f(x) to be 0 when A is infinite, since
it then turns out that a number of identities hold in the unrestricted form. But
this fix is not universal, and so finiteness issues tend to pop up repeatedly when
one carries out a long calculation.

In short, at present, carrying out combinatorial calculations often requires
a number of straightforward verifications involving reindexing and finiteness.
Once again, these are inferences that are nearly transparent in ordinary math-
ematical texts, and so, by our general principle, we should expect mechanized
proof assistants to take care of them. As before, there are stumbling blocks;
for example, when reindexing is needed, the appropriate injection f has to be
pulled from the air. We expect, however, that in the types of inferences that
are commonly viewed as obvious, there are natural candidates for f . So this
is yet another domain where reflection and empirical work should allow us to
make proof assistants more usable.

4.5 Devising elementary proofs

Anyone who has undertaken serious work in formal mathematical verification
has faced the task of adapting an ordinary mathematical proof so that it can
be carried out using the libraries and resources available. When a proof uses
mathematical “machinery” that is unavailable, one is faced with the choice of
expanding the background libraries to the point where one can take the orig-
inal proof at face value, or finding workarounds, say, by replacing the original
arguments with ones that are more elementary. The need to rewrite proofs in
such a way can be frustrating, but the task can also be oddly enjoyable: it poses
interesting puzzles, and enables one to better understand the relationship of the
advanced mathematical methods to the elementary substitutes. As more power-
ful mathematical libraries are developed, the need for elementary workarounds
will gradually fade, and with it, alas, one good reason for investing time in such
exercises.

Our decision to use Selberg’s proof rather than a complex-analytic one is an
instance of this phenomenon. To this day, we do not have a sense of how long it
would have taken to build up a complex-analysis library sufficient to formalize
one of the more common proofs of the prime number theorem, nor how much
easier a formal verification of the prime number theorem would have been in
the presence of such a library.

But similar issues arose even with respect to the mild uses of analysis re-
quired by the Selberg proof. Isabelle’s real library gave us a good theory of
limits, series, derivatives, and the basic transcendental functions, but it had
almost no theory of integration to speak of. Rather than develop such a theory,
we found that we were able to work around the mild uses of integration needed
in the Selberg proof.5 Often, we also had to search for quick patches to other

5Since the project began, Sebastian Skalberg managed to import the more extensive anal-

19



gaps in the underlying library. For the reader’s edification and entertainment,
we describe a few such workarounds here.

Recall that one of the fundamental identities we needed asserts

ln(1 + 1/n) = 1/n+O(1/n2).

This follows from the fact that ln(1 + x) is well approximated by x when x
is small, which, in turn, can be seen from the Maclaurin series for ln(1 + x),
or even the fact that the derivative of ln(1 + x) is equal to 1 at 0. But these
were among the few elementary properties of transcendental functions that were
missing from the real library. How could we work around this?

To be more specific: Fleuriot’s real library defined ex by the power series
ex =

∑∞
n=0 x

n/n!, and showed that ex is strictly increasing, e0 = 1, ex+y = exey

for every x and y, and the range of ex is exactly the set of positive reals. The
library then defines ln to be a left inverse to ex. The puzzle was to use these
facts to show that | ln(1 + x) − x| ≤ x2 when x is positive and small enough.

Here is the solution we hit upon. First, note that when x ≥ 0, ex ≥ 1 + x,
and so, x ≥ ln(1 + x). Replacing x by x2, we also have

ex2

≥ 1 + x2. (5)

On the other hand, the definition of ex can be used to show

ex ≤ 1 + x+ x2 (6)

when 0 ≤ x ≤ 1/2. From (5) and (6) we have

ex−x2

= ex/ex2

≤ (1 + x+ x2)/(1 + x2)

≤ 1 + x,

where the last inequality is easily obtained by multiplying through. Taking
logarithms of both sides, we have

x− x2 ≤ ln(1 + x) ≤ x

when 0 ≤ x ≤ 1/2, as required. In fact, a similar calculation yields bounds on
ln(1 + x) when x is negative and close to 0. This can be used to show that the
derivative of lnx is 1/x; the details are left to the reader.

For another example, consider the problem of showing that
∑∞

n=1 1/n2

converges. This follows immediately from the integral test:
∑∞

n=1 1/n2 ≤

ysis library from the HOL theorem prover to Isabelle. By the time that happened though, we
had already worked around most of the applications of analysis needed for the proof.

20



∫ ∞

1
1/x2 = 1. How can it be obtained otherwise? Answer: simply write

M
∑

n=1

1/n2 ≤ 1 +
M
∑

n=2

1/n(n− 1)

= 1 +

M
∑

n=2

(1/(n− 1) − 1/n)

= 1 + 1 − 1/M

≤ 2,

where the second equality relies on the fact that the preceding expression in-
volves a telescoping sum. Having to stop frequently to work out puzzles like
these helped us appreciate the immense power of the Newton-Leibniz calculus,
which provides uniform and mechanical methods for solving such problems. The
reader may wish to consider what can be done to show that the sum

∑∞
n=1 1/xa

is convergent for general values of a > 1, or even for the special case a = 3/2.
Fortunately, we did not need these facts.

Now consider the identity

∑

n≤x

1/n = ln x+O(1).

To obtain this, note that when x is positive integer we can write lnx as a
telescoping sum,

lnx =
∑

n≤x−1

(ln(n+ 1) − lnn)

=
∑

n≤x−1

ln(1 + 1/n)

=
∑

n≤x−1

1/n+O(
∑

n≤x

1/n2)

=
∑

n≤x

1/n+O(1).

We learned this trick from Cornaros and Dimitracopoulos [8]. In fact, a slight
refinement of the argument shows

∑

n≤x

1/n = lnx+ C +O(1/x)

for some constant, C. This constant is commonly known as Euler’s constant,
denoted by γ.

One last puzzle: how can one show that lnx/xa approaches 0, for any a > 0?
Here is our solution. First, note that we have lnx ≤ ln(1 + x) ≤ x for every
positive x. Thus we have

a lnx = lnxa ≤ xa,

21



for every positive x and a. Replacing a by a/2 and dividing both sides by axa/2,
we obtain lnx/xa ≤ 2/(axa/2). It is then easy to show that the right-hand-side
approaches 0 as x approaches infinity.

5 Conclusions

Our efforts show that formal verification of significant mathematical theorems
is possible, although more work is needed before the practice is likely to become
widespread. In an ideal situation, it would be possible to enter mathematical
text almost exactly as it appears in a careful and precise informal presentation,
and interactive proof systems would be able to verify inferences at that level.
Our formalization of the prime number theorem provides a case study that
clarifies some of the ways in which the current technology falls short of the
ideal.

The formal statements of theorems in Section 3.2 are notably less attractice
than their informal counterparts in Section 3.1. The difference is not merely
cosmetic; notation is an integral part of mathematics, and it is unreasonable to
expect the mathematical community to make notational sacrafices for mechani-
cal convenience. Integrating formal verification into mathematical practice will
therefore require us to take ordinary mathematical notation extremely seriously.

The biggest obstacle at present is the gap between those inferences that
ordinary mathematicians recognize as obvious, and those that can be verified
automatically by conventional proof assistants. We have suggested one strategy
for improvement, namely, to reflect on the capacities that enable us, in specific
domains, to verify textbook inferences, and then to formalize that understand-
ing. In particular, it seems that fairly straightforward support for reasoning
about inequalities between real numbers and casts between integers and real
numbers would have simplified our task substantially.

Progress in formal verification will require a broad but focused philosoph-
ical reflection on ordinary mathematical practice, together with robust formal
characterizations of that practice and sound engineering. As such, the field
represents an auspicious combination of theory and practice.

Acknowledgements. We are especially grateful to Tobias Nipkow and Larry
Paulson for continued support on this project. We are also grateful to them,
and to Freek Wiedijk and two anonymous referees, for comments on this paper.

References

[1] Tom M. Apostol. Introduction to analytic number theory. Springer-Verlag,
New York, 1976.

[2] Jeremy Avigad. Mathematics in Isabelle.
http://www.andrew.cmu.edu/user/avigad/isabelle/.

22



[3] Jeremy Avigad. Number theory and elementary arithmetic. Philosophia
Mathematica, 11:257–284, 2003.

[4] Jeremy Avigad. Notes on a formalization of the prime number theorem.
Technical Report CMU-PHIL-163, Carnegie Mellon University, 2004.

[5] Jeremy Avigad and Kevin Donnelly. Formalizing O notation in Is-
abelle/HOL. In David Basin and Michaël Rusinowitch, editors, Automated
Reasoning: second international joint conference, IJCAR 2004. Springer-
Verlag, 2004.

[6] Jeremy Avigad and Harvey Friedman. Combining decision procedures for
the reals. In preparation.

[7] Clemens Ballarin. Locales and locale expressions in Isabelle/Isar.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/packages/Isabelle
/doc/locales.pdf.

[8] C. Cornaros and C. Dimitracopoulos. The prime number theorem and
fragments of PA. Arch. Math. Logic, 33:265–281, 1994.

[9] Harold M. Edwards. Riemann’s zeta function. Dover Publications Inc.,
Mineola, NY, 2001. Reprint of the 1974 original [Academic Press, New
York].

[10] Thomas Hales. The flyspeck project fact sheet.
http://www.math.pitt.edu/∼thales/flyspeck/.

[11] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers.
Oxford, fifth edition, 1979.

[12] G. J. O. Jameson. The prime number theorem. Cambridge University Press,
Cambridge, 2003.

[13] Sean McLaughlin and John Harrison. A proof producing decision procedure
for real arithmetic. In Robert Nieuwenhuis, editor, Automated deduction
– CADE-20. 20th international conference on automated deduction, pages
295–314, Springer-Verlag, 2005.

[14] Melvyn B. Nathanson. Elementary methods in number theory. Springer-
Verlag, New York, 2000.

[15] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL.
A proof assistant for higher-order logic. Springer-Verlag, Berlin, 2002.

[16] Harold N. Shapiro. Introduction to the theory of numbers. John Wiley &
Sons Inc., New York, 1983.

[17] Markus Wenzel. Type classes and overloading in higher-order logic. In
E. Gunter and A. Felty, editors, Proceedings of the 10th international con-
ference on theorem proving in higher order logics (TPHOLs’97), pages 307–
322, Murray Hill, New Jersey, 1997.

23



[18] Markus Wenzel. Isabelle/Isar — a versatile environment for human-
readable formal proof documents. PhD thesis, Institut für Informatik, Tech-
nische Universität München, 2002.

[19] Freek Wiedijk. The seventeen provers of the world. Springer-Verlag, to
appear.

[20] The Isabelle theorem proving environment. Developed by Larry Paul-
son at Cambridge University and Tobias Nipkow at TU Munich.
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html.

[21] Proof general. http://proofgeneral.inf.ed.ac.uk/.

24


	Introduction
	Background
	The prime number theorem
	Isabelle

	Overview
	The Selberg proof
	Our formalization
	The effort involved

	Thoughts on the formalization
	Asymptotics
	Calculations with real numbers
	Casting between domains
	Combinatorial reasoning with sums
	Devising elementary proofs

	Conclusions

