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Abstract 

Research on adaptive rationality has focused principally on inference, judgment, 

and decision-making that lead to behaviors and actions. These processes typically 

require cognitive representations as input, and these representations must 

presumably be acquired via learning. Nonetheless, there has been little work on 

the nature of, and justification for, adaptively rational learning processes. In this 

paper, we argue that there are strong reasons to believe that some learning is 

adaptively rational in the same way as judgment and decision-making. Indeed, 

overall adaptive rationality can only properly be assessed for pairs of learning and 

decision processes. We thus present a formal framework for modeling such pairs 

of cognitive processes, and thereby assessing their adaptive rationality relative to 

the environment and the agent’s goals. We then use this high-level formal 

framework on specific cases by (a) demonstrating how natural formal constraints 

on decision-making can lead to substantive predictions about adaptively rational 

learning and representation; and (b) characterizing adaptively rational learning for 

fast-and-frugal one-reason decision-making. 

 

Keywords: adaptive rationality, bounded rationality, ecological rationality, heuristics, learning, 

representation, cognition  
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1. Introduction 

A core intuition of the bounded/adaptive rationality research programme is that 

cognitively limited individuals can nonetheless function rationally in an uncertain world by being 

appropriately “tuned” to their environment. That is, one way to act appropriately in the face of 

significant constraints is to use processes that are not necessarily reliable in all possible worlds, 

but are typically reliable in our world. The largest strand of this programme has argued that 

success is due to ‘fast and frugal’ heuristics that take advantage of both the structure of the 

environment, and also cognitive capacities and limitations of the organism, whether evolved or 

learned, that are rapid and require relatively little cognitive effort. There has been substantial 

debate about both the content and suitability of this conception of rationality (e.g., Gigerenzer, 

1996; Gigerenzer, Todd, & the ABC Research Group, 1999; Kahneman & Tversky, 1996; 

Samuels, Stich, & Bishop, 2002; Simon, 1976), and while these foundational debates are deeply 

important (we discuss them briefly in Section 2), our focus is primarily on questions that are 

internal to the framework. We largely take for granted that these heuristics are plausible and 

interesting, and ask about a particular, under-explored type. 

Many heuristics have been proposed in recent years for search, inference, judgment, and 

decision-making (e.g., Gigerenzer & Goldstein, 1999; Gigerenzer, et al., 1999; Goldstein & 

Gigerenzer, 2002; Hertwig, Hoffrage, & the ABC Research Group, 2012). A well-known 

example is Take The Best (TTB), a heuristic for multi-attribute decision-making problems (e.g. 

choosing which of two cities has the greatest population based on binary cues such as ‘being the 

state capitol’ or ‘having a university’). An agent makes a decision using TTB by searching 

through the available cues in order of their validity and choosing the option that is supported by 

the first (most valid) cue that discriminates between them. TTB is often supplemented with the 

Recognition Heuristic, which says that the first cue considered should always be whether the 
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agent even recognizes an option (Goldstein & Gigerenzer, 2002). Heuristics such as these almost 

always assume that the agent has cognitive representations that encode relevant aspects of the 

environment. For instance, TTB (at least in its initial formulation in Gigerenzer & Goldstein, 

1996) assumed that agents have a representation of the validity of each cue for the specific 

criterion in question. These representations are critical for the proper functioning of the heuristic, 

and presumably result from the cognitive agent learning about her environment from her past 

experiences and reasoning. But apart from some notable recent exceptions (e.g., Schooler & 

Anderson, 1997; Hills & Hertwig, 2010; Rieskamp & Otto, 2006; Todd & Dieckmann, 2005), 

these learning processes are rarely incorporated into models of the heuristics themselves.  

In this paper, we argue that learning deserves the same focus and attention from the 

bounded rationality programme as judgment and decision-making. Agents face many of the 

same constraints and opportunities while learning as they do while making decisions and 

inferences. In particular, learning by cognitively limited agents can be significantly improved 

when it is appropriately tuned to the environment and uses the evolved and acquired capacities 

of the cognitive agent. There are close interactions between learning and inference/decision-

making: the rationality of either depends in part on the other. Many claims that some particular 

inference or decision-making heuristic is adaptively rational depend implicitly on assumptions 

about the learning that occurred previously. For instance, the claim that TTB leads to good 

decision-making in compensatory environments depends implicitly on the assumption that the 

agent has correctly learned the cue orders (Dieckmann & Todd, 2012; Martignon & Hoffrage, 

1999; but see Katsikopoulos, Schooler, & Hertwig, 2010). At the same time, the effectiveness or 

rationality of particular learning processes depend in part on how the representations are used in 

future judgment and decision-making; a learning process that may be adaptively rational when 

used by TTB may be inadequate for other decision-making processes. 
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There are many issues surrounding adaptively rational learning, and this paper can only 

scratch the surface. We certainly do not intend anything in this paper to be the final word, as 

research on adaptively rational learning is only just beginning. To help frame the issues 

appropriately, Section 2 characterizes what adaptively rational learning even is, and why 

cognitive agents presumably employ it. Section 3 then argues that there are certain general 

features required for any model of adaptively rational learning. We then build a very high-level 

mathematical framework that includes those features. One key aspect of this framework is that 

we must make precise what “success” means for a learning heuristic in a given environment, and 

we argue that this depends critically on the pragmatic and epistemic goals of the learner. Section 

4 aims to make this high-level framework concrete by providing both general and particular ways 

to apply it for particular psychological cases. 

 

2. The nature of, and justification for, adaptively rational learning 

 The success of a decision-making heuristic depends critically on the availability of the 

right sort of information. It is common practice to ask how a decision-making heuristic operates 

in an environment, but we suggest that the question should be worded slightly differently, as the 

agent does not have direct access to the environment. We should instead ask how a decision-

making heuristic operates for a learner in an environment, where the information available to the 

heuristic must be learned or constructed based on limited evidence, time, and computational 

ability. This more complex question has sometimes been raised for particular domains, as in the 

course of research on TTB. The initial formulation of TTB (e.g. Gigerenzer & Goldstein, 1999) 

assumed that cue search was based on an accurate representation of the ecological validities of 

the cues, but controversy soon arose over whether people actually can and do learn cue validities 

(see, for example, Juslin & Persson, 2002; Newell, et al., 2004), and if not, whether TTB is really 
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as fast, frugal, and ecologically rational as it initially appeared. That is, one objection to TTB was 

that no adaptively rational learning counterpart had been provided for it. 

Several follow-up studies investigated how participants perform when they must learn 

about the cues on their own during decision-making and found that neither their search orders 

nor their ratings of cue “usefulness” matched the ecological validities that TTB assumed as input 

(Newell, et al., 2004; Dieckmann & Todd, 2012). More generally, some researchers contended 

that the computational and memory requirements for learning cue validities are too complex for 

bounded agents (Juslin & Persson, 2002; Newell, et al., 2004; Dougherty, Franco-Watkins, & 

Thomas, 2008). Gigerenzer, et al. (1999) had initially proposed that people could learn the cue 

validities by tracking the frequency of correct responses among the cases in which the cue 

discriminates, but Newell, et al. (2004) demonstrated that this requires a fairly complex set of 

computations. For each cue, the learner has to track the frequency of correct discriminations as 

well as the frequency of cases in which the cue discriminates, and then compute a percentage 

from these two frequencies. Newell, et al. proposed instead that people use the “success rate,” 

which measures the proportion of correct decisions that would be made by using a cue on its 

own. Success rate incorporates both the validity and ‘discrimination rate’ of a cue, and thus 

penalizes cues that rarely help the agent choose between two options. More importantly for our 

purposes, the success rate ordering (which is all that is necessary for determining search order) can 

be learned by monitoring only the frequency of correct discriminations for each cue. Simulations 

of TTB with various search orders have revealed that cue validity is only one of many orders that 

produces good accuracy on the task (Martignon & Hoffrage, 1999; Katsikopoulous, et al., 2010). 

A further set of simulations (Todd & Dieckmann, 2005; Dieckmann & Todd, 2012) focused on 

simple heuristics for learning cue search orders ‘online’ during decision making, and 
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demonstrated that simple “swap” and “tally” rules can result in remarkably good performance 

despite their computational simplicity.  

We thus have an example of how learning could be approached from the adaptive 

rationality framework; this section asks whether we can generalize from it to broader morals. As 

this example suggests, learning can matter in two different ways for adaptive rationality. First, the 

learning process determines the information—type, scope, and representation—that is actually 

available to the decision-maker in the relevant environments. Decision-making methods almost 

always require certain types of information to be provided as input, and so the actual cognitive 

representations produced by the learning process help determine whether certain decision-

making methods are even possible for a cognitive agent. More generally, an evaluation of the 

rationality of a decision making process is only possible if we know which features of the 

environment are represented at the time of judgment or decision. Second, the extent to which 

the learning mechanism is itself fast and frugal matters for the agent’s overall adaptive rationality. 

Adaptive rationality is a property of cognitive agents more generally, not just particular cognitive 

processes. If a decision-making heuristic only performs well when the learner has exhaustive 

evidence and performs extensive computations, then this heuristic cannot contribute to fast and 

frugal cognition regardless of how it appears on its own. Adaptive rationality requires not only 

that inference and decision-making be fast and frugal given some representations, but also that 

those representations be acquired through fast and frugal learning.  

These connections are arguably unsurprising since learning itself involves certain types of 

decision-making, such as “deciding” which cognitive representation to encode given perceptual 

evidence. These decisions are quite different than those usually studied in the adaptive rationality 

programme, however, as they do not directly manifest in observable behavior. And while the 

importance of learning has been studied in particular cases (e.g., for the performance of TTB), 
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we arguably lack a general framework for analyzing what makes learning adaptively rational. We 

suggest that learning methods are not free from the constraints and limits that plague other types 

of inference and decision-making, and so all of the arguments in favor of adaptively rational 

inference and decision-making apply equally well to the case of learning. We here consider three 

arguments that notions of adaptive rationality could perhaps provide a fruitful lens through 

which to understand how we learn cognitive representations. 

First, as with decision-making, certain standard assumptions of axiomatically rational1 

learning methods are violated in many real-world learning situations, yet people are often able to 

learn in sensible ways in these cases. In particular, essentially all axiomatically rational learning 

methods assume that there are both a fixed and known space of possibilities (a “hypothesis 

space”), and also known and computable functions connecting those possibilities with the 

evidence that the learner might see. Real-world learning, however, typically requires that one 

leave the door open to the possibility of “something else” that has not previously been considered 

or specified, and so the possibility space cannot necessarily be specified in advance of learning. 

Moreover, even if we have well-specified possibilities, we often lack the relevant information to 

fully specify or compute the implications of particular possible hypotheses. Although 

axiomatically rational learning methods have appealing formal and mathematical properties, 

they gain their justification only by virtue of provable properties, not probable or possible ones. 

Real-world learning rarely provides the resources to obtain such guarantees, and so we should 

arguably consider other ways to analyze the rationality of learning. 

A second argument for focusing on adaptively rational learning methods arises from 

general observations involving overfitting and the well-known bias/variance tradeoff (Geman, 

Bienenstock, & Doursat, 1992; see Gigerenzer & Brighton, 2009 for connections with cognitive 
                                                
1 That is, methods for which there are proofs of their asymptotic and/or short-run reliability. 
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processes). A presumably necessary condition for the axiomatic rationality of any learning 

method is that it yields the correct answer, if possible, given sufficient data. Put more precisely, 

axiomatically rational learning methods must be unbiased, as any bias will lead to errors in the 

long-run. In addition, the possibility space for a learning method must include as much 

complexity as in any possible learning situation, including those in which we receive arbitrarily 

large amounts of data. These two requirements jointly imply that axiomatically rational learning 

methods will typically exhibit substantial variance when provided only limited evidence. That is, 

such methods will almost always be overly sensitive to chance variations in the input data: 

different (small) random samples from the same “ground truth” can yield wildly different outputs 

for the learning method. Real-world learning situations are frequently characterized by limited 

evidence, sometimes only a single datapoint. It can thus sometimes be quite damaging to the 

learner to use an axiomatically rational learning method, precisely because the high variance of 

such methods on small evidence sets can translate into large numbers of errors. Instead, it is often 

in the learner’s best interests to use a method that is perhaps biased, but also has substantially 

reduced variance. The question of where to stand on this bias-variance tradeoff in learning can 

only be asked, however, if we adopt the standards of adaptive, rather than axiomatic, rationality. 

This last observation points towards the third argument, which suggests that the “proper” 

standard of rationality is external (e.g., successful actions and outcomes) rather than internal (e.g., 

valid reasoning), and so adaptive rationality is the proper way to evaluate all cognitive processes, 

including learning (see discussions in Gigerenzer, et al., 1999; Samuels, et al., 2002; Simon, 1976). 

There is a voluminous literature about arguments of this type (Kahneman & Tversky, 1996; 

Gigerenzer, 1996) as well as attempts to better understand the different types of rationality (e.g., 

Hammond, 1996), and we do not wish to get bogged down in those issues. Nonetheless, we 
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suggest that these arguments are, while not completely unproblematic, sufficiently plausible that 

we should see how far an investigation into adaptively rational learning can take us.  

Of course, one might object that learning does not directly affect the external world in the 

same way as decision-making, and so it cannot be evaluated according to an external standard of 

rationality. Learning might be thought to interface with the world only indirectly: the output of 

learning is not an action that is successful or unsuccessful, but rather a representation that is 

inefficacious on its own. That is, one might object that there is no “external manifestation” on 

which to evaluate the adaptive rationality of learning. 

This objection raises serious concerns, but complementary ones arise equally for inference 

and decision-making: those cognitive processes require cognitive representations as input, and so 

they seem to lack anything appropriately “external” on the input side. In general, any external 

standard of rationality should properly apply to pairs of learning and inference/decision 

processes. In practice, we (as cognitive scientists) typically fix one method or the other as 

“obvious” and then focus on the other member of the pair, but this is a substantive choice. For 

any particular learning method, there will be inference/decision methods for which the resulting 

pair yields externally irrational behavior, and similarly for any particular inference/decision 

method. Thus, to the extent that one endorses arguments in favor of an external standard of 

rationality, one must accept that this standard applies equally well to learning. Decision-making 

may mediate the effect of learning on actions and outcomes, but it does not thereby eliminate 

learning’s impact. External rationality applies to learning-inference/decision pairs if to anything 

at all, and so we must consider whether learning also employs processes that embody adaptive 

rationality. Of course, all of these arguments leave open the exact form and content of adaptively 

rational learning, and so we now turn to better understanding it. 
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3. A general framework for adaptively rational learning 

A learning process will be adaptively rational to the extent that bounded individuals can 

use it to achieve their goals in appropriate environments with limited and uncertain evidence. As 

just noted, this assessment depends in part on the accompanying decision-making process; for 

now, we assume a fixed judgment or decision-making process and consider the “choice” of a 

relevant process later. Learning and decision-making involve many of the same challenges (e.g., 

limited and uncertain evidence, time constraints), so we propose that agents employ learning 

heuristics with the same qualitative features as the heuristics found in search, inference, and 

decision-making. First, the processes should be fast and frugal; that is, they should not require too 

much evidence or computation in order to draw useful conclusions. There is significant 

ambiguity about exactly how to measure evidential and computational costs, but we leave those 

issues aside. 

Second, adaptively rational learning should take advantage of evolved and acquired 

capacities. In some cases, these “building blocks” may be the same as those proposed for 

decision-making heuristics (e.g., counting, frequency monitoring, imitation), though learning may 

also employ capacities that have not previously been discussed. In particular, perceptual and 

attentional processes will presumably be important for determining what evidence is available to 

the agent at a given time. It is also possible that relatively automatic and unconscious learning 

processes (e.g., sequence learning, reward learning, association formation, recognition) can 

provide input to more complex inferential processes. Although many papers in the adaptive 

rationality programme focus on evolved capacities, we are deliberately agnostic about whether 

the relevant cognitive capacities have a phylogenetic (i.e., evolutionary) or ontogenetic (i.e., 

individual learning) basis. Organisms can certainly learn how to learn, and so we see no reason to 

assume that only evolved capacities are relevant. In our view, what matters for adaptively 
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rational learning is that it involves the reuse of capacities for multiple purposes, rather than 

assuming that there is an entirely new learning capacity for each learning challenge. 

The final criterion is that the heuristic must be ecologically rational; that is, it must allow 

the agent to achieve her goals in her environment. As discussed above, this poses a significant 

conceptual challenge because the outputs of a learning process do not naturally interface with the 

environment in the same way as the outputs of a decision process. One response is to assume that 

the ecological rationality of learning is measured by its ability to arrive at true conclusions in the 

relevant environments. Much of the learning literature implicitly assumes this standard, and 

heuristics have been defended using this criterion. For instance, people appear to use order of 

observations as a cue to causal structure (Lagnado, Waldmann, Hagmayer, & Sloman, 2007), 

even when they know that, in the artificial setting of the psychology lab, observational order may 

not follow the true sequence of events (Lagnado & Sloman, 2006; Sloman & Lagnado, 2005). 

This ‘temporal sequence’ heuristic plausibly takes advantage of our evolved capacity to detect 

temporal sequences, draws conclusions based on only a small set of observations, and usually 

produces accurate mental representations in environments (like ours) where observations of 

causes typically precede observations of effects. Another example is Monte Carlo approximation 

of Bayesian inference (e.g., Denison, Bonawitz, Gopnik, & Griffiths, 2013; Shi, Griffiths, 

Feldman, & Sanborn, 2010; Bonawitz, Denison, Chen, Gopnik, & Griffiths, 2011), which may 

show how a learning process could typically produce correct conclusions by approximating (in a 

bounded way) complex functions using simple evolved capacities (e.g., exemplar-based 

reasoning).  

We contend, however, that defining ecological rationality as the propensity to arrive at 

true conclusions about the environment is an error, as it presupposes that agents have only 

epistemic goals for learning (if those are even possible; Danks, in press). Cognitive agents will 
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almost always have at least some pragmatic goals: to achieve the best outcome, receive as much 

money as possible, appear competent to others, and so forth. Moreover, there are various 

psychological results that suggest that these pragmatic goals can have a significant impact on the 

cognitive representations that people learn, such as in concept learning (e.g., Bailenson, Shum, 

Atran, Medin, & Coley, 2002; Chin-Parker & Ross, 2002; Hoffman & Rehder, 2010; Markman 

& Ross, 2003; Ross, 1997, 2000; see also Danks, 2014). The adaptive rationality perspective 

provides the conceptual resources to incorporate these pragmatic goals. In particular, learning 

for pragmatic goals can be successful even if it results in incomplete or inaccurate representations 

of the world; the truth is not always best, or even necessary, for success at a task. Of course, 

randomly generated cognitive representations typically will not lead to success either, but the 

adaptive rationality framework allows us to begin to ask these questions in a principled way.  

We now turn to the challenge of mathematically representing adaptively rational 

learning. We recognize that there might be alternative ways to capture adaptively rational 

learning formally, but the precise mathematical details are less important than the qualitative 

pieces that are required.  

In general, the success of learning is determined by whether the acquired representations 

allow the agent to achieve her goals—epistemic and pragmatic—in subsequent inference and 

decision-making. The overall picture that we adopt can be expressed graphically as: World → 

Evidence → Cognitive representation → Action. That is, the world generates evidence from which the 

agent generates a cognitive representation (via learning) that subserves action (via inference and 

decision-making). In this model, the Evidence → Cognitive Representation link denotes the learning 

method L; and Cognitive Representation → Action refers to the inference or decision process D. This 

simplistic picture can be complicated in many different ways, such as including an Action → 
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Evidence connection to capture the ways in which our decisions shape the evidence that we see in 

the future. Nonetheless, this simple picture is already sufficient to reveal some of the complexities 

of adaptively rational learning, such as evaluating the adaptive rationality of actions given the 

world or evidence by considering <L, D> pairs, rather than either one in isolation. Finally, we 

must include a representation of an agent’s goal G, which we operationalize through a value 

function VG(a, w) that depends on the particular action a and world w. For example, if the goal is 

simply to learn some feature of the world, then the value function would be maximal when a 

“matches” w in the relevant respects. 

Given this general setup, we can mathematically evaluate any particular <L, D> pair of 

learning and decision processes. Learning given evidence e will yield cognitive representations 

that are used by the decision process, along with knowledge of the goal value function, to 

produce an action. Moreover, these different learning and decision processes are presumably all 

probabilistic: P(a | e) = D(L(e), VG). Both L and D can be generalized in obvious ways to include 

background knowledge; in particular, L can depend on the goal value function, if it is known 

prior to learning. For a fixed set of goals G and probability distributions over those goals and the 

world-states, the expected value of a particular <L, D> pair can be expressed as: 

 

We previously mentioned cognitive representations, but they do not explicitly appear in this 

equation. In this particular formulation, they play only an implicit role: the space of cognitive 

representations determines the amount of information (about e) that can possibly be transmitted 

through L(e) to the decision process D. As we consider more specific situations, they will figure 

more prominently. 
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The expected value equation given above provides a general standard by which to 

evaluate the adaptive rationality of particular <L, D> pairs. A wide range of current learning and 

decision methods can be represented in it with minimal adjustments or modification. At the same 

time, this equation is arguably too general: it is rather opaque, and it is hard to see how to draw 

any general conclusions from it. We thus consider several more specific cases in the next section 

to show both how to evaluate the adaptive rationality of learning methods, and also the 

distinctive predictions of such an analysis. 

 

4. Adaptive rationality in the particular 

This section explores both general formal constraints and substantive situation-specific 

ones that help make this framework more concrete and usable. The first half of this section is 

more mathematical in nature, the second half more psychological. For the mathematical 

investigation, we first explicitly model the space of possible cognitive representations R. A 

particular cognitive representation r can be understood to encode a “way that the world could 

be.” Moreover, we assume that there is typically a determinate best (for a goal) action for any 

particular state of the world. There may be unusual circumstances in which indeterministic 

choice is best even when the exact state of the world is known (e.g., the use of a truly mixed 

strategy in a game), but most cases of uncertainty about actions arise precisely because we do not 

actually know how the world is. These observations suggest a natural constraint on the decision 

function D, if the cognitive agent’s uncertainty is expressed by probabilities over cognitive 

representations (i.e., L(e) = P(R)): 
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Determinism: Recall D(P(R), VG) = P(A). If P(r) = 1, then for some a ∈ A, D(P(R), Vg) = 1. 

For convenience, we write D(r, VG) = a to indicate that the cognitive 

representation r dictates action a (given goal G). 

In other words, the decision-procedure dictates a unique best action for every different goal and 

“way the world could be.” At the same time, we might expect that there are no “interactions” in 

this uncertainty: the decision probability of an action a should be simply the probability of the 

cognitive representations that (deterministically) would lead to a, if they were fully believed or 

endorsed. More precisely: 

Composition: D(P(R), Vg) = P(A) such that P(a) = P({r : D(r, Vg) = a}). 

Determinism and Composition are natural constraints on the decision function, and 

many standard decision algorithms, such as “choose the option that maximizes expected utility,” 

satisfy these two properties. More interestingly for our focus, a decision function satisfying 

Determinism and Composition naturally groups together cognitive representations that are “the 

same” with respect to the decision process. More precisely, if D satisfies Determinism and 

Composition and D(r1, VG) = D(r2, VG), then the cognitive agent’s decision will be indifferent over 

reallocation of probabilities between r1 and r2; only the sum of those probabilities are relevant for 

decision-making. For example, if I am choosing between two urns with the goal of getting a black 

ball, and the only representations with positive probability are r1 = “Urn 1 has 75% black balls & 

Urn 2 has 60% black balls” and r2 = “Urn 1 has 70% black balls & Urn 2 has 50% black balls,” 

then the relative probabilities assigned to r1 and r2 should not matter; I will choose Urn 1 

regardless. Formally, any D that satisfies Determinism and Composition induces a partition of the 

cognitive representations R—that is, a division of R into disjoint subsets—where two 

representations ri and rj are in the same partition element if and only if D(ri, VG) = D(rj, VG). More 
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colloquially, each partition element is a set with just those representations that all lead to the 

same action, and so are indistinguishable with respect to the decision process. 

This partitioning of the cognitive representations yields freedom in an adaptively rational 

learning process. If D does not distinguish between r1 and r2 with respect to goal G, then learning 

methods that differ only in output about r1 and r2 will exhibit the same performance, and so other 

factors can be relevant in determining their adaptive rationality. More precisely, we can talk 

about two learning methods L1 and L2 being indistinguishable relative to a partition π for a 

decision process D just when, for each possible piece of evidence, the outputs of L1 and L2 are the 

same when assessed at the level of elements of π.2 If an agent’s cognitive representations are at 

the level of partition elements,3 then she should (on representational grounds) be indifferent 

between L1 and L2, and so one learning process can be preferred for more pragmatic reasons, 

such as which method exploits evolved or acquired capacities. This conclusion is at odds with 

many analyses of the rationality of particular learning processes, at least if the cognitive 

representations in R are assumed to be sufficiently fine-grained. For example, most arguments 

that Bayesian updating provides a rational learning method will not apply to alternative learning 

methods that are indistinguishable relative to a partition, even though those methods may be 

equally adaptively rational (and perhaps more so if we take into account, for example, the time the 

brain would need to complete each computation). Moreover, for a particular goal G and decision 

process D that satisfies Determinism and Composition, the partition induced by D and VG is 

naturally privileged and so we see how learning and decision processes start to fit together: the 

goal and decision tell us which distinctions matter, and learning tries to extract and represent 

those distinctions from the environment. 
                                                
2 In particular, the sums of probabilities within each partition element must be the same. 
3 There are many ways to have “representations at the level of partition elements,” including 
both coarsened representations and inattention to particular distinctions in the world. 
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Importantly, this way of thinking about learning provides us with a principled way to 

determine how one ought—given a goal G and decision process D—to coarse-grain one’s 

cognitive representations. The representations in R can potentially be quite fine-grained, and so 

more specific than is required for either learning or decision. For example, when learning about 

the two urns, a seemingly natural R consists of all ordered pairs of numbers between zero and 

100, <U1, U2>, representing the percentages of black balls in Urn 1 and Urn 2. If, however, our 

goal is to choose an urn so as to pick a black ball, then only three cognitive representations are 

decision-relevant: “Urn 1 has more black balls than Urn 2”; “Urn 2 has more black balls than 

Urn 1”; and “Urn 1 has the same number of black balls as Urn 2”. Formally, the natural decision 

process partitions the ordered pairs of R into three subsets: (i) those in which U1 > U2; (ii) those in 

which U1 < U2; and (iii) those in which U1 = U2. There is no need for the agent to include any 

finer distinctions in her cognitive representations. Many different learning processes will be 

equally effective for this goal and decision process, and so adaptive rationality may depend 

deeply on other factors.  

The preceding discussion focused on the case of a single, known goal, but we often have 

multiple goals or uncertainty about our future goals. If there are multiple goals, then the 

normative π depends partly on whether there is a cost to use partitions π with more elements; in 

psychological terms, is it costly for the cognitive agent to represent more possibilities? If there is 

no such cost, then the optimal partition may well be the one in which each element contains 

exactly one cognitive representation (i.e., nothing gets grouped together).4 More generally, 

though, there might plausibly be a “cost” (of one sort or another) to using a partition with many 

elements. In that case, the adaptively rational way to coarse-grain one’s cognitive representations 
                                                
4 More precisely, for each representation r, let Or be the vector of “optimal responses” for the N 
goals (i.e., Or = <a1, …, aN> where ai = D(r, VGi)). It is straightforward to prove: if all partitions are 
equally costly, then r and s are in the same element of the optimal partition if and only if Or = Os. 
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will depend on a complicated trade-off between (a) this cost; and (b) having a partition that is 

sufficiently rich to capture the distinctions that matter for the different goals (with their different 

likelihoods of occurring). In either case, we can start to see how this approach can lead to 

interesting predictions about how adaptively rational learners should ignore some distinctions in 

the world, depending on their goals. That is, adaptively rational learners can be normatively 

justified in ignoring learnable differences in the environment, as long as those differences do not 

make a difference for foreseeable decisions. 

We can also use this general framework to better understand particular proposed 

heuristics. We focus here on the psychological problem of learning for one-reason decision-

making on a binary choice task. In particular, what representations ought we learn and use with 

the TTB heuristic? In the standard TTB heuristic (Gigerenzer & Goldstein, 1996) the cognitive 

agent searches through cues sequentially in order of their ecological (i.e. population-level) validity 

(search rule), stops when a cue is found that discriminates between the two items (stop rule), and 

chooses between the items based solely on the discriminating cue (decision rule). Since the 

ecological validities are not known but must be learned, we consider a slight modification—call it 

TTB*—in which the search rule depends on the (uncertain) cognitive representations P(R).5 This 

modification allows us to analyze which features of the cognitive representation are necessary for 

TTB* to deliver ecological success without making a priori assumptions about the structure of the 

representations themselves.  

TTB* satisfies Determinism and Composition if we add a few small constraints. Recall 

that a decision procedure satisfies Determinism whenever each possible representation r of the 

world leads deterministically to a specific action. This can be violated by TTB* if two cues had 

identical represented usefulness. To avoid this problem, we assume that no fine-grained 
                                                
5 R could be the space of possible cue validities or another similar representational structure. 
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representation encodes two cues as having exactly equal usefulness; alternately, we could 

incorporate a deterministic tie-breaking mechanism. Importantly, this assumption does not imply 

that the agent will always search the cues in a deterministic order, as the agent may have 

uncertainty about the exact nature of the world (i.e., the exact, correct cue order). In order to 

satisfy Composition, we make the minimal assumption that the probability of using cue A (rather 

than cue B) is based on the agent’s representation of the probability that cue A is more useful 

than cue B. Assuming these two conditions are satisfied, TTB* imposes a partition over the space 

of possible representations R: ri and rj are in the same partition element if and only if they imply 

the same usefulness ranking for the cues, though not necessarily the same exact numbers. That is, 

the only feature of the agent’s cognitive representation that affects her ecological success is the 

rank order of the cues, rather than any absolute measures.  

Importantly, the preceding analysis did not assume that the fine-grained representations 

R must directly represent search orders. Rather, the conclusion that rank order, and so search 

order, is the only representation that “matters” was derived from the structure of the 

environment, the agent’s goal, and TTB*. The cognitive representations could include 

information about search order, cue validity, success rate, reward value, positive emotional 

valence, or any combination thereof. But once we specify those representations R, we find that 

qualitative search order is the only feature of P(R) that influences ecological success. This narrow 

focus can lead to considerable benefit for the agent: in particular, using a more coarse-grained 

hypothesis space may reduce the variance of learning, though perhaps at the cost of increased 

bias. As we noted in Section 2, this trade-off can often improve accuracy in the short- (or at least 

not infinitely long-) run. But we should also bear in mind that more precise representations may 

be useful if we have other goals, or if we use them for decision-making methods other than 

TTB*. Alternately, more precise representations might actually be easier to learn; for example, 
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precise success values might be computed for other reasons, or be produced by some already-

present capacity.  

The decision procedure on its own allows us to define the features of the representation 

that can possibly affect ecological success (i.e. the partitions), but the benefit to the agent of 

assigning credence to one partition over another depends on her goals and environment. The 

“best” partition may result in much more success than the second-best one, but often they may 

be almost identical. In this vein, Martignon & Hoffrage (2002) examined the performance of the 

possible cue orderings (362,880 in total) for TTB in the German cities environment, and showed 

that there is a range of orderings that perform as well as (or even better than) the rankings 

implied by the true cue validities. The true cue validities have a 74.2% accuracy rate, which falls 

towards the top of the range (62-75.8%) but only 4.2 percentage points above the accuracy 

achieved by choosing cues at random (70%). The value function over the partitions is of course 

environment- and goal-specific, but we can make some general observations that will be true for 

all particular cases. Whenever multiple cues have very similar usefulness, there is relatively little 

practical benefit to getting their search order exactly right. Conversely, there is quite a substantial 

benefit whenever cues vary widely in their utility. As a result, the cue structure of the 

environment (in combination with the decision procedure) may result in a scenario where 

adopting a hypothesis space that is even more coarse-grained than the partition (e.g., sorting cues 

into n usefulness classes where n is less than the number of cues) could further reduce variance 

and improve ecological success.  

The partition determined by the decision procedure TTB* is the maximally fine-grained 

one for that decision procedure and goal, but even those distinctions might not be worth the cost 

given other goals, environmental structures, and computational capacities of the agent. More 

generally, we conjecture that bounded, but adaptively rational, agents should exhibit 
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considerable flexibility in trading accuracy for improved performance on other measures. The 

classic example is the trade-off between accuracy and the number of cues retrieved (the ‘success 

rate’ measure explicitly makes this trade-off), but there may be other trade-offs that are beneficial 

only from a learning perspective. For instance, agents might be frugal in the amount of evidence 

they use because their learning mechanism uses less information, either by searching fewer cues 

or by attending more to cues that have not previously been searched. Similarly, a learning 

mechanism that requires less computation to update the agent’s cognitive representations might 

naturally be preferred over a learning mechanism that requires more.  

Dieckmann & Todd (2012) examined several algorithms for iteratively learning cue 

orders. For instance, they considered a simple swap rule where a cue is moved up in the search 

order if it makes a correct discrimination, and down if it makes an incorrect one. This proposed 

rule fits well with the requirements of adaptive rational learning because (i) only the necessary 

information—search order—is represented; (ii) it is frugal in the amount of information and 

complexity of updating rules; and (iii) it produces fairly good performance (71% vs. 74% for 

TTB). One particularly promising feature of this rule is that it works by using limited information 

(i.e., only the outcome of the current choice) to make a local modification to the representation. 

This feature is characteristic of greedy algorithms, which have been shown in machine learning 

to often reach locally optimal solutions without extensive memory or computational 

requirements. This class of algorithms could provide significant inspiration going forward.  

Finally, while considerable work has been done on evaluating whether one-reason 

decision-making is robust across search orders, our framework allows us to ask the converse 

question: is a given learning mechanism robust across different decision-making strategies? There 

is considerable evidence that people do not universally use one-reason decision-making (Newell & 

Shanks, 2003; Bröder 2000, 2003), so one might wonder whether adaptively rational learning 
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mechanisms could produce appropriate representations for these other decision procedures. For 

example, the success of improper linear models in many decision tasks (e.g., Dana, 2008; Dawes, 

1979; Lovie & Lovie, 1986; Winterfeldt & Edwards, 1986) suggests the possibility that learning in 

these cases is over a greatly coarsened set of representations. More generally, an analysis of 

learning for other decision-making strategies (e.g., two- or three-reason decision making, tallying, 

weighted additive models, decision trees) is beyond the scope of this paper, but our model 

provides the conceptual resources and motivation to begin exploring this uncharted territory.  

    

5. Conclusion 

Our goal in this paper was to identify a significant gap in the adaptive rationality research 

programme and a significant opportunity for learning research. The adaptive rationality of a 

cognitive agent depends not just on her inference, judgment, and decision-making strategies, but 

also on her learning processes. We should expect that people use fast and frugal learning methods 

that are based on evolved cognitive capacities, and provide the information required for them to 

reach their goals, both epistemic and pragmatic. This paper has been admittedly programmatic 

in places, as the nature of adaptively rational learning is clearly a bigger subject than we can 

exhaustively examine in a single article. Nonetheless, we contend that the formal framework we 

have presented—both in general, and in the particular—provides the conceptual resources that 

are required to explore the possibility that human learning is adaptively rational.  
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