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Abstract. The paper focuses on extending to the first order case the semantical pro-

gram for modalities first introduced by Dana Scott and Richard Montague. We focus on

the study of neighborhood frames with constant domains and we offer a series of new
completeness results for salient classical systems of first order modal logic. Among other

results we show that it is possible to prove strong completeness results for normal sys-
tems without the Barcan Formula (like FOL + K) in terms of neighborhood frames with

constant domains. The first order models we present permit the study of many epistemic

modalities recently proposed in computer science as well as the development of adequate
models for monadic operators of high probability. Models of this type are either difficult

of impossible to build in terms of relational Kripkean semantics.

We conclude by introducing general first order neighborhood frames and we offer a
general completeness result in terms of them which circumvents some well-known prob-

lems of propositional and first order neighborhood semantics (mainly the fact that many

classical modal logics are incomplete with respect to an unmodified version of neighbor-
hood frames). We argue that the semantical program that thus arises surpasses both in

expressivity and adequacy the standard Kripkean approach, even when it comes to the

study of first order normal systems.
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1. Introduction

Dana Scott and Richard Montague proposed in 1970 (independently, in [45]
and [42] respectively) a new semantic framework for the study of modalities,
which today tends to be known as neighborhood semantics.

A neighborhood frame is a pair 〈W,N〉, where W is a set of states,

or worlds, and N : W → 22W
is a neighborhood function which associates

a set of neighborhoods with each world. The tuple 〈F , V 〉, where F is a
neighborhood frame and V a valuation is a neighborhood model. A modal
necessity operator is interpreted in this context as follows: M, w |= !φ iff
(φ)M ∈ N(w), where (φ)M is the truth-set corresponding to φ in the given
model.

Without imposing specific restrictions on the neighborhood function it
is clear that many important principles of normal or Kripkean modal logics
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2 Horacio Arló-Costa and Eric Pacuit

will not hold in a neighborhood model. At the same time it is possible to
show that there is a class of neighborhood models, the so-called augmented
models (see the definition below), which are elementary equivalent to the
relational models for normal modal systems of propositional modal logic.
So, the program of neighborhood semantics has normally been considered
as a generalization of Kripke semantics, which permits the study of classical
systems that fail to be normal.

Early on (in 1971) Krister Segerbeg wrote an essay [47] presenting some
basic results about neighborhood models and the classical systems that cor-
respond to them and later on Brian Chellas incorporated these and other
salient results in part III of his textbook [16]. Nevertheless for more than 15
years or so after 1971, in the apparent absence of applications or in the ab-
sence of guiding intuitions concerning the role of neighborhoods, non-normal
classical modal logics were studied mainly in view of their intrinsic mathe-
matical interest. This situation has changed in important ways during the
last 18 or so years. In fact, many of the normal axioms, like the additiv-
ity principle, establishing the distribution of the box over conjunction, have
been found problematic in many applications. As a result many formalisms
proposed to retain:

(M) !(φ ∧ ψ) → (!φ ∧!ψ)

(N) !&

while abandoning:

(C) (!φ ∧!ψ) → !(φ ∧ ψ)

Many recently explored, and independently motivated formalisms, have
abandoned the full force of additivity while retaining monotony (M).∗ Exam-
ples are Concurrent Propositional Dynamic Logic [30], Parikh’s Game Logic
[43], Pauly’s Coalition Logic [44] and Alternating-Time Temporal Logic [1].
Moreover recent research [6] has shown that a large family of Non-Adjunctive
logics, previously studied only syntactically or via a variety of idiosyncratic
extensions of Kripke semantics can be parametrically classified neatly as
members of a hierarchy of monotonic classical logics, all of which admit

∗Of course there is a relatively long history of arguments favoring the abandonment
of (C). For example Ruth Barcan Marcus proposed the abandonment of (C) – which she
called the factoring principle – both for deontic and for (some) epistemic interpretations
of the box.
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clear and simple neighborhood models. A salient member of this family is
the logic of monadic operators of high probability studied via neighborhood
semantics in [36] and [5]. This is a clear case where the intended interpre-
tation of neighborhoods is quite intuitive: the neighborhoods of a point are
the propositions receiving probability higher than a fixed threshold.

More generally one can see the neighborhoods as having an epistemic
role (as suggested in [5]), namely representing the knowledge, belief or cer-
tain other attitude of an agent at a certain point. This strategy permits the
development of elegant and economic models of attitudes that can only be
modeled alternatively either via the abandonment of the axiom of foundation
in set theory (or via co-algebras) or by postulating a large array of primi-
tive epistemic states (devoid of propositional representation). The coming
subsection elaborates on this issue, which ultimately is concerned with the
way in which possible worlds are conceptualized and concretely encoded in
models of modalities.

Possible worlds and modalities

Moshe Vardi considered in [49] the use of neighborhood models in order to
represent failures of logical omniscience, high probability operators as well as
logics of knowledge, time and computation. Nevertheless, after considering
the wider class of classical modal systems (encompassing both normal and
non-normal modal systems) and their neighborhood models, Vardi discarded
them without exploring them logically. Vardi gave two reasons for not uti-
lizing neighborhood models for studying classical modalities (which he dubs
intensional logic following Montague’s terminology). The central reason is
that this approach ‘leaves the notion of a possible world as a primitive notion
[...]. While this might be seen as an advantage by the logician whose interest
is in epistemic logic, it is a disadvantage for the user of epistemic logic whose
interest is mostly in using the framework to model belief states (page 297).’
Vardi proceeds instead to establish that: ‘a world consists of a truth assign-
ment to the atomic propositions and a collection of sets of worlds. This is, of
course, a circular definition...’. Barwise and Moss [12] showed how to make
this strategy coherent by abandoning the axiom of foundation in set theory.

Most of the mainstream work in models of modalities has been usually
done by utilizing a space of possible worlds, which are, in turn, understood
as unstructured primitives. This strategy is abandoned in Vardi’s proposal.
Vardi seems to appreciate that the contents of a neighborhood N(w) can
be seen pre-systematically (for applications in epistemic logic, for example)
as the propositional representation of the epistemic state of a given agent
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at world w. But Vardi wants to have as well a notion of possible world
including as part of it the representation of the epistemic state of the agent
(or interacting agents). This can only be done by abandoning the idea of
w as an unstructured primitive point. Therefore he proposes seeing w as a
structured entity with an epistemic component N(w). As Vardi explains this
strategy leads to circularity, which only ceases to be vicious in the context
of an underlying set theory without the axiom of foundation.

There is yet a different way of facing this problem [21]. The idea is to
assume that W ⊆ O×S1× ...×Sn where O is the set of objective states and
Si is a set of subjective states for agent i. Therefore worlds have the form
(o, s1, ..., sn). In multi-agent systems o is called the environment state and
each si is called a local state for the agent in question.

Halpern [31] characterizes an agent’s subjective state si by saying that it
represents ‘i’s perception of the world and everything else about the agent’s
makeup that determines the agent’s reports’. To avoid circularity it is quite
crucial that both environment states and the local states of agents are now
unstructured primitives. It is unclear the extent to which this strategy is
conducive to concrete representational or logical advantages. It should be
clear, on the other hand, that neighborhoods have equal representational
power, while reducing the set of needed primitives. In fact, one can have
for each world w a set of neighborhood functions Ni(w) (with i ranging be-
tween 1 and n), where each neighborhood mimics the semantic behavior of
the local state si. In fact, for each modality Mi and each structured point
(o, s1, ..., sn), such that MiA is satisfied at w, we can have a correspond-
ing unstructured point w in a corresponding neighborhood model where the
proposition expressed by A is in Ni(w). This is so even if there are non-
propositional elements constitutive of relevant aspects of the agent’s make
up determining the agent’s reports. As long as these reports are proposi-
tional the neighborhoods can encode the information needed to represent
the reports in question.

A concrete application where worlds or states are understood along the
‘thick’ lines just sketched is concerned with the pioneer work of J. Harsanyi
devoted to model games of incomplete information played by Bayesian play-
ers [33]. In this case we have a set of external states S and a state of the world
in a type space T of S is an (n+1)-tuple (s, t1, ..., tn) ∈ S×T1×...×Tn, where
for each individual i, Ti is a finite set of types. Intuitively the (n + 1)-tuple
(s, t1, ..., tn) specifies the relevant external state and the epistemic types for
each agent, where each epistemic type corresponds, in turn, with an infi-
nite hierarchy of (probabilistic) beliefs. Recent work has appealed to modal
logic in order to formalize (hierarchies of) probabilistic beliefs of this kind
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via modal operators with the intended interpretation: ‘i assigns probability
at least p to ...’ (see, for example, the review of recent work presented in
[13]). As we will make clear below (via the consideration of various prob-
abilistic applications) the use of neighborhood models offers a perfect tool
for the study of type spaces of this kind where external and epistemic states
can be neatly separated. Although applications of this sort already exist
(see, for example, the relevant chapters in [7]) the first order case is seldom
studied. Extensions of these type in models with constant domains (which
are the ones considered and tacitly recommended in [21]) are nevertheless
hard or impossible to study by appealing the relational models where worlds
encoded as (n + 1) tuples. We will show below that models of this type are,
in contrast, rather natural if one uses neighborhoods.

Models for first order modalities

Unfortunately the recent interest in articulating applications for neighbor-
hood semantics has not motivated yet the systematic study of first order
classical logics and first order neighborhood models. One of the first sources
of insight in this area can be found in the book published by Dov Gabbay in
1976 where a variation of neighborhood semantics is systematically used [23].
More recently one of us (Arló-Costa) presented in [5] preliminary results in
this area showing that the role of the Barcan schemas in this context is
quite different from the corresponding role of these schemas in the relational
case.† In fact, the use of neighborhood semantics permits the development
of models with constant domains where neither the Barcan (BF) nor the
Converse Barcan formulas (CBF) are valid. Moreover [5] provides necessary
and sufficient conditions for the validity of BF and CBF.

The recent foundational debates in the area of quantified modal logic
oppose, on the one hand, the so called ‘possibilists’ who advocate the use of
quantifiers ranging over a fixed domain of possible individuals, and on the
other hand, the ‘actualists’ who prefer models where the assumption of the
constancy of domains is abandoned. A salient feature of the standard first
order models of modalities is that for those models the constancy of domains
requires the validity of both the BF and the CBF (see [22] for a nice proof of
this fact). Many philosophers have seen the possibilist approach as the only
one tenable (see for example, [18], [41], [50]), and as a matter of fact the

†These schemas are presented below in Definition 3.1. The schemas are named after the
logician and philosopher Ruth Barcan Marcus who proposed them in [8] and [9]. Papers
written before 1950 are usually referenced under ‘Barcan’, while papers after 1950 under
‘Marcus’.
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possibilist approach is the one that seems natural in many of the epistemic
and computational applications that characterize the wave of recent research
in modal logic (see, for example, the brief section devoted to this issue in
[21]). Nevertheless, while the possibilist approach seems reasonable on its
own, the logical systems that adopt the Barcan Formulas and predicate logic
rules for the quantifiers might be seen as too strong for many applications.
The problem is that in relational models one cannot have one without the
other. This has motivated some authors to adopt more radical approaches
and to construct, for example, models with individual concepts (functions
from possible worlds to the domain of objects). The approach provided
by Garson [25] in particular is quite ingenious although it seems limited to
first order extensions of K = EMNC (and the use of individual concepts
does not seem immediately motivated in some simple applications considered
here, like the logic of high probability).‡

Notice, for example, that (as indicated in [5]) if the box operator is un-
derstood as a monadic operator of high probability the BF can be interpreted
as saying that if each individual ticket of a lottery is a loser then all tickets
are losers. While the CBF seems to make sense as a constraint on an op-
erator of high probability the BF seems unreasonably strong. At the same
time nothing indicates that a possibilitic interpretation of the quantifiers
should be abandoned for representing a monadic operator of high probabil-
ity. On the contrary the possibilistic approach seems rather natural for this
application. It is therefore comforting that one can easily develop first or-
der neighborhood semantics with constant domains where this asymmetry is
neatly captured (i.e. where the CBF is validated but the BF is not). In par-
ticular we argue that the non-nested fragment of the system FOL+EMN is
adequate for representing first order monadic operators of high probability.

In this article we present a series of representation results that intend
to give a preliminary insight on the scope and interest of first order neigh-
borhood semantics. We will not limit our study to the analysis of non-
normal systems. On the contrary one of our main results shows that a
strong completeness result in terms of first order neighborhood models with
constant domains can be offered for the normal system FOL+K. Relational
models (with constant domains) cannot characterize syntactic derivability in
FOL + K. The problem motivating this gap is that the CBF is syntacti-
cally derivable from FOL + K but the BF is not. So, one needs to have
relational models with varying domains in order to characterize the system

‡E is the weakest system of classical logic.
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in question.§ But, again, there are many interesting applications, ranging
from the modeling of contextual modals in linguistics [38] to the logic of
finitely additive conditional probability where the use of varying domains is
not immediately motivated and where the asymmetry between the CBF (as
valid) and the BF (as invalid) holds.

Neighborhood semantics is usually considered as a mild extension of
standard Kripke semantics in part because it is usually assumed that the
augmented neighborhood models are mappable to the standard models of
normal systems, and because it is usually assumed as well that these stan-
dard models provide the models one needs in order to characterize the normal
systems. We claim here that the latter assumption is dubious at best. In
fact, we show that there are indeed Scott-Montague models of important
normal systems constructible within a possibilistic approach and without
standard counterparts.

Martin Gerson [26] has argued convincingly that an unmodified version
of the neighborhood approach has some of the same problems regarding
incompleteness than the standard approach. He showed this by proving in-
completeness with respect to neighborhood semantics of two normal systems,
one between T and S4 and another which is an extension of S4. We adopt a
similar remedy concerning these problems than the one adopted in [15] and
[32], namely the adoption of general first order neighborhood frames. There-
fore we introduce general frames for first order modalities (not previously
studied in the literature) by utilizing algebraic techniques reminiscent to the
ones employed in the algebraic study of first order logic with operators. We
then present a general completeness result covering the entire family of first
order classical modal logics. We conclude by discussing some examples and
suggesting topics for future research.

2. Classical systems of propositional modal logic

This section reviews some basic results about classical systems of proposi-
tional modal logic. The reader is referred to the textbook [16] for a complete
discussion.

Let Φ0 be a countable set of propositional variables. Let L(Φ0), be the
standard propositional modal language. That is φ ∈ L(Φ0) iff φ has one of
the following syntactic form,

§One needs to use, for example, the models with undefined formulas presented in [34],
page 277-280; which are equivalent to the models TK-models used by Giovanna Corsi in
[17], page 1478.
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φ := p | ¬φ | φ ∧ φ | !φ

where p ∈ Φ0. Use the standard definitions for the propositional connectives
∨,→ and↔ and the modal operator ♦. The standard propositional language
may be denoted L when Φ0 is understood.

Definition 2.1. A neighborhood frame is a pair 〈W,N〉, where W is a

set of states, or worlds, and N : W → 22W
is a function.

Given a neighborhood frame, F = 〈W,N〉, the function N is called a
neighborhood function. The intuition is that at each state w ∈ W , N(w)
is the set of propositions, i.e. set of sets of states, that are either “necessary”
or “known” or “believed”, etc. at state w.

Definition 2.2. Given a neighborhood frame F = 〈W,N〉, a classical

model based on F is a tuple 〈F , V 〉, where V : Φ0 → 2W is a valuation
function.

Given a classical model M = 〈W,N,V 〉, truth is defined as follows, let
w ∈ W be any state:

1. M, w |= p iff w ∈ V (p) where p ∈ Φ0

2. M, w |= ¬φ iff M, w +|= φ

3. M, w |= φ ∧ ψ iff M, w |= φ and M, w |= ψ

4. M, w |= !φ iff (φ)M ∈ N(w)

where (φ)M ⊆ W is the set of all states in which φ is true. The dual of the
modal operator !, denoted ♦, will be treated as a primitive symbol. The
definition of truth for ♦ is

M, w |= ♦φ iff W − (φ)M +∈ N(w)

It is easy to see that given this definition of truth, the axiom scheme
!φ ↔ ¬♦¬φ is valid in any neighborhood frame. Thus, in the presence of
the E axiom scheme (see below) and a rule allowing substitution of equiv-
alent formulas (which can be proven using the RE rule given below), we
can treat ♦ as a defined symbol. As a consequence, in what follows we will
not provide separate definitions for the ♦ operator since they can be easily
derived. We say φ is valid in M iff M, w |= φ for each w ∈ W . We say that
φ is valid in a neighborhood frame F iff φ is valid in all models based onF .

The following axiom schemes and rules have been widely discussed.
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PC Any axiomatization of propositional calculus

E !φ ↔ ¬♦¬φ

M !(φ ∧ ψ) → (!φ ∧!ψ)

C (!φ ∧!ψ) → !(φ ∧ ψ)

N !&

RE
φ ↔ ψ

!φ ↔ !ψ

MP
φ φ → ψ

ψ

Let E be the smallest set of formulas closed under instances of PC,E and
the rules RE and MP . E is the smallest classical modal logic. The logic EC

extends E by adding the axiom scheme C. Similarly for EM, EN, ECM,
and EMCN. It is well known that the logic EMCN is equivalent to the
normal modal logic K (see [16] page 237). Let S be any of the above logics,
we write -S φ if φ ∈ S.

Let N be a neighborhood function, w ∈ W be an arbitrary state, and
X,Y ⊆ W be arbitrary subsets.

(m) If X ∩ Y ∈ N(w), then X ∈ N(w) and Y ∈ N(w)

(c) If X ∈ N(w) and Y ∈ N(w), then X ∩ Y ∈ N(w)

(n) W ∈ N(w)

It is easy to show (see [16] page. 215) that (m) is equivalent to

(m′) If X ∈ N(w) and X ⊆ Y , then Y ∈ N(w)

We say that a neighborhood function N is supplemented, closed un-

der intersection, or contains the unit if it satisfies (m) (equivalently if
it satisfies (m′)), (c) and (n) respectively.

Definition 2.3. A frame 〈W,N〉 is augmented if N is supplemented and
for each w ∈ W ,

⋂
N(w) ∈ N(w)
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Call a frame supplemented if its neighborhood function is supplemented,
similarly for the other semantic properties above. It is well-known that the
logic E is sound and complete with respect to the class of all neighborhood
frames. The other semantic conditions correspond to the obvious syntactic
counterparts. For example, the logic EMC is sound and complete with
respect to the class of all frames that are supplemented and closed under
intersection. The completeness proofs are straightforward and are discussed
in [16]. One final note about the propositional case will be important for this
paper. The class of augmented frames is equivalent to the class of Kripke
frames in the following sense.

Theorem 2.4 ([16] page 221). For every Kripke model 〈W,R, V 〉, there is
an pointwise equivalent classical model 〈W,N,V 〉, and vice versa

The proof can be found in [16] page 221. We only sketch the main points.
Let MK = 〈W,R, V 〉 be any Kripke model. To define a pointwise equivalent
classical model M = 〈W,N,V 〉, we stipulate that for each X ⊆ W and each
w ∈ W ,

X ∈ N(w) iff {w′ | wRw′ } ⊆ X

It is easy to see that N is augmented and that M is pointwise equivalent to
MK . To define MK from a classical model M = 〈W,R, V 〉, stipulate that
for each w ∈ W ,

wRw′ iff w′ ∈
⋂

N(w)

Again, it is easy to see that M is pointwise equivalent to MK .

3. Classical systems of first order modal logic

The language of first order modal logic is defined as follows. Let V be a
countable collection of individual variables. For each natural number n ≥ 1,
there is a (countable) set of n-place predicate symbols. These will be denoted
by F,G, . . .. In general, we will not write the arity of a predicate F . A
formula of first order modal logic will have the following syntactic form

φ := F (x1, . . . , xn) | ¬φ | φ ∧ φ | !φ | ∀xφ

Let L1 be the set of well-formed first order modal formulas. The other stan-
dard Boolean connectives, the diamond modal operator and the existential
quantifier are defined as usual. The usual rules about free variables apply.
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We write φ(x) when x (possibly) occurs free in φ. Denote by φ[y/x], φ in
which free variable x is replaced with free variable y. The following axioms
are taken from [34]. Let S be any classical propositional modal logic, let
FOL + S be the set of formulas closed under the following rules and axiom
schemes:

S All axiom schemes and rules from S.

∀ ∀xφ(x) → φ[y/x] is an axiom scheme. ¶

Gen
φ → ψ

φ → ∀xψ
, where x is not free in φ.

For example, FOL + E contains the axiom scheme PC,E,∀ and the
rules Gen,MP . Given any classical propositional modal logic S, we write
-FOL+S φ if φ ∈ FOL + S (equivalently φ can be derived using the above
axiom schemes and rules).

Notice that in the above axiom system there is no essential interaction
between the modal operators and the first-order quantifiers. Two of the most
widely discussed axiom schemes that allow interaction between the modal
operators and the first-order quantifiers are the so-called Barcan formula
and the converse Barcan formula.

Definition 3.1. Any formula of the form

∀x!φ(x) → !∀xφ(x)

will be called a Barcan formula (BF ). The converse Barcan formula

(CBF ) will be any formula of the form

!∀xφ(x) → ∀x!φ(x)

Technically, the Barcan and converse Barcan formulas are schemes not for-
mulas, but we will follow standard terminology. For simplicity, we will write
S + BF for the logic that includes all axiom schemes and rules of FOL + S

plus the Barcan formula BF . Similarly for S + CBF .

Definition 3.2. A constant domain neighborhood frame for classical
first-order modal logic is a tuple 〈W,N,D〉, where W is a set of possible
worlds, N is a neighborhood function and D is any non-empty set, called
the domain.

¶According to the notation used in [34], which we are following here, this axiom follows
from two additional principles called the principles of replacement and agreement. See [34]
page 241. These principles guarantee that y is free for x occurring in φ(x).
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Definition 3.3. A constant domain neighborhood model based on a
frame F = 〈W,N,D〉 is a tuple M = 〈W,N,D, I〉, where I is a classical first-
order interpretation function. Formally, for each n-ary predicate symbol F ,
I(F,w) ⊆ Dn.

A substitution is any function σ : V → D. A substitution σ ′ is said to
be an x-variant of σ if σ(y) = σ′(y) for all variable y except possibly x,
this will be denoted by σ ∼x σ′. Truth is defined at a state relative to a
substitution. Let M = 〈W,N,D, I〉 be any constant domain neighborhood
model and σ any substitution.

1. M, w |=σ F (x1, . . . , xn) iff 〈σ(x1), . . . ,σ(xn)〉 ∈ I(F,w) for each n-place
predicate symbol F .

2. M, w |=σ ¬φ iff M, w +|=σ φ

3. M, w |=σ φ ∧ ψ iff M, w |=σ φ and M, w |=σ ψ

4. M, w |=σ !φ iff (φ)M,σ ∈ N(w)

5. M, w |=σ ∀xφ(x) iff for each x-variant σ′, M, w |=σ′ φ(x)

where (φ)M,σ ⊆ W is the set of states w ∈ W such that M, w |=σ φ.

Before looking at completeness for classical systems of first-order modal
logic, we survey the situation with respect to first order relational structures
(deriving from seminal work by Saul Kripke). A relational frame is a tuple
〈W,R〉, where W is a set of states and R ⊆ W×W is an accessibility relation.
A (constant domain) first order relational model based on a relational frame
F = 〈W,R〉 is a tuple 〈W,R,D, I〉 where D is a set and I is a first-order
classical interpretation (defined above).

Truth is defined as above except for the modal case:

M, w |=σ !φ iff for each w′ ∈ W , if wRw′ then M, w′ |=σ φ

The following observations are well-known and easily checked (see [34] page
245).

Observation 3.4 ([34]). The converse Barcan formula is provable in the
logic FOL + K



First-Order Classical Modal Logic 13

Observation 3.5 ([34]). The Barcan formula is valid in all first order re-
lational models with constant domains.‖

Since the weakest propositional modal logic sound and complete for all
relational frames is K, we will focus on the logic FOL + K. Given Obser-
vation 3.5, if we want a completeness theorem with respect to all constant
domain relational structures, we need to consider the logic K+BF . Sound-
ness is shown via the following theorem (Corollary 13.3, page 249 in [34]).
Given any Kripke frame F , we say that F is a frame for a logic S iff every
theorem of S is valid on F .

In order to make this paper self-contained, we now review some well-
known techniques and results concerning first-order normal modal logics.
The reader already familiar with such results may want to skip to Section
3. Recall, that a normal modal logic is a propositional logic that contains
at least the axiom scheme K and the rule Nec.

Theorem 3.6 ([34] page 249). Let S be any propositional normal modal
logic, then a Kripke frame F is a frame for S iff F is a frame for S + BF .

The proof of the only if direction is a straightforward induction on a
derivation in the logic S+ BF . As for the if direction, the main idea is that
given F which is not a frame for S, one can construct a frame F ∗ that is
not a frame for S + BF .

Essentially this theorem shows that the notion of a frame for first order
Kripke models is independent of the domain D. That is, the proof of the
above theorem goes through whatever D may be.

We need some more definitions before proving a completeness theorem.
Let Λ of formulas of first order modal logic.

Definition 3.7. A set Λ has the ∀−property∗∗ iff for each formula φ ∈ Λ
and each variable x, there is some variable y, called the witness, such that
φ[y/x] → ∀xφ(x) ∈ Λ.

The proof of the following Lindenbaum-like Lemma is a straightforward
and can be found in [34] page 258

‖There are, of course, many different ways in which a relational semantics can be
presented and not all are inspired by Kripke’s early work. For example, Barcan Marcus
offered in [10] a model theoretic semantics with constant domains where both Barcan
schemas are valid.

∗∗The terminology follows the one used in [34]. The property is also known as Henkin’s
property.
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Lemma 3.8. If X is a consistent set of formulas of L1, then there is a
consistent set of formulas Y of L+

1 with the ∀-property such that X ⊆ Y ,
where L+

1 is the language L1 with countably many new variables.

We can now define the canonical model for first order Kripke structures.
The canonical model, MC = 〈WC , RC ,DC , IC〉, is defined as follows. Given
the first- order modal language L1, let L+

1 be the extension of L1 used in
Lemma 3.8 and V+ the variables in this extended language. Finally let
MAX(Γ) indicate that the set Γ is a maximally consistent set of formulas
of L+

1 .

WC = {Γ | MAX(Γ) and Γ has the ∀-property}

ΓRC∆ iff {φ | !φ ∈ Γ} ⊆ ∆

DC = V+

〈x1, . . . , xn〉 ∈ IC(φ,Γ) iff φ(x1, . . . , xn) ∈ Γ

Let σ be the canonical substitution: for each x ∈ V+, σ(x) = x. The
truth Lemma is

Lemma 3.9. For any Γ ∈ WC , and any formula φ ∈ L+,

φ ∈ Γ iff MC ,Γ |=σ φ

Of course, the proof is by induction on the formula φ. The base case
and propositional connectives are as usual. The ’if’ direction for the modal
and quantifier case is straightforward. We will discuss two cases. Suppose
that ∀xφ(x) +∈ Γ. Then since Γ is maximal, ¬∀xφ(x) ∈ Γ, and so by the
∀-property, there is some variable y ∈ V+ such that ¬φ[y/x] ∈ Γ, and so
φ[y/x] +∈ Γ. Thus by the induction hypothesis, MC ,Γ +|=σ′ φ[y/x], where
σ′ is the x-variant of σ in which σ(x) = y. Hence, MC ,Γ +|=σ ∀xφ(x).
The modal case relies on the following Lemma, which requires the Barcan
formula in its proof.

Lemma 3.10. If Γ is a maximally consistent set of formulas (of L+) with the
∀-property and φ is a formula such that !φ +∈ Γ, then there is a consistent
set of formulas of L+ with the ∀-property such that {ψ |!ψ ∈ Γ}∪{¬φ} ⊆ ∆.

Given this Lemma, the proof of the truth Lemma above is straightfor-
ward.
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3.1. First-order neighborhood frames

As with Kripke frames, validity of certain axiom schemes in a frame cor-
responds to properties on that frame. In this section, we discuss the con-
nections between validity of formulas and properties of the corresponding
frame. We first need some notation. Recall that a neighborhood frame is a
tuple 〈W,N〉 where W is a set of states and N : W → 22W

is the neighbor-
hood function. A first-order constant domain neighborhood frame is a triple
〈W,N,D〉 where W and N are as above and D is an arbitrary non-empty
set called the domain. By a frame, we mean either a neighborhood frame or
a first-order neighborhood frame.

A filter is any collection of sets that is closed under finite intersections
and supersets. A filter is non-trivial if it does not contain the empty set.
We say that a frame F is a filter if for each w ∈ W , N(w) is a filter. A
frame F is closed under infinite intersections if for each w ∈ W , N(w) is
closed under infinite intersections. Finally, a frame is augmented (recall
Definition 2.3) if N is supplemented and for each w ∈ W ,

⋂
N(w) ∈ N(w).

Obviously, every augmented frame is closed under infinite intersections, but
there are supplemented frames closed under infinite intersections that are
not augmented (provided that W is infinite).

In [5] it is shown that the presence of the Barcan and the Converse
Barcan formulas implies interesting properties on the corresponding frame.
Before reporting these results, we need some definitions.

Definition 3.11. A frame F is consistent iff for each w ∈ W , N(w) += ∅
and {∅} +∈ N(w).

Definition 3.12. A first-order neighborhood frame F = 〈W,N,D〉 is non-

trivial iff |D| > 1

First of all, a couple of facts about frames which are trivial or not con-
sistent. First of all, if F is a trivial first-order neighborhood model with
constant domain, then !∀xφ(x) ↔ ∀x!φ(x) is valid. Thus both the Barcan
and converse Barcan formulas are valid on trivial domains. Secondly if F is
not consistent, then for trivial reasons both the Barcan and converse Barcan
are valid.

Observation 3.13 ([5]). Let F be a consistent constant domain neighbor-
hood frame. The converse Barcan formula is valid on F iff either F is trivial
or F is supplemented.

Proof. Suppose that F is a consistent constant domain first-order neigh-
borhood model. If F is trivial, then, as noted above, the converse Barcan
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formula is valid. Suppose that F is supplemented and that M is an arbi-
trary model based on F . Let w be an arbitrary state, we will show that
M, w |= !∀xφ(x) → ∀x!φ(x). Suppose that M, w |=σ !∀xφ(x). Therefore
(∀xφ(x))M,σ ∈ N(w).

Since (∀xφ(x))M,σ =
⋂

σ′∼xσ(φ(x))M,σ′
and N(w) is supplemented, for

each σ′ which is an x-variant of σ, (φ(x))M,σ′
∈ N(w). But this implies

M, w |=σ ∀x!φ(x). Hence the right to left implication is proven.
For the other direction, we must show that if F is a consistent, non-

trivial and not supplemented, then the converse Barcan formula is not valid.
Since F is not supplemented, there is some state w and sets X and Y such
that X ∩ Y ∈ N(w) but either X +∈ N(w) or Y +∈ N(w). We need only
construct a model M in which an instance of the converse Barcan formula
is not true. Let F be a unary predicate symbol. We will construct a model
M based on F where M, w |=σ !∀xF (x) but M, w +|=σ ∀x!F (x). WLOG
assume that X +∈ N(w).

Then we have two cases: 1. Y ⊆ X and 2. Y +⊆ X. Suppose we are in
the first case. That is Y ⊆ X, then Y = X ∩ Y ∈ N(w). Suppose that 1.
for each v ∈ X ∩ Y and for all d ∈ D, 〈d〉 ∈ I(F, v) and 2. I(F, v ′) = ∅ for
all v′ ∈ W −X.

Then for any substitution σ, (∀xF (x))M,σ =
⋂

σ′∼xσ(F (x))M,σ′
= X∩Y

∈ N(w). Hence M, w |=σ !∀xF (x).
Now to complete the description of the model, choose an element a ∈

D and set a ∈ I(F, y) for each y ∈ X − (X ∩ Y ) and such that for no
other b ∈ D, b ∈ I(F, y). Then if σ(x) = a, (F (x))M,σ = X +∈ N(w).
Hence, M, w +|=σ ∀x!F (x). The non-triviality of F is needed to ensure that
(F (x))M,σ += (∀xF (x))M,σ. As for case 2 (Y +⊆ X), we can require that
I(F, v) = ∅ for all v ∈ Y − (X ∩ Y ), reducing to the first case.

Observation 3.14. FOL + EM - CBF

We now turn our attention to BF . In [5] it is shown that the Barcan
formula corresponds to interesting properties on first-order constant domain
neighborhood frames. We first need some notation. Let κ be a cardinal. We
say that a frame closed under ≤ κ intersections if for each state w and each
collection of sets {Xi | i ∈ I} where |I| ≤ κ, ∩i∈IXi ∈ N(w).

Definition 3.15. A consistent first-order neighborhood frame 〈W,N,D〉 is
monotonic iff the number of objects in its domain is as large as the number
of sets in the neighborhood with the largest number of sets in the frame.
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[5] shows the following result about monotonic frames: Let F be a con-
stant, consistent and monotonic domain neighborhood frame.

∀x!φ(x) → !∀xφ(x)

is valid on every model based on F if and only if F is either trivial or closed
under infinite intersections. Monotony cannot be dropped from an unrevised
formulation of this result. In fact, consider the following counterexample:

Counterexample Let the neighborhoods of F contain exactly an
infinite (but countable) family of sets X = Xi with i = 1, 2, .... The
domain of worlds is also infinite (but countable). Let F be closed
under finite intersections but not under infinite intersections.

Let now the domain of objects contain exactly two objects a, b. It
is clear that F is non-trivial (its cardinality is strictly greater than
1). Therefore if the revised formulation of the result from [5] (where
monotony is dropped) were true this entails that there is a model
M based on F , world w and substitution σ, such that: M, w |=σ

∀x!φ(x); but M, w +|=σ !∀xφ(x).

Since we have M, w |=σ ∀x!φ(x) we know that for each x-variant σ ′

of σ,

M, w |=σ′ !φ(x);

Given the constitution of the domain for each substitution σ there is
only one x-variant of it, which we will cal σ ′. Therefore we have that
both (∀xφ(x))M,σ and (∀xφ(x))M,σ′

are in N(w). Since M based on
F , and F in closed under finite intersections then we have that:

∩σ′∼xσ(φ(x))M,σ′
∈ N(w).

contradicting the assumption that M, w +|=σ !∀xφ(x)

•

Nevertheless the example shows that there are non-monotonic frames (not
closed under infinite intersections) where the Barcan schema is validated.
Nevertheless one can adapt the method of proof used in [5] to prove the
following result giving necessary and sufficient conditions for the frame va-
lidity of the Barcan formula (where the cardinality restriction imposed by
monotony is dropped):
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Observation 3.16. Let F be a consistent constant domain neighborhood
frame. The Barcan formula is valid on F iff either 1. F is trivial or 2. if D
is finite, then F is closed under finite intersections and if D is infinite and
of cardinality κ, then F is closed under ≤ κ intersections.

Proof. Suppose that F is a consistent constant domain first-order neigh-
borhood model. If F is trivial, then, as noted above, the Barcan for-
mula is valid. Suppose condition 2. holds and let M = 〈W,N,D, I〉
be any model based on F . Given any state w ∈ W and substitution
σ, we must show that M, w |=σ ∀x!φ(x) → !∀xφ(x). Suppose that
M, w |=σ ∀x!φ(x). If D is finite, then {(φ(x))M,σ′

| σ′ ∼x σ} is finite and
since (φ(x))M,σ′

∈ N(w) for each σ′ ∼x σ and N is closed under finite in-
tersections

⋂
{(φ(x)M,σ′

| σ′ ∼x σ} ∈ N(w). Therefore, M, w |=σ !∀xφ(x).
The proof is similar if D is is infinite.

For the other direction suppose that F = 〈W,N,D〉 is non-trivial. Since
D is nontrivial it contains at least two distinct elements, say d, c ∈ D such
that d += c. Suppose that D is finite and F is not closed under finite intersec-
tions. Since F is not closed under finite interesections there is a state w such
that N(w) is not closed under finite intersections. This means that there are
two sets X,Y such that X,Y ∈ N(w) but X ∩ Y +∈ N(w). To see this, let n
be the size of the smallest collection of sets C such that each element of C

is in N(w) but ∩C +∈ N(w). If n = 2 we are done. Otherwise, suppose that
n > 2. In this case we can partition C into two subclasses, C1 and C2 such
that each element of Ci is in N(w) and ∩Ci ∈ N(w) (for i = 1, 2). Note that
∩C1 ∩ ∩C2 +∈ N(w) by assumption. But then {∩C1,∩C2} is a collection of
size two both of whose elements are in N(w) and whose intersection is not
in N(w). This contradicts the assumption that n > 2. Thus there are two
sets X and Y such that X ∩ Y +∈ N(w).

Given X,Y ∈ N(w) such that X ∩ Y +∈ N(w) we construct a model
based on F that invalidates the Barcan formula. Let F be a unary predicate
symbol. The idea is to define I such that (F (x))M,σ = X if σ(x) = c
and (F (x))M,σ = Y if σ(x) = d. Hence for each v ∈ X, let c ∈ I(F, v).
Then if σ(x) = c, (F (x))M,σ = X. For each v ∈ Y , let d ∈ I(F, v). Then
if σ(x) = d, (F (x))M,σ = Y . For the other elements c of the domain (if
they exist), fix a set, say Y , and let c ∈ I(F, v) for each v ∈ Y . Let
σ be any arbitrary assignment. We have M, w |=σ ∀x!F (x). However,
(∀xF (x))M,σ = X ∩ Y +∈ N(w). Hence, M, w +|= !∀xF (x) and so the
Barcan formula is not valid.

Suppose that D is infinite and of cardinality κ. Since F is not closed
under ≤ κ intersections there is a state w and a collection {Xi | i ∈ I} where
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|I| ≤ κ such that
⋂

i∈I Xi +∈ N(w). Since |I| ≤ |D| there is a 1-1 function
f : I → D. Thus we can find for each Xi a unique c ∈ D, call it cXi . The
argument is similar to the above argument. Let F be a unary predicate. For
each Xi, define F (x) so that F (x)M,σ = Xi provided σ(x) = cXi . That is for
each Xi, for each v ∈ Xi, let cXi ∈ I(F, v). For the other elements c of the
domain (if they exist), fix any set, say Xj , and let c ∈ I(F, v) for each v ∈ Xj.
Now for any σ, F (x)M,σ = Xi for some i ∈ I, hence (F (x))M,σ ∈ N(w).
However (∀xF (x))M,σ =

⋂
σ∼xσ′ F (x)M,σ′

=
⋂

i∈I Xi +∈ N(w). Hence the
Barcan formula is not valid.

3.2. Completeness of classical systems of first-order modal logic

In this section we discuss the completeness of various classical systems of
first-order modal logic. We start by defining the smallest canonical model
for classical first-order modal logic. Let Λ be any first-order classical modal
logic. Define MΛ = 〈WΛ,NΛ,DΛ, IΛ〉 as follows. Let MAXΛ(Γ) indicate
that the set Γ is a Λ-maximally consistent set of formulas of L+

1 .

WΛ = {Γ | MAXΛ(Γ) and Γ has the ∀-property}

X ∈ NΛ(Γ) iff for some !φ ∈ Γ, X = {∆ ∈ WΛ | φ ∈ ∆}

DΛ = V+

〈x1, . . . , xn〉 ∈ IΛ(φ,Γ) iff φ(x1, . . . , xn) ∈ Γ

For every variable x ∈ V+,σ(x) = x

where V+ is the extended set of variables used in Lemma 3.8. The definition
of the neighborhood function NΛ essentially says that a set of states of the
canonical model is necessary at a world Γ precisely when Γ claims that it
should. For any formula φ ∈ L1, let |φ|Λ be the proof set of φ in the logic Λ,
that is,

|φ|Λ = {Γ | Γ ∈ WΛ and φ ∈ Γ}

The fact that NΛ is a well-defined function follows from the fact that Λ
contains the rule RE.
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Definition 3.17. Let M = 〈W,N,D, I〉 be any first-order constant domain
neighborhood model. M is said to be canonical for a first-order classical
system Λ provided W = WΛ, D = DΛ, I = IΛ and

|φ|Λ ∈ N(Γ) iff !φ ∈ Γ

Thus the model MΛ is the smallest canonical model for a logic Λ. It
is shown in Chellas ([16]) that if M = 〈W,N,D, I〉 is a canonical model,
then so is M′ = 〈W,N ′,D, I〉,where for each Γ ∈ W , N ′(Γ) = N(Γ)∪ {X ⊆
W | X += |φ|Λ for any φ ∈ L1}. That is N ′ is N with all of the non-proof
sets.

Lemma 3.18 (Truth Lemma). For each Γ ∈ WΛ and formula φ ∈ L1,

φ ∈ Γ iff MΛ,Γ |=σ φ

Proof. The proof is by induction on φ. The base case and propositional
connectives are as usual. The quantifier case is exactly as in the Kripke
model case (refer to Lemma 3.9). We need only check the modal cases. The
proof proceeds easily by construction of NΛ and definition of truth: !φ ∈ Γ
iff (by construction) |φ| ∈ NΛ(Γ) iff (by definition of truth) MΛ,Γ |=σ !φ.

Notice that in the above proof, as opposed to the analogous result for re-
lational models, we can construct a constant domain model without making
use of the Barcan formula. The following corollary follows from the truth
Lemma via a standard argument.

Theorem 3.19. For any canonical model M for a classical first-order modal
logic Λ, φ is valid in the canonical model M iff -Λ φ

Corollary 3.20. The class of all first-order neighborhood constant domain
frames is sound and complete for FOL + E.

Notice that in the canonical model MΛ constructed above, for any state
Γ, the set NΛ(Γ) contains only proof sets, i.e., sets of the form {∆ | φ ∈
∆} for some formula φ ∈ L1. For this reason, even if Λ contains the M
axiom scheme, NΛ may not be supplemented. Essentially the reason is if
X ∈ NΛ(Γ), and X ⊆ Y , Y may not be a proof set, so cannot possibly be in
NΛ(Γ). The supplementation of a frame F = 〈W,N〉 (〈W,N,D〉), denoted
F+, is a tuple 〈W,N+〉 (〈W,N+,D〉) where for each w ∈ W , N+(w) is the
smallest collection of sets containing N(w) that is closed under superset. It
can be shown that the supplementation M+

Λ is a canonical for FOL + EM

(by adapting to the first order case the proof offered in [16] page 257).
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Theorem 3.21. FOL+EM is sound and complete with respect to the class
of supplemented first-order constant domain neighborhood frames.

Example: Qualitative probability defined over rich languages

The system EMN and first order extensions of it seem to play a central role
in characterizing monadic operators of high probability. These operators
have been studied both in [36] and in [6]. Roughly the idea goes as follows:
let W be a set of states and ΣW a σ-algebra generated by W . Let P : ΣW →
[0, 1] be a probability measure and t ∈ (0.5, 1). Let Ht ⊆ ΣW be the set of
events with “high” probability with respect to t, that is Ht = {X | P (X) >
t}. It is easy to see that Ht is closed under superset (M) and contains the
unit (N). A similar construction is offered in [36], where the authors claim
that the resulting propositional logic is EMN.††

The results offered in [36] show that the approach in terms of neighbor-
hoods has interesting (and potentially rich) applications. These applications
go beyond the study of monadic operators of high probability. In [6] Arlo-
Costa considers the more general case of non-adjunctive modalities and he
develops a measure of the level of coherence of neighborhoods. These models
can, in turn, be generalized in order to classify parametrically other families
of paraconsistent logics, aside from the non-adjunctive ones.

The probabilistic applications considered in [36] can also be generalized.
In fact, they cover only the case of propositional languages. But, as Henry
Kyburg has pointed out in [35] researchers in various communities (most re-
cently in Artificial Intelligence) have been interested in having a qualitative
notion of probability defined over a language at least as reach as first order
logic. As Kyburg correctly points out in [35] one of the (misguided) reasons
advanced by the researchers in the ‘logical’ branch of AI for not using prob-
ability in knowledge representation was related to the alleged difficulties in
defining a notion of probability over a rich language. Kyburg reminds the
reader of the seminal work already done in this area by Gaifman and Snir
[24] and by Scott and Krauss [46]. Nevertheless Kyburg and Teng do not ap-
peal to these accounts of probability over first order languages in their own
model of qualitative (monadic) probability. This might have been caused by
the fact that first order classical modal logics have not been studied carefully
in the previous literature.

††The model offered in [36] differs from the one sketched here in various important
manners. First it attributes probability to sentences, not to events in field. Second it
works with a notion of primitive conditional probability which is finitely additive. Third
probability in Kyburg and Teng’s model is not personal probability but objective chance,
which is interval-valued.
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We claim that the accounts of monadic operators of high probability pre-
sented in [35] and [5] can be generalized by appealing to the tools presented
here. We will sketch in this example how this can be done by appealing to
the account offered in [24]. This is one the most detailed models of how to at-
tribute probability to first order sentences in the literature. There are, never-
theless, various discontinuities between this account and Kyburg and Teng’s.
For example Gaifman’s account intends to axiomatize a notion of probabil-
ity which does not conflict with the standard Kolmogorovian account, while
Kyburg and Teng work with finitely additive primitive conditional proba-
bility. These foundational issues might have some logical repercussions but
the semantic framework utilized here is largely neutral with respect to those
issues. So, the proposal below can be seen as a model of high probability
operators for a Kolmogorovian notion of probability defined over a first order
language.

Let L0 be a first order language for arithmetic. So L0 has names for the
members of N , aside from symbols for addition and multiplications, variables
that take values on N and quantifiers, etc. Notice that this language is richer
than the one used above. For example, it has constants, which in this case
are numerals n1, . . .. We use ‘n’ ambiguously for natural numbers and their
numerals. Let in addition L be an extension of L0 containing a finite amount
of atomic formulas of the form R(t0, . . . , tk) where ti is either a variable or
a numeral. Let Pr be a nonnegative real-valued function defined for the
sentences of L and such that the following conditions hold:

1 If |= ψ ↔ φ then Pr(ψ) = Pr(φ)

2 If |= ψ, then Pr(ψ) = 1.

3 If |= ¬(ψ ∧ φ), then Pr(ψ ∨ φ) = Pr(ψ) + Pr(φ)

4 Pr(∃xφ(x)) = Sup{Pr(φ(n1)∨ . . .∨ φ(nk)) : n1 . . . nk ∈ N , k = 1, 2, . . .}

Condition (4) is the substantive condition, which in [46] is called ‘ Gaif-
man’s condition’. It is clear that we can use this notion of probability in
order to define a modality ‘ψ is judged as highly probable by individual i’
modulo a threshold t. So, for example, for (a finite stock of) atomic formulas
we will have

M, w |=σ !R(t1, . . . , tn) if and only if (R(t1, . . . , tn))M,σ ∈ N(w) if and
only if Prw(R(σ(t1), . . . ,σ(tn)) > t.

And in general neighborhoods contain the propositions expressed by sen-
tences of L to which an agent of reference assigns high probability. Of course,
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other interesting modalities, like ‘sequence s is random’ or ‘ψ is judged as
more probable than φ’, etc. can also be defined. In view of the previous
results we conjecture that the logic that thus arises should be an extension
of the non-nested fragment of FOL+EMN – we refer to the logic encoding
the valid formulas determined by the aforementioned high probability neigh-
borhoods. Of course, BF should fail in this case, given that it instantiates
cases of what is usually known as the ‘lottery paradox’•

The situation is more complicated in the case of FOL + E + CBF . We
need some definitions in order to consider this case.

Definition 3.22. A classical system of first order modal logic Λ is canonical
if and only if the frame of at least one of its canonical models is a frame for
Λ.

Now we can establish a result showing that FOL + E + CBF is not
canonical (in the strong sense we just defined). That is we will show that
the frame of the smallest canonical model for FOL+E+ CBF not a frame
for FOL + E + CBF .

Observation 3.23. FOL + E + CBF is not canonical.

Proof. Assume by contradiction that FOL + E + CBF is canonical. If
this were so, given that (by construction) the frame of any canonical model
for FOL + E + CBF is non-trivial (see Definition 3.12 for non-triviality),
there is at least a frame of one of the canonical models of FOL+ E + CBF
(which is also a frame for FOL + E + CBF ) and that frame should also be
supplemented (by Observation 3.13) as CBF is obviously valid. And if this
were the case then every first order instance of M should also be valid in
the canonical model. But this implies that M ∈ FOL+ E + CBF , which is
a contradiction.

It is easy to see that the previous argument can be extended to show that
FOL + E + CBF is not complete with respect to any class of non-trivial
frames (i.e. a class where each frame is non-trivial). However, it is not
difficult to see that if we take the class of non-trivial supplemented first-order
neighborhood frames and we add to it a trivial and non-supplemented frame
(of the sort used in Observation 3.17) this class fully characterizes FOL +
E + CBF . This is so given that CBF continues to be valid with respect to
the widened class, but the addition of the trivial frame guarantees that M

is no longer valid in the widened class of frames. We first need a definition.
The augmentation of a frame F = 〈W,N〉 (〈W,N,D〉), denoted aug(F),
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is the supplementation of F ′, where F ′ is the tuple 〈W,N !〉 (〈W,N !,D〉)
and for each w ∈ W , N !(w) = N(w) ∪ {

⋂
N(w)}. The supplementation of

a model M based on a frame F , denoted M+, is the corresponding model
based on F+. Similarly for augmentation.

Observation 3.24. The augmentation of the smallest canonical model for
FOL+K is not a canonical model for FOL+K. In fact, the closure under
infinite intersection of the minimal canonical model for FOL + K is not a
canonical model for FOL + K.

Proof. Let MΛ where Λ = FOL + K be the smallest canonical model for
FOL+K and aug(MΛ) = 〈WΛ,N !,DΛ, IΛ〉 its augmentation. Suppose that
∀x!φ(x) ∈ Γ. Then for each y ∈ V+, !φ(y) ∈ Γ, and so for each y ∈ V+,
|φ(y)|Λ ∈ N !

Λ(Γ). Hence
⋂

x∈V+ |φ(x)|Λ ∈ N !
Λ(Γ). This follows if we assume

NΛ is closed under infinite intersections. Since |∀xφ(x)|Λ =
⋂

x∈V+ |φ(x)|Λ ∈
N !

Λ(Γ), we have !∀xφ(x) ∈ Γ. Therefore, for each Γ, BF ∈ Γ. But this is a
contradiction since BF is not provable in FOL + K.

Lemma 3.25. The augmentation of the smallest canonical model for FOL+
K + BF is a canonical for FOL + K + BF .

Proof. Suppose that Λ = FOL+K+BF and MΛ is the smallest canonical
model for Λ. Let aug(MΛ) = 〈WΛ,N !

Λ,DΛ, IΛ〉 be the augmentation of MΛ.
We must show, for any formula φ ∈ L1 and any state Γ ∈ WΛ,

!φ ∈ Γ iff |φ|Λ ∈ N !
Λ(Γ)

The proof is by induction on the complexity of φ.

• The boolean connectives and the base cases are straightforward.

• (Quantifier Case) Suppose that φ is ∀xψ(x). Then if !∀xψ(x) ∈ Γ, us-
ing CBF , ∀x!ψ(x) ∈ Γ. Since Γ is a maximally consistent set, for each
y ∈ V+, !ψ(y) ∈ Γ. By the induction hypothesis, |φ(y)|Λ ∈ N !

Λ(Γ) for
each y ∈ V+. By the construction of N !

Λ(Γ),
⋂

y∈V+ |ψ(y)|Λ ∈ N !
Λ(Γ),

hence |∀xψ(x)|Λ ∈ N !
Λ(Γ) as desired. Suppose that !∀xψ(x) +∈ Γ.

Then ¬!∀xψ(x) ∈ Γ and using BF , we have ¬∀x!ψ(x) ∈ Γ. Then
if |∀xψ(x)|Λ ∈ N !

Λ(Γ) we have for each y ∈ V+, |ψ(y)|Λ ∈ N !
Λ(Γ)

since N !
Λ(Γ) is supplemented. By the induction hypothesis, for each

y ∈ V+, !φ(y) ∈ Γ. Hence ∀x!φ(x) ∈ Γ. But this is a contradiction, so
|∀xψ(x)|Λ +∈ N !

Λ(Γ), as desired.
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• (Modal Case) Suppose that φ is !ψ. For the left to right direction, if
!φ ∈ Γ, then |φ|Λ ∈ NΛ(Γ) and so |φ|Λ ∈ N !

Λ(Γ) (since NΛ(Γ) ⊆ N !
Λ(Γ)).

For the other direction, assume that |φ|Λ = |!ψ|Λ ∈ N !
Λ(Γ). Hence⋂

NΛ(Γ) ⊆ |!ψ|Λ. We must show !!ψ ∈ Γ. Now, it is easy to see that
for each maximally consistent set ∆,

∆ ∈
⋂

NΛ(Γ) iff {α | !α ∈ Γ} ⊆ ∆

Thus for each ∆ with {α |!α ∈ Γ} ⊆ ∆, !ψ ∈ ∆. Then {α |!α ∈ Γ} -
!ψ. Hence by compactness there are α1, . . . ,αn in {α |!α ∈ Γ} with
- (α1 ∧ · · · ∧ αn) → !ψ. Hence !!ψ ∈ Γ, as desired.

Theorem 3.26. FOL + K is sound and complete with respect to the class
of filters.

Example: Finitely additive conditional probability When neigh-
borhoods encode qualitative expectations for finitely additive measures (in
countable spaces) they form non-augmented filters validating FOL+K but
not BF .

Some distinguished decision theorists (like Bruno De Finetti and Leonard
J. Savage) as well as some philosophers (Isaac Levi) have advocated the use
of finitely additive conditional probability in the decision sciences. Lester E.
Dubins offers an axiomatic characterization of finitely additive conditional
probability in [20]. As De Finetti suggested in [19] it is possible to extract
a superiority ordering from finitely additive probability, which has, in turn,
been used more recently in order to define full belief and expectations from
primitively given conditional probability in a paradox-free manner ([48], [3]).
Moreover finitely additive conditional probability has also been used in order
to define non-monotonic notions of consequence ([3], [29]). We will show
here that the resulting modalities can be represented in salient cases by
neighborhood frames forming non-augmented filters.

We will proceed as follows: we will first define a qualitative structure
in neighborhoods (basically a non-augmented filter). Then we will define
a conditional measure satisfying Dubins’ axioms by utilizing this qualita-
tive structure. Finally we will show that the structure in question offers a
characterization of belief and expectation corresponding to the measure.

Let the space be the (power set of the) positive integers and consider
E = {2n : n = 1, . . .} be the even integers in the space, and let O =
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{2n − 1 : n = 1, . . .} be the odd integers in the space. Let P (i) = {1/2n:
if i = 2n} and let P (i) = 0, otherwise. So the unconditional P is countably
additive, whose support is the even integers E. But P (.|O) might be uniform
on the odd integers. This can be reflected by the fact that there is a core
system over O defined as follows: Let the outermost core C1 = O. Then C2

= {1}c, C3 = {1, 3}c, etc. For any n: 1, ...; define a rank system rn for Cn

as follows:

(ranks) rn = {w ∈ Ω : w ∈ Cn − Cn+1}

Notice that each rank contains exactly one odd number with r1 = {1}.
Now we can define conditional probability as follows. If there is a largest
integer i such that A∩Ci += ∅, define Q(B|A) (for A,B ⊆ O) as: pi(A ∩ B)
/ pi(A). Otherwise set Q(B|A) to 1 if there is ri such that A ∩ Ci += ∅, and
A ∩ Ci ⊆ B and Q(Bc|A) to 0 for Bs satisfying the given conditions. For
the remaining infinite sets such that both B and Bc are infinite, arbitrarily
set one of them to 1 and the complement to 0. Finally set Q(B|A) to 0 for
every other event in the space. According to this definition each co-finite
set in O has measure 1 (because it is entailed by at least a core) and each
number in O carries zero probability. Of two infinite but not co-finite sets,
say S = {1, 5, 9,...} and H = {3, 7, 11, ...}, we can assign 1 to the set of
lower rank (so S carries measure 1 and H zero).

We shall now formally introduce the notion of probability core. We follow
here ideas presented in [3], which, in turn, slightly modify the schema first
proposed in [48]. A notion that plays an important role in those works is
the notion of normality. The basic idea is that an event A is normal for
Q as long as Q(∅|A) = 0. Conditioning on abnormal events would lead to
incoherence.

A probability core for Q is an event K which is normal and satisfies the
strong superiority condition (SSC) i.e. if A is a nonempty subset of K and
B is disjoint from K, then Q(B|A∪B) = 0 (and so Q(A|A∪B) = 1). Thus
any non-empty subset of K is more “believable” than any set disjoint from
K.

Now it is easy to see that the system of cores Cn constructed above
constitutes a system of cores for Q as defined in the previous paragraphs.
Cores can be used in order to characterize qualitative expectations relative
to Q: an event E is expected relative to Q as long as it is entailed by some
core for Q. So, given Q we can construct all neighborhoods of a frame as
the set of expectations for Q. A binary modality can also be intuitively
characterized, namely conditional expectation: relative to any finite subset
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of O its largest element will always be expected. It is easy to see that these
neighborhoods form non-augmented filters and that the first order logic of
qualitative expectations should at least obey the axioms of the non-nested
fragment of FOL + K.

Expectations have been utilized in [3] in order to define non-monotonic
consequence: B is non-monotonically entailed by A relative to Q if and
only if B is expected relative to Q(.|A).‡‡ An important argument in [3]
shows that in infinite spaces and for logically infinite languages (equipped
with at least a denumerable set of atoms) the definition of non-monotonic
consequence sketched above obeys standard axioms of rational consequence
proposed by Lehman and Magidor [39] only if the underlying measure is
not countable additive, so the filter structure presented above is essentially
needed in order to characterize probabilistically both qualitative expectation
and conditionals (relative to a conditional measure Q)•

Theorem 3.27. FOL + K + BF is sound and complete with respect to the
class of augmented first-order neighborhood frames.

Example Perhaps the simplest example is constituted by the expecta-
tions induced by a measure Q defined over a finite space. In this case core
systems always have an innermost core and the corresponding neighborhoods
are augmented. In general [2] shows that the core systems of countable ad-
ditive measures always have an innermost core, also inducing augmented
neighborhoods.•

4. General Frames

The argument presented to this point shows that although central normal
systems like FOL + K cannot be fully characterized via constant domain
relational models, there are many modalities obeying this logic which seem to
require interpretations in terms of constant domains. Moreover the analysis
of operators of high probability provides neither examples of modalities not
obeying neither the Barcan Formula nor the full strength of K, but which are
best interpreted in terms of frames with constant domains. The adoption of
neighborhood semantics in the tradition suggested by Scott and Montague
solves this and many other related problems (pointed out in the introduction)
rather well.

‡‡Other notions of expectation proposed in the literature, like the one presented in [40],
do not seem to exhibit the logical structure encoded in FOL + K; but they can also be
analyzed with the tools offered here.
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But an unmodified version of the program of neighborhood semantics
(even at the propositional level) suffers also from certain important (and
independent) inadequacies. The problem in question is that there are many
classical modal logics which are not complete with respect to any class of
neighborhood frames. The problem was first suggested by M. Gerson [26]
who showed the existence of two incomplete logics with respect to neighbor-
hood frames: one is the logic L (between T and S4) and the other the logic
L′ (an extension of S4 independently defined by Kit Fine).

The logics L and L′ are also incomplete with respect to relational se-
mantics à la Kripke, so Gerson’s result shows that neighborhood semantics
inherits other types of important inadequacies of the Kripkean program. In
addition it is also well known that the first order logics strictly between S4.4
and S5 without the Barcan Formula are also incomplete (in relational seman-
tics) [28]. We conjecture that the latter incompleteness can be removed by
using first order neighborhood frames. But the first kind of incompleteness
cannot be eradicated by utilizing first order neighborhood frames.

The solution for this kind of incompleteness in relational semantics con-
sists in adopting the so-called general frames constituted by a frame together
with a restricted but suitably well-behaved set of admissible valuations – see
[15] for a textbook presentation of general frames. The terminology ‘general
frames’ can be traced back to van Benthem’s paper [14]. More complete
historical references can be found in footnote 6 in chapter 9 of [34]. An iden-
tical maneuver is feasible in neighborhood semantics. [32] presents a general
result of this type circumventing incompleteness results for the family of
monotonic classical logics.

Hansen’s general monotonic frames are nevertheless not ideal for our
own purposes. First Hansen’s main goal is to prove duality results between
neighborhood frames and algebras with operators and second she only fo-
cuses on propositional systems. So, we will define here certain general first
order neighborhood frames which we will call general first order frames.

Let F = 〈W,N,D〉 be a first-order neighborhood frame with constant
domain. The neighborhood function induces a function N! : 2W → 2W

defined as follows. Let X ⊆ W , then N!(X) = {w ∈ W | X ∈ N(w)}.
Intuitively, N!(X) is the set of states where the proposition X is necessary.

Let 〈W,N,D〉 be a first-order neighborhood frame with constant domain.
Let ωD denote the set of all functions from ω to D. For i ∈ ω, s ∈ ωD and
d ∈ D, let si

d denote the function which is exactly the same as s except
for the ith component which is assigned d. For s, s′ ∈ ωD, we say that s
and s′ are i-equivalent if s′ = si

d for some d ∈ D. When convenient, we
will think of a function s ∈ ωD as an infinite sequence of elements from



First-Order Classical Modal Logic 29

D. Intuitively, these sequences represent a substitution σ : V → D. To
make this representation concrete, we need to fix an ordering on the set of
variables V, i.e., assume that V = {v1, . . . , vn, . . .}. We fix this ordering
on the set of variables for the rest of this section. Then we can be more
precise about the correspondence between sequences and substitutions. For
any substitution, σ : V → D, there is a unique sequence, denoted by sσ,
such that sσ(i) = σ(vi).

Similarly, for each sequence s ∈ ωD, there is a unique substitution, de-
noted by σs, such that σs(vi) = si. Obviously, we have that σ ∼vi

σ′ implies
sσ ∼i sσ′ (and vice versa).

Consider a function f : ωD → 2W . Intuitively the function f should be
thought of as representing the equivalence class of formulas logically equiv-
alent to a relation φ(vi1 , . . . , vin), in the sense that for each substitution σ,
f(sσ) = (φ(vi1 , . . . , vin))M,σ. Given a first-order neighborhood frame with
constant domain F = 〈W,N,D〉, we say that a collection of functions {fi}i∈S

is appropriate for F if,

1. For each i ∈ S, there is a j ∈ S such that for all s ∈ ωD, fj(s) = W−fi(s).
We will denote fj by ¬fi.

2. For each i, j ∈ S, there is a k ∈ S such that for all s ∈ ωD, fk(s) =
fi(s) ∩ fj(s). We will denote fk by fi ∧ fj.

3. For each i ∈ S, there is a j ∈ S such that for all s ∈ ωD, fj(s) =
N!(fi(s)). We will denote fj by !fi.

Definition 4.1. 〈W,N,D,A, {fi}i∈S〉 is a general neighborhood frame

with constant domain if 〈W,N,D〉 is a first-order neighborhood frame
with constant domain, A ⊆ 2W is a collection of sets closed under comple-
ment, finite intersection and the N! operator and {fi}i∈S is a set of functions
f : ωD → 2W appropriate for 〈W,N,D〉, where for each i and each s ∈ ωD,
fi(s) ∈ A and each fi satisfies the following condition:

(C) For each vi ∈ V,
⋂

s′∼is

f(s′) ∈ A

An interpretation I is A-admissible for {fi}i∈S in a general first-
order neighborhood frame F = 〈W,N,D,A, {fi}i∈S〉 provided for each n-ary
atomic formula F and each substitution σ,

1. ((F (x1, . . . , xn))M,σ ∈ A, where M is the first-order neighborhood model
based on F with interpretation I, and
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2. For each n-ary atomic formula F , there is a function fi such that for
each s ∈ ωD, w ∈ fi(s) iff 〈σs(vi1), . . . ,σs(vin)〉 ∈ I(w,F ), for any set of
variables, vi1 , . . . , vin .

No further restrictions in the cardinality of the index set S are imposed.
A general first-order neighborhood model with constant domain

is a structure Mg = 〈W,N,D,A, {fi}i∈S , I〉, where 〈W,N,D,A, {fi}i∈S〉 is
a general first-order neighborhood frame with constant domain and I is an
A-admissible interpretation for {fi}i∈S . Truth and validity are defined as
usual. It is easy to see that the following is true in any such model:

(∗) for any scheme φ with n-free variables vi1 , . . . , vin , there is a
function fi that corresponds to the scheme φ(v1, . . . , vn) in the sense
that for each substitution σ, (φ(v1 . . . , vn))M,σ = f(sσ).

Lemma 4.2. For each formula φ ∈ L1 and any general first-order neighbor-
hood model with constant domain Mg = 〈W,N,D,A, {fi}i∈S , I〉, (φ)M,σ ∈
A for all substitutions σ.

Proof. Let Mg = 〈W,N,D,A, {fi}i∈S , I〉 be a general first-order neigh-
borhood model with constant domain and σ any substitution. The proof
is by induction on φ. The atomic case is by definition. The Boolean
cases are obvious as is the modal case. Let φ be ∀viψ(vi). We must show
((∀xψ(x))M,σ ∈ A. Now, (∀viψ(vi))M,σ =

⋂
σ′∼vi

σ(ψ(vi))M,σ′
.

By (∗), there is a function fj such that fj(s) = (ψ(vi1 , . . . , vin))M,σs for
all sequences s and variables vi1 , . . . , vin . Hence, it is easy to show that⋂

σ′∼vi
σ(ψ(vi))M,σ′

=
⋂

s′∼isσ
fj(sσ′). By property C,

⋂
s′∼isσ

fj(s′) ∈ A.

Therefore, (∀viψ(vi))M,σ ∈ A.

In order to define the general first-order canonical neighborhood model,
we only need to define the canonical set of admissible sets and a set of
canonical functions. The definitions of the domain DΛ, the interpretation
IΛ and σΛ are as in the definitions for the canonical frame for Λ. The
admissible sets are defined as follows.

AΛ = {|φ|Λ | φ ∈ L1}

As for the canonical functions, enumerate all n-ary predicate symbols in
L1. Then define for each n-ary predicate symbol P with variables vi1 , . . . , vin

a function fP : ωDΛ → 2WΛ as follows, for each s ∈ ωDΛ,
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fP (s) = |P (si1 , . . . , sin)|Λ

Let the set of canonical functions {fΛ
i }i∈S be the smallest set of functions

containing the set {fP | P an n-ary predicate symbol} and closed under the
conditions 1, 2, and 3 above. For every formula φ ∈ L1, there is a function
fΛ

φ such that fΛ
φ (s) = |φ(si1 , . . . , sin)|Λ for every sequence s ∈ ωD. It is

easy to see that the set {fΛ
i }i∈S satisfies condition C. Fix an arbitrary

function fi ∈ {fΛ
i }i∈S . Since the set of functions is the smallest set satisfying

the closure conditions, there must be some expression φ such that fi(s) =
|φ(s1, . . . , sn)|Λ. Then

⋂
s′∼is

f(s′) = |∀xφ(x)|Λ, where x = si. Furthermore,

it is easy to check that IΛ is an admissible interpretation for {fΛ
i }i∈S . Thus,

Mg
Λ = 〈WΛ,NΛ,DΛ, AΛ, {fΛ

i }i∈S , IΛ〉 is a general first-order neighborhood
model with constant domain.

Theorem 4.3. Let Λ be any classical first-order modal logic. Λ is sound and
strongly complete with respect to the class of general first-order neighborhood
frames with constant domains for Λ.

Proof. Let 〈WΛ,NΛ, AΛ, {fΛ
i }i∈S ,DΛ〉 be the minimal general canonical

frame Fg
Λ. Strong completeness requires showing that any Λ-consistent set

of formulas is satisfiable in a modal based on F g
Λ. Since IΛ is an admissible

interpretation, the truth Lemma will hold for Mg
Λ. Hence, it is easy to show

that for any consistent set of formulas Σ, Mg
Λ |=σΛ φ for each φ ∈ Σ. Thus we

need only show that F g
Λ |= φ for each φ ∈ Λ. That is, let I be an A-admissible

interpretation for {fi}i∈S and suppose M∗ = 〈WΛ,NΛ, AΛ, {fΛ
i }i∈S ,DΛ, I〉

is a model based on Fg
Λ. We must show for any substitution σ : V+ → D,

M∗ |=σ φ for each φ ∈ Λ.
Let I be an admissible interpretation for {f Λ

i }i∈S and therefore an ad-
missible interpretation of F g

Λ and let σ : V+ → DΛ be any substitution. Fix
a formula φ ∈ Λ. Then for each atomic formula Fi(vi1 , . . . , vin) in φ, there is
some function g ∈ {fΛ

i }i∈S such that g(s) = (F (vi1 , . . . , vin))M
∗,σs for all se-

quences s. By construction of the {fΛ
i }i∈S , there is a formula ψ(vj1 , . . . , vjm)

such that g(s) = |ψ(sj1 , . . . , sjm)|Λ. Note that in general, ψ be have arity
m += n (different from F ). The goal is to construct a new formula φ′ where
each Fi is replaced by the correpsonding ψ. For a given atomic formula
F (vi1 , . . . , vin) and a corresponding formula ψ(vj1 , . . . , vjm), the main case
that we need to consider is the one when m ≥ n and there is a subset
{vj1, . . . , vjk

} ⊂ {vj1 , . . . , vjm}, such that {vj1 , . . . , vjk
} ⊆ {vi1 , . . . , vin}. In

this case, replace F (vi1 , . . . , vin) with ψ(σ(vi1), . . . ,σ(vik), vjk+1 , vjm).
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Claim: For each Γ ∈ WΛ, Mg
Λ,Γ |=σΛ φ′ iff M∗,Γ |=σ φ.

The proof is by induction on φ. If φ = F (vi1 , . . . , vin), then there are
two cases to consider.

Suppose that φ′ = ψ(σ(vi1), . . . ,σ(vik ), vjk+1 , . . . , vjm). Then let π ∈ ωD
be any sequence where π1 = σ(vi1), . . . ,πn = σ(vin),πn+1 = vjn+1 , . . . ,πm =
vjm. Let π′

1 = σ(vj1), . . . ,π
′
k = σ(vjk

), for the variables {vj1 , . . . , vjk
} ⊂

{vi1 , . . . , vin} – see above where the formulas φ′ are introduced.
We have,

M∗,Γ |=σ F (vi1 , . . . , vin) iff 〈σ(vi1), . . . ,σ(vin)〉 ∈ I(F,Γ)

iff 〈π1, . . . ,πn〉 ∈ I(F,Γ)

iff Γ ∈ g(π) = |ψ(π′
1, . . . ,π

′
k,πk+1, . . . ,πm)|Λ

iff ψ(π′
1, . . . ,π

′
k,πk+1, . . . ,πm) ∈ Γ

iff ψ(σ(vj1), . . . ,σ(vjk
), vjk+1 , . . . , vjm) ∈ Γ

iff Mg
Λ,Γ |=σΛ ψ(σ(vj1), . . . ,σ(vjk

), vjk+1 , . . . , vjm)

The case when φ′ = ψ(σ(vi1 , . . . , vim)) is similar to the above except use
the sequence π1 = σ(vi1),π2 = σ(vi2), . . . ,πn = σ(vin).

The Boolean cases are straightforward. Suppose that φ = !α. By the
induction hypothesis,

(α′)M
g
Λ,σΛ = (α)M

∗,σ

Thus Mg
Λ,Γ |=σΛ !α′ iff (α′)M

g
Λ,σΛ ∈ NΛ(Γ) iff (α)M

∗,σ ∈ NΛ(Γ) iff M∗,Γ
|=σ !α.

Suppose that φ = ∀xα(x). Then M∗,Γ |=σ ∀xα(x) iff

Γ ∈
⋂

σ′∼xσ

(α(x))M
∗ ,σ′

=
⋂

σ′∼σ(x)σΛ

(α′(σ(x)))
Mg

Λ,σΛ

IΛ

iff Mg
Λ,Γ, IΛ |=σΛ ∀σ(x)α′(σ(x))

–(of Claim)

Then for any φ ∈ Λ, φ′ ∈ Λ since Λ is closed under universal substitution.
By the truth Lemma, Mg

Λ,Γ |=σΛ φ′. Hence by the above claim, M∗,Γ |=σ φ
where M∗ is any model based on F g

Λ and σ any substituion. Hence, Λ is
valid on Fg

Λ.
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5. Conclusion and Further Work

Relational semantics for first order classical modalities suffers at least from
three major inadequacies. First, the semantic study of non-normal classical
systems is either impossible or indirect and unnecessarily complicated (some
monotonic non-normal systems can be simulated in terms of polymodal nor-
mal logics – see [37]). This is particularly important given the fact that many
interesting modal logics of interest in computer science and philosophy are
non-normal.

Second, the standard relational semantics with constant domains imposes
the validity of both the Barcan and the Converse Barcan schemas. This is
unduly restrictive given that there are many interesting modalities which are
better represented with constant domains and for which the Barcan schema
(or the Converse Barcan) fails to be intuitively valid. Monadic operators of
high probability as well as many epistemic modalities are salient examples.

Third, even when systems like FOL + K can be characterized in terms
of relational semantics utilizing expanding domains there are many other
incompleteness results for systems strictly between S4.4 and S5 without the
Barcan schema. The origin of these incompleteness results seems differently
motivated than in the case of other incompleteness results for purely propo-
sitional systems.

Some of these inadequacies can be removed via the adoption of general
relational frames, but not all of them. For example, the adoption of general
relational frames cannot give the Kripkean program the ability of character-
izing certain normal systems without the Barcan schema in terms of class of
relational frames with constant domains.

In contrast, the adoption of general first order neighborhood frames re-
moves all these problems at once and delivers a very intuitive and appealing
alternative semantical framework. Our results show that the adoption of
varying domains in modal logic remains optional but it is not mandatory in
order to characterize normal systems like FOL+K. A general completeness
result can be proved for the entire first order classical family of modal logics
in terms of (general) constant domain frames.

We have tackled here some problems that seem central but much remains
to be done in this area. Concerning applications many notions of interest
in distributed Artificial Intelligence and Game Theory can be studied with
the tools we offer. Some examples were provided in the introduction. As
an important additional example we conjecture that a strong completeness
result for the type spaces in the sense of Harsanyi is provable for first order
operators of the type ‘individual i assigns probability at least a’. Concerning
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extensions an obvious further step is to consider the case of varying domains.
We expect that also in this area there are significant gains by applying the
neighborhood approach (particularly in the case of transition logics and in
the case multi modal logics combining operators of tense and belief). There
is also a promissory area of investigation related to the logic of conditionals
and non-monotonic inference. Dyadic modal classical modal operators were
considered in passing in [16] but this area of research remains practically
unexplored.

Duality results for general first order neighborhood frames in terms of
cylindric algebras with operators remain also unknown. And although [32]
contains some preliminary results concerning recent work in co-algebras, this
is also a topic that remains open. One should expect interesting connections
with co-algebras given that knowledge operators treated in terms of neigh-
borhoods (as is explained in passing in the introduction) can be alternatively
characterized in terms of non-well founded models for modalities of the kind
studied in [12].

As Fitting and Mendelsohn remarked in [22] (page 134) the lack of ‘a
completeness proof that can cover constant domains, varying domains, and
models meeting other conditions...’ has often been felt. Garson suggests as
well that ‘ideally, we would like to find a completely general completeness
proof.’ Our focus in the last sections of this paper was to offer such a general
completeness proof for the entire class of first order classical modal systems.

Some authors have recently published results that aim at meeting Gar-
son’s challenge. The results offered in [17] are perhaps an example. In this
work the author explains that the ‘production of such a proof [a general com-
pleteness proof] is the aim of this paper’ ([17], page 1483). The paper then
focuses on considering ‘...all free and classical quantified extensions of the
propositional modal logic K obtained by adding either the axioms of iden-
tity or the Converse Barcan Formula or the Extended Barcan Rule’ ([17],
page 1483). A general strategy for proving completeness results for these
quantified logics is then provided. All this is done by utilizing variations
of well-known relational semantics. ‘Original’ Kripke semantics, ‘Kripke
semantics’ and what the author calls Tarski-Kripke semantics are utilized
among others and compared. The appeal to this semantic framework has
well-known limitations that seem to hamper the generality of the results
presented in the paper.

First the presented results are confined to the class of classical normal
first order modal systems that admit a characterization via this type of
relational semantics. As a matter of fact the article includes some incom-
pleteness results as well, marking the limits of this semantic approach. So,
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[17] clearly does not present a general completeness result even if one con-
fines attention exclusively to the subset of classical first order modal logics
that are normal.

Second, as a consequence of the previous remarks, [17] does not consider
first order classical non-normal systems at all.

Third the appeal in [17] to relational semantics forces the consideration
of models with varying domains. The lack of serious study of alternatives
to relational semantics at the first order level has perhaps created the im-
pression that the recourse to these kinds of models is obligatory in order to
consider general completeness results. We conclude here that this is not the
case by offering a general completeness result for the entire class of classical
first order modal systems in terms of general frames with constant domains.
As we remarked above nothing precludes, nevertheless, the study of first
order neighborhood frames with varying domains. A more detailed com-
parison of the behavior of these kind of models with the relational models
(and ‘unified’ strategies for completeness) studied in [17] could be therefore
of interest as a topic for further study.

To a large extent the many philosophical discussions that followed Quine
skeptical comments about quantified modal logic, have been based on the
observation that quantified modal logic seems to lead to the toleration and
eventual acceptance of possibilia. Ruth Barcan Marcus puts the problem in
a clear way:

Since we have the option of coextensive domains, QML is not com-
mitted to possibilia. Yet admission of possibilia would seem to be a
natural extension, for informally, the notion of possible worlds lends
itself to framing counterfactuals not merely about the properties ac-
tual objects might have and the relations into which they might have
entered but about alternative worlds that might have individuals that
fail actually to exist, or fail to have individuals that do actually ex-
ist. The [Kripke-style] semantics accommodated such interpretations
([11], 195).

Barcan Marcus has always been skeptical about semantics that exhibit
this tolerance:

[...] modal discourse need not and should not admit possibilia despite
the elegance of the generalization ([11], 213).

She defended this position mainly in philosophical terms, and she, of
course, noticed that this philosophical attitude is consistent with the adop-
tion of the so-called Barcan schema.
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Our paper can be seen as providing further formal support for Barcan
Marcus’s philosophical view. Moreover we show as well that a modal se-
mantics which rejects possibilia although consistent with the adoption of
the Barcan schemas, does not require the adoption of either of them for its
coherence. Modal discourse in its most general possible expression (the clas-
sical family of first order modal systems) can be coherently, completely and
parametrically interpreted without any recourse to possibilia of any sort.
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38 Horacio Arló-Costa and Eric Pacuit

[31] Hlapern, J. ‘Intransitivity and vagueness,’ Ninth International Conference on Prin-

ciples of Knowledge Representation and Reasoning (KR 2004), 121-129, 2004.

[32] Hansen, H.H. Monotonic modal logics, Master’s thesis, ILLC, 2003.

[33] Harsanyi, J. ‘Games of incomplete information played by Bayesian players. Parts I,
II, III. Management Science, 14, 159-182, 320-334, 486-502, 1967-68.

[34] Hughes, G.E. and Cresswell, M.J. A new introduction to modal logic, Routledge, 2001.

[35] H. E. Jr. Kyburg. ‘Probabilistic inference and non-monotonic inference,’ Uncertainty

in Artificial Intelligence, R.D Schachter, T.S. Evitt, L.N. Kanal J.F. Lemmer (eds.),

Elsevier Science (North Holland), 1990.

[36] Kyburg, H. E. Jr. and Teng, C. M. ‘The Logic of Risky Knowledge,’ Proceedings of

WoLLIC, Brazil, 2002.

[37] Kracht, M and Wolter, F. ‘Normal Monomodal Logics can simulate all others,’ Jour-

nal of Symbolic Logic, 64, 1999.

[38] Kratzer, A. ‘Modality,’ In: von Stechow, A. and Wunderlich, D. ( eds.). Semantik.

Ein internationales Handbuch der zeitgenossischen Forschung. 639-650. Walter de

Gruyter, Berlin, 1991.

[39] Lehmann, D., Magidor, M.: 1992, ‘What does a conditional base entails?’ Artificial

Intelligence, 55, 1-60.

[40] Levi, I.: 1996, For the sake of the argument: Ramsey test conditionals, Inductive

Inference, and Nonmonotonic reasoning, Cambridge University Press, Cambridge.

[41] Linsky, B. and Zalta, E. ‘In Defense of the Simplest Quantified Modal Logic,’ Philo-

sophical Perspectives, 8, (Logic and Language), 431- 458, 1994.

[42] Montague, R. Universal Grammar, Theoria 36, 373- 98, 1970.

[43] Parikh, R. ‘The logic of games and its applications,’ In M. Karpinski and J. van

Leeuwen, editors, Topics in the Theory of Computation, Annals of Discrete Mathe-

matics 24. Elsevier, 1985.

[44] Pauly. M. ‘A modal logic for coalitional power in games,’ Journal of Logic and Com-

putation, 12(1):149-166, 2002.

[45] Scott, D. ‘Advice in modal logic,’ K. Lambert (Ed.) Philosophical Problems in Logic,

Dordrecht, Netherlands: Reidel, 143-73, 1970.

[46] Scott, D. and Krauss, P. ‘Assigning probability to logical formulas,’ Aspects of Induc-

tive Logic (Hintikka and Suppes, eds.), North-Holland, Amsterdam, 219-264, 1966.

[47] Segerberg. K. An Essay in Classical Modal Logic, Number13 in Filosofisska Studier.
Uppsala Universitet, 1971.

[48] van Fraassen, B. C. ‘Fine-grained opinion, probability, and the logic of full belief,’
Journal of Philosophical Logic, XXIV: 349-77, 1995.



First-Order Classical Modal Logic 39

[49] M. Vardi ‘On Epistemic Logic and Logical Omniscience,’ in: Y. Halpern (ed.), The-

oretical Aspects of Reasoning about Knowledge. Proceedings of the 1986 Conference,

Morgan Kaufmann, Los Altos, 1986.

[50] Williamson, T. ‘Bare Possibilia,’ Erkenntnis, 48, 257-273, 1998.

Horacio Arló-Costa
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