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In 1965, E. M. Gold and H. Putnam observed independently that recursive operators can be

viewed as mechanical scientists trying to investigate a given hypothesis in the limit [1], [12]. Gold

then essentially characterized the hypotheses that mechanical scientists can successfully decide

in the limit in terms of arithmetic complexity. These ideas were developed still further by Peter

Kugel [4]. In this paper, I extend this approach to obtain characterizations of identification in the

limit, identification with bounded mind-changes, and identification in the short run, both for

computers and for ideal agents with unbounded computational abilities. The characterization of

identification with n mind-changes entails, as a corollary, an exact arithmetic characterization of

Putnam's n-trial predicates, which closes a gap of a factor of two in Putnam's original

characterization [12].

It will be shown that solvability results concerning identification problems can be viewed as

estimations of complexity for second-order relations; arithmetic complexity when the scientist is

effective, and Borel complexity otherwise. This general perspective illuminates the relationships

between the various learning-theoretic paradigms, since function identification, language

identification, and logical theory identification all drop out as special cases.

The hierarchy-theoretic approach of Gold and Putnam has an additional advantage. Traditional

negative arguments in learning theory have usually required that the learner succeed regardless

of the order in which observations are presented [1]. All of the standard characterization

theorems assume this requirement [8] [9] [10] [11]. One technical reason for the assumption is

that the negative sides of these characterization theorems are established using variants of a

diagonal argument known as the locking sequence lemma [11]. By relativizing the recursion-

theoretic approach of Gold and Putnam, we can obtain more general characterizations of

identifiability that apply no matter what the scientist knows a priori about data ordering. The

operative notion of relativization is not relativization to an oracle as is usual in recursion theory, but

rather relativization to a range of possible inputs representing the agent's background

knowledge, as is more common in statistics.
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The learning-theoretic interpretation of the apparatus of the theory of recursive operators has

some pedagogical advantages. For example, it will be shown how the recursion-theoretic basis

theorems answer questions about how the difficulty of empirical science relates to the

computational difficulty of the theory under investigation. The learning-theoretic interpretation of

recursion theory also raises questions about the status of classical results (such as the basis

theorems) under changes in background knowledge.

1. Data Presentations, Hypotheses, and Background Knowledge

I assume that the total evidence received by the scientist at a given time can be encoded

effectively by a natural number. The data presentation received by an empirical scientist is

potentially infinite, so a data presentation is as an co-sequence of natural numbers. Hypotheses

will also be viewed as discrete objects effectively encoded by natural numbers.

There are many features that scientists would like their hypotheses to have, including simplicity,

unity, empirical adequacy, and so forth. To avoid interminable debates about the precise nature

of these requirements, we will assume only that there is some well-defined relation A c co® X co of

hypothesis adequacy holding between data presentations and code numbers of hypotheses.

Since the aim of inquiry will be to determine whether a hypothesis is adequate, we may identify a

hypothesis with the set H of all infinite data presentations for which it is adequate. So a

hypothesis \s just some arbitrary subset of co03. Let xH(t) be the characteristic function of H.

Background knowledge restricts the scientist's a priori'uncertainty about the data presentation he

will ultimately see in the limit. So we may also think of background knowledge K as some

arbitrary subset of co03.

2. Paradigms of Hypothesis Assessment

A problem of hypothesis assessment is a situation in which a scientist is given a hypothesis and is

asked to assess its adequacy on the basis of increasing data fed from some infinite data

presentation. Let co* be the set of all finite sequences of natural numbers, which we will think of as

finite sequences of observations. An assessment method is a function that takes a finite data

segment to some guess about the adequacy of the hypothesis in question. The guess 1 means

that the hypothesis in question is adequate, 0 means that it is not, and # represents a refusal to

produce a judgment of adequacy.



Now we will consider a sequence of increasingly lenient notions of reliable success for hypothesis

assessment methods.

<t> verifies H over K in the limits
Vt e K A(t, i) » (3n Vm > n 0(t|m)« 1).

<}> refutes H over K In the limit**
Vt€ K-iA(t,i)»(3nVm>n 0).

<t> decides H over K //i Ma //m/f <=*
<|> both verifies and refutes H over K in the limit.

<t> decides HoverK Inn mind-changes starting with 1 [0, #]
<j> decides H over K in the limit and
<tKt|O) = 1 [0, #] and
mc(<M)<n;

where

mc(<t>, t|0) = 0 and
mc(0f t |n+i) = mc(<t)(t|n)) if <)>(t|n) = <Mt|n+1) and
mc(<t>, t|n+1) = mc(^>(t|n)) + 1 otherwise.

<t> verifies H overK with certainty <=>
Vt e Kf t € H <=> (3n s.t. <Kt|n) = 1 and Vm < n, <|>(t|n) = #).

<(> refutes H over Kwith certainty «
Vt e K, t e H » ( 3 n s.t. <f>(t|n) = 0 and Vm < n, <(>(t|n) = #).

<t> decides H over K with certainty <=>
<t> both verifies and refutes H over K with certainty.

\deddable
H is [effectively] verifiable

I refutable.
overK

with certainty
with n mind-changes

starting wit7?O[1,*]
Jn the limit

3[total recursive] ()> s.t. 0
decides
verifies H overK

with certainty
with n mind-changes

refutes

3. Characterizations of Reliable Hypothesis Assessment

startingwithO[V]
Jn the limit

For each aeco*, let Ba = {t e co03: t extends a}. Call Ba the fan with handle a. R is a type <k, j>

relation « R c (cO1* X coi. Let R be a type <k, j> relation. R is basic open <=> R = 0 or 3 fans



Fi , . . . . F k , 3Si Sj c co s.t. R = Fi X... X Fk X Si X... X Sn. R is open <=> R is a union of basic

open relations of type <k, j>. R is dosed <=* R is open. R is clopen <=> R is dosed and open.

The finite Borel hierarchy is defined as follows1, where R is assumed to be of type <k, j>.

R e 1^ « R is clopen.

R e I ^ » 3P e sS s.t. (1) P is type <k, j+1> and
(2) R = {<t, x> e (af)k X col: 3n e co s.t. -«P(t, x, n)},

Re An » R e

Now we proceed to define the arithmetic hierarchy. Let R be a relation of type <k, j>. Turing

machine M is a decision procedure for R over K <=> Vt € Kk, Vx e col if R(t, x) then M halts with 1

after receiving x as input and after scanning some finite segment of each t occurring in t, and M

halts with 0 otherwise. R is recursive <=> R has some decision procedure. The arithmetic

hierarchy starts out with recursive rather than arbitrary, clopen relations:

R €!?<=> R is recursive..

The inductive clause of the definition proceeds just as before, with superscript 0 replacing the

superscript B. Observe that in either case,

0 ^ > 0 0 y B B B B
2-0 = I lo = A Q =A«| 2-0 = I lo = Ao = ^ 1

We may relativize either hierarchy to background knowledge K c co °> and to a range H c co of

hypotheses of interest in the following manner. Let r be a complexity class in either hierarchy.

Let R be of type <k, j>.

R e r* » 3R' € r s.t. R1 is type <k, j> and Vt e Kk Vn e coi, R(t, n) » Rf(t, n).

B K f B1K

When r already has a superscript, we add K as a second superscript, as follows: n 2 ' =|_n2j .

1This definition is a special case of [6], p. 20.



Theorem 3.1 (Gold and Putnam): Let K , H s co*0. Then we have:

B, K [ 0,
(a) H is [effectively] decidable over K with certainty » H e A1 LAi

B, K [ 0, Kl
(b) H is [effectively] verifiable over K with certainty <=> H e £, L^i J-

B.KLO.K]

(c) H is [effectively] refutable over K with certainty <=> H e n 1 Ln i J-

(d) H is [effectively] decidable over K in the limit <=> H € A2' [A* J.

(e) H is [effectively] verifiable over K in the limit » H e 4 L^' J.

(f) H is [effectively] refutable over K in the ymit <=> H e n^ 'K [rig J.

Proof: The effective parts of (c) and (d) are established in [1], and the effective part of (c) is shown

in [12]. The ineffective cases follow by the same arguments with references to computability

suppressed, (a) and (b) are trivial. M

4. Some Applications

4. 1: The Empirical Irony of Cognitive Science

Cognitive scientists frequently assume that human behavior can be modelled by a computer.

Some philosophers have challenged this assumption on a priori grounds. Let us approach the

question empirically, rather than dogmatically. Imagine a given system emitting a sequence of

outputs, and consider the hypothesis H rec, that the system will produce a recursive sequence.

Hrec = {t: t is a recursive sequence}. Suppose we doni know what to expect out the system, so K

= (o^. Each singleton {t} is closed and since H r e c is countable, H r e c e zH. so a non-effective

scientist can verify H r e c in the limit, by theorem 3.1. But Hrec is not verifiable in the limit, by a

simple diagonal argument (each finite segment of a non-computable sequence can be extended

by a computable sequence). So H r e c e £2 - n ^ , by theorem 3.1. A standard fact of recursion

theory is that Hrec e I3 -II3. Hence, by theorem 3.1, H r e c is not even verifiable in the limit by a

computer. The "irony" is this. If human nature is computable, human scientists cannot verify this



fact even in the limit because they are computable. But if human nature is not computable, human

scientists cannot verify the non-computability of human nature in the limit either, because no

system could, ideal or otherwise.

4. 2: Basis Theorems and Hypothesis Complexity

A complete hypothesis specifies everything that will ever be seen, in the correct order. Hence, a

complete hypothesis is a singleton {t}. In logic, the arithmetic complexity of {t} is known as the

implicit complexity of t and the arithmetic complexity of t (viewed as a set of ordered pairs) is known

as the explicit complexity of t. From a learning theoretic perspective, the implicit complexity of t is

just the complexity of investigating the complete hypothesis {t}, whereas the explicit complexity of

t is just the computational difficulty of generating the nth prediction specified by t.

Since science is often conceived of as a process of deductively checking the consequences of a

theory against the observed data, a natural question is: how much worse than the empirical

complexity of a hypothesis can its deductive complexity be if a computable scientist is to

determine whether it is correct? More specifically, how impossible can it be to derive predictions

from h before it becomes impossible to verify h in the limit, or to refute h with certainty? It turns out

that the basis theorems of mathematical logic already provide surprising answers to this question

in many cases.

The first result is intuitive: if an effective scientist is to refute a theory making only finitely many

different kinds of predictions, then there must be a mechanical procedure for deriving each

successive prediction entailed by the theory, so that these predictions may be compared against

the data.

Theorem 4.2.1: If {t} is effectively refutable with certainty and rng(t) is finite then t is recursive.

Proof: [3, p. 79] and Theorem 3. ^

This intuitive picture may be extended to the case of verifiability in the limit, so long as the theory

in question makes only finitely many different kinds of predictions.

Theorem 4.2.2: If {t} is effectively verifiable in the limit and mg(t) £ {1, 0} then t is recursive.

Proof: Kreisel's basis theorem [3, p. 108] and Theorem 3.1. B



The requirement that rng(t) be finite is essential, for there exist theories that predict infinitely many

different kinds of events that can be effectively refuted with certainty whose predictions are

infinitely hard to derive:

Theorem 4.2.3: There is a non-arithmetic t s.t. {t} is effectively refutable.

Proof: [3, p. 107] and Theorem 3.1. •

Theorem 4.2.3 shows that computerized empirical inquiry can do infinitely better in some cases if

it does not follow the intuitive method of checking successive predictions of a theory against the

data. This startling result is softened somewhat by the fact that the "magic" method that succeeds

will not notice immediately that {t} has been refuted, whereas an ineffective method that can

magically deduce predictions from {t} would notice right away. To see this, say that

H Is consistent with a e co* over K < = > K n H n B a * 0 .

<t> is vigilant about H over K «
Vt € K Va c t, His inconsistent with a over K =* 0(a) = 0.

A vigilant method says 0 as soon as the hypothesis under investigation becomes inconsistent

with the data. Since the method of Theorem 4.2.3 effectively refutes {t} with certainty and t is not

recursive, we have by the following fact that this method is not vigilant.

Fact 4.2.4:

If 0 is recursive and 0 is vigilant about {t} over K and 0 refutes {t} with certainty over K

then t is recursive.

Proof: Let 0 be as required. To compute t, we proceed as follows on input n: Stage 0: run

0(<O>), <t>(<1>),... until some <m> is found on which 0 does not return 0. Since 0 is vigilant, t(0) =

1. Inductively, let a[k] be the path constructed by stage k. At stage k+1, run 0(a*<O>),

0(a[k]#<1>),... until some <m> is found such that 0(a*<m>) does not return 0. Again, vigilance

guarantees that t(k) = m. When stage n is reached, return ofn]n. H

When background knowledge is increased, it becomes easier for effective science to succeed at

investigating deductively intractable theories. In particular, if K = {t}, then no matter how complex t

is, {t} can be decided with certainty. It remains an interesting question to determine what

background knowledge must be like for therems 4.2.1 and 4.2.2 to hold.



5. Characterizations of Hypothesis Assessment with Bounded Mind-Changes

It remains to characterize empirical decidability with n mind-changes. Putnam [12] discusses a

ctosely related notion under the rubric of n-frta/ predicates, but his characterization leaves a gap

of a factor of two between its upper and tower bounds.2 I will present an exact characterization in

terms of the difference hierarchy*, a finitary version of the Borel and Arithmetic hierarchies.

The topological version will be indexed with MC and the computational version will be indexed

with me, for "mind-changes".

Re z l ^ <=>RisofformS n O , whereSe zjj10 and O is open.

R € nff0 » R e iHf0.

MC= U AjT
n € co

The only difference between the me hierarchy and the MC hierarchy is that we replace open sets

with RE sets in the second clause of the definition:

R e X ^ »R iso f fo rmS nO.whereSe iS*andOis RE.

The MC hierarchy can be verified to satisfy the following closure laws:

Proposition 5.1:

Let O be open and let C be closed. Then we have:

(a) For each n: If S e n^° then If S € i f f 0 then

Sen??0;

2Putnam did not state the exact characterization as a question, and did not require an exact

characterization for the purposes of his paper.

3The idea is implicit in [5], p. 96. I am indebted to J. Tappendon for this reference.



(b) for each odd n, If S e r t f c then If S e I??0 then

(c) for each even n, If S e n i r then If S e ST then

SuOenf!10; SnCe

,en^; S u O e A i S .

and similarly for the me hierarchy when O is RE and C is Co-RE. •

Now it is possible to characterize empirical decidability with at most n mind-changes.

Theorem 5.2: For each n > 0,

(a) H is [effectively] decidable over K in n mind-changes starting with 1 « H e l n ' l^Cy J.

(b) H is [effectively] decidable over K in n mind-changes starting with 0 <=> H € nn ' Lnn ' J.

MC K[ me KI
(c) H is [effectively] decidable over K in n mind-changes starting with # « H e An ' [An ' J.

r "I

(d) H is [effectively] decidable over K in n mind-changes » H e I n ' u nJi L2^' u rff1 J.

Proof: (a) => Suppose that [recursive] <(> decides H over K in n mind-changes starting with 0.

Define O(t, n) » mc(<|>, t) > n and define C(t, n) <=> mc(<t>, t) < n. O(t, n) is K-open [K-RE] and C(t, n)

is K-closed [K-Co-RE], First, let's consider the case when n is even. Then since 0 always starts

with conjecture 0 and never uses more than n mind-changes over K, we have:

Vt e K, t e H «

0 changes its mind some odd number of times < n-1 <=>

(O(t, 1) & C(t, 1)) v (O(t, 3) & C(t, 3)) v ... v (O(t, n -1) & O(t, n -1)) «

[O(t, 1) & C(t, 1)] v [Oft, 1) & Oft 3) & Cft 3)] v [Oft, 1) & Oft, 3) & Oft 5) & Cft 5)] v ...

v [Oft, 1) & Oft, 3) & Oft 5) & ... & Oft, n-3) & Oft n -1) & Cft n -1)] «

Oft 1) & [Cft 1) v [Oft 3) & [Cft 3) v ... v [Oft n-1) & Cft n-1)]]]] (by factoring).



which is a 2%°' l^ J property of t.

Now for the case in which n is odd. Since 0 starts out with conjecture 0 and never uses more than

n mind-changes over K, we have

Vt e K, t e H «

<|> does nor change its mind some even number of times < n <=»

-.C(t, 0) & - . (O(t , 2) & C(t, 2)) & ... & - . (O(t , n-1), C(t, n-1)) »

O(t, 1) & [C(t, 1) v O(t, 3)] & [C(t, 3) v O(t, 5)] & [C(t, 5) v O(t, 7)] & ...& [C(t, n-3) v O(t, n-1)] «*

O(t, 1) & [C(t, 1) v O(t. 3)] & [C(t, 1) v C(t, 3) v O(t, 5)] & [C(t, 1) v C(t, 3) v C(t, 5) v O(t, 7)] & ...&

[C(t, 1) v C(t, 3) v... v C(t, n- 5) v... v C(t, n-3) v O(t, n-1)] <=>

O(t, 1) & [C(t, 1) v [O(t, 3) & [C(t, 3) v... & [C(t, n-3) v O(t, n-1)]]]] (by factoring)

_.MC, K _mc, KI

which is a ^ L2^ J property of t.

^MC.Kf mcKJ
Suppose that H e *** L2* J. Then H may be defined over K in the form

Oi n [C2 u [O3 n [C4 u ...[Cn-1 u On] if n is odd, or in the form

O1 n [C2 u [O3 n [C4 u ..[Cn-1 n On] if n is even.

In either case, define $ to conjecture 0 until Oi is verified by the data, after which <J> says 1 until C2

is refuted by the data, after which 0 says 0 until O3 is verified by the data, after which 0 says 1

until.... 0 will succeed with at most n mind-changes.

(b) follows from (a) by duality.

(c) => Suppose that 0 decides H over K with n mind-changes starting with #. Define

/Oif0(a) = # /1 if0(a) = #
V o ( a K VI(CT)=(

I0(a) otherwise \0(a) otherwise

YO succeeds in n mind-changes starting with 0 and y1 succeeds in n mind-changes starting with
MC. K Lmc, Kl _MC. K [_mc, KI

1. By (a), He^n L̂ n J and by (b), He n n Lnn J.

10



MC K [ me K!

«= Suppose H e An ' lA, ' J. Then by (a) and (b), we have [effective] methods y i , vo that

succeed in n mind-changes starting with 1 and with 0, respectively. Define

# if a is empty

<j)(<y)=J \jf jf \|r.(G) = V|SQ(G)

4>(a-) otherwise

which [effectively] decides H with n mind-changes starting with #.

(d) <= follows from (a) and (b).

=> Let Jeff ective] <|> decide H over K in n mind-changes. Let a be empty. If <|>(a) = 1 then H e
_MC, KLmcKl _K4C. Kf-mcKl A MC. K[\mc,Kl
n n Lnn J,by(a). lf<Ka) = OthenH€ I n L̂ n J,by(b). If <Ka) = #, then H G An L^n J,

by(c). •

The following proposition is an illustration of theorem 5.2.

PropositionS.3: Let K be the set of all sequences that converge either to 0 or to 1. Then

where bc(r) stands for the finitary Boolean closure of class r.

Proof: (b) To show that the inclusion is proper, define #0(t) = the number of 0's occurring in t.

V2 #0(t) = 2k if n is even

Pn(t)= " 1

(n-D/2 \ \
\\\ V #0(t) = 2k|v#0(t)>n+1l, if n is odd

Pn is readily seen to be effectively decidable in n mind-changes starting with 0. A simple diagonal

argument shows that Pn cannot be decided with fewer mind-changes starting with 0. Now apply

Theorem 5.2.

11



(a) Let Pn be defined as in the proof of (b). Define P(t) <=> Pt1 (t). Let 4> and n be given. Define ti =

n+1, and now force $ to change its mind concerning P at least n+1 times, as in (b). So by theorem

5.2, P is not in any i^40, so P e MC. But it is easy to decide P in the limit by deciding Pt1 with ti

mind changes. By theorem 5.2, P G A2
B.

(c) Each finite Boolean combination of open sets may be rewritten in disjunctive normal form. But

by the closure of open [closed] sets under finite union and intersection, each disjunct can be

rewritten in one of the following forms: (O n C), O, or C, where O is open and C is closed. Each

disjunct of form (O n C) is settled in 2 mind changes (say 0 until O is verified; then say 1 until C is

refuted). Each O and each C can be handled with one mind change, so the whole disjunction can

be handled in some finite number of mind changes. Apply theorem 5.2. •

Theorems 3.1, and 5.2, together with proposition 5.3 yield the following, complete

characterization of the hypothesis assessment problems according to the standards of success

introduced at the beginning of this paper.

12



I A3 [A3

[effectively] refutable C B j K r 0 "I | | B,K[ Q KI | If
in the limit \ rip Flp II J 2 2 lEp J ' In

I [effectively] deddable
J in the limit

[effectively] verifiable

[effectively] deddable
with 2 mind changes

starting with 1
rrc; J

[effectively] deddable
with 3 mind changes

starting with #

[effectively] deddable
MCi Kf rrx; *<] 1 with 2 mind changes

L^ J l starting with 01)

[effectively] refutable \ BKr O,
with certainty I ni Ln J

^ •••""v [e

AMD,KrArn;Kl | wi
£2 LA2 JJ st

JL i

[effectively] deddable
with 2 mind changes
starting with #

verifiable
certaintV

BKF 0 , K ] ^ [effectively
ll^illwith certaii

[effectively] deddable
certainty

Theorem 5.2 also yields a characterization of Putnam's n-trial predicates [12].

S c co is an n-frfa/ predicate <=>
there is some total recursive f such that for each n e co, H

*s(n) with at most n mind-changes.

n, k) converges to

Putnam's n-trial predicates can be viewed as a special kind of empirical hypothesis whose

adequacy depends only on the first datum observed. Define Hs = {t: t<i e S}. By theorem 5.2, we

have:

Proposition 5.4: S is an n-trial predicate » Hs e I ^ c u

6. Feathers and Demons

13



The proof of theorem 5.2 hinged on finding a jif° definition of H in terms of the method $ that

succeeds in n mind-changes starting with 0. A complementary characterization can be given, that

draws into relief the structure underlying diagonal arguments. Suppose that hypothesis H is

distributed in K in the following manner.

i
H

H

H

H
i

H

H

H
i

1

H

1

H

H
i

H

H

H

Given the depicted situation, a demon can easily force an arbitrary scientist who starts with 0 to

change his mind three times, and can force a scientist who starts with 1 to change his mind twice.

The demon leads the scientist down the bold path until <t> says 1 (which must happen, else the

demon stays with the bold path and 0 fails in the limit). As soon as 0 says 1, the demon proceeds

up the next available path for H. Now 0 must eventually say 0, at which time the demon veers to

the right down the next available path for H.

K may be thought of as an infinite 'feather whose "shaft" is the bold path, and whose alternating

"barbs" are the other paths. We may define feathers more generally as follows:

K Is a 1 -feather forH with shaft t <=> t € K n H.

K is an n+1 -feather for H with shaft t »
t e K n H and
Vn 3t € K s.t.

t|n = r|n and _
K is an n-feather with shaft t for H

K is an n-feather for H c=> 3t s.t. K is an n-feather for H with shaft t.

14



n-feathers for H

We may now define the feather dimension of K for H:

D//HH(K) = n <=> K is an n-feather for H and K is not an n+1 -feather for H.

Theorem 6.1:

(a) H is decidable over K in n mind-changes starting with 0

» K is not an n+1-feather for H

(b) H is decidable over K in n mind-changes starting with 1

<=> K is not an n+1 -feather for H

<=>Henn

(c) H is decidable over K in n mind-changes starting with #

<=> K is not an n+1-feather for H and K is not an n+1-feather for H
A MC, K

« H € An .

(d) H is decidable over K in n mind-changes

<=>K is not an n+1-feather for H or K is not an n+1 -feather for H

e Zn u n n .

15



Proof: (a) & (b) => The contrapositive can be established by means of theorem 6.1 and the usual

demonic argument.

«= Base case for (a): Suppose that K is not a1-feather for H. Then H = 0 . Let te K. Then t e H .

So the trivial method $0(0) • 0 succeeds in 0 mind changes. The base case for (b) is similar.

Now suppose (a) and (b) for each n' < n. Hence, if K is not an n'+1 feather for H then there is a

method V H. K that decides H over K in n1 mind-changes starting with 1, and if K is not an n'+1
0

feather for H then there is a method V H , K that decides H over K in n1 mind-changes starting with 0.

Let K0 = { t e K : t extends a). Then define:

I the shortest t e a s.t. DimH(KT) < n, if there is one
trunc(H, K, n, a) =

la otherwise

0 if a is empty

OifDJmH(Ko)> n and Dim^(Ka) > n

otherwise (i.e. if DimH(Ka) < n)

Suppose that K is not an n+2-feather for H. Let t e K. Since dimension never increases on

evidence, there are two cases to consider.

(a) Vk DimH(Kt|k) = n+1 and DimH(Kt|k) > n + 1, or

(P)3k DimH(Kt|k)<nor Dim^

0
Lemma 1: if (a) then t e H and <f>n • 1 converges correctly to 0 on t with no mind-changes.

For suppose that t e H. Then since Vk , Dim^(Kt|k
f) ^ n + 1, we have that Vk, 3tf 3W > k s.t. Kt|k' is

an n + 1 feather for H with shaft r and f|k' = t|k\ Hence, K is an n + 2 feather for H with shaft t,

contrary to assumption. Finally, observe that Vk, the second clause of 4>n • 1 is satisfied on t|k, so

Vk,<t>n.i(t|k) = o.

0
Lemma 2: if (P) then <t>n +1 converges to the truth in n mind-changes.
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Let m be the least k such that DimH(Kt|k) £ n or DimH(Kt|k) ^ n. Suppose that DimH(Kt|m) ^ n.

Then 0n «. ifflm1) = 0, for all m1 < m and V m1 > m, <t>° • . Since

decides H over Kt|m in n-1 mind-changes starting with 1, <t>n +1 succeeds in n mind-changes
oo

starting with 0. In case Dim (̂Kt|m) < n, we have a similar situation, except that VHK<w^^K-n-«» starts

with 0, so <|>n • 1 succeeds in n -1 mind-changes.

The induction for (b) is similar, except that the method employed is:

1 if ais empty

1 ifDimH(Ka) > n and Di > n

otherwise (i.e. if Di < n)

(c) and (d) may be obtained just as in Theorem 5.1. •-

By theorem 6.1, feather dimension and MC-compiexity coincide exactly. It is interesting to see

how the correspondence works by constructing feathers outof intersections and unions of open

and closed sets. To start, choose some data presentation t, and let

Pi
t does not
extend a

K is clearly a 2-feather for Pi and Pi € I, since Pi is open. Next, let P2 = Pi. Now we have a 2-

featherfor P2, and P2 e nMC
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We know from theorem 6.1 that to build a more complicated feather, we add some open set to P2

to form P3.

P3

P3 - P2 is clearly open, since it is depicted as a union of fans. So P3 is of the form O u C , and is
,MC

therefore in n2 . Let P4 be the complement of P3.

Now we are again free to add a dimension to P4 by augmenting it with an open set. By successive

complementations and open set additions, we can build feathers of arbitrary, finite dimension.

18



7. Paradigms of Discovery

In problems of hypothesis assessment, the scientist is assigned some hypothesis whose

adequacy is to be investigated on the basis of increasing data. In discovery problems, the

scientist is required to invent an adequate hypothesis on the basis of increasing data. Most

results in learning theory concern discovery rather than assessment. Interest has centered on

grammatical inference, recursive function identification, and the induction of first-order theories

from presentations of structure diagrams. Each of these applications is a special case of the

following setting.

Hypothesis assessment methods do not have to read or to produce hypotheses, so hypotheses

could be viewed abstractly as uncountable sets of infinite sequences. This will not do when

discovery procedures are computers. Instead, we will assume simply that hypotheses are stated

in a discrete, finitary language with a decidable syntax. Hence, hypotheses, like data sentences,

may encoded by natural numbers. As before, we will assume that the goal of inquiry is some

relation of adequacy A c co® X co holding between infinite data presentations and hypotheses. A

may entail consistency with the total data, explanatory completeness over the total data, simplicity,

unity, or any other desideratum that depends only upon the hypothesis and the total data. We will

A discovery method will be a map from finite segments of data presentations to hypotheses, i.e.

co* -> co. We will consider the following concepts of successful discovery:

$ identifies PK-adequate hypotheses over K with certainty »
Vt e K 3n s.t. A(t, <t>(t|n)) and Vm < n, <j>(t|n) = #.

<)> identifies A-adequate hypotheses in n mind-changes <=>
Vt e K 3n e co Vm > n, <t>(t|m) = 5CH(t) and

mc(<t>, t) < n.

<t> identifies A-adequate hypotheses overK in the limit <=>
Vt e K 3n Vm > n 0(t|m) = <|>(t|n) & A(t, 0(t|n).

A-adequate hypotheses are [effectively] identifiable over K
"with certainty 1
with n mind changes

. in the limit
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3 [total recursive] <j> s.t. <$> identifies A-adequate hypotheses over K
["with certainty 1
with n mind changes

L in the limit J

8. Characterizations of Reliable Discovery

Each of these senses of success requires that an adequate hypotheses be found for each data

presentation in K. It is therefore trivial that A must cover K in the following sense if success is to be

possible.

A covers K& Vt € K 3i e co s.t. A(t, i).

Now we may characterize identification with certainty and identification in the limit.

Theorem 8.1:

(a) A-adequate hypotheses are [effectively] identifiable over K with certainty

B.KF O.K]
<=>3A'gA s.t. Af covers K and A1 € L i L*i J

A B . K [ O.K]
» 3Af c A s.t. A1 covers K and A1 e A i I A J.

(b) A-adequate hypotheses are [effectively] identifiable over K in the limit

B . K L O.K|
« 3 A ' c A s.t. A1 covers K and A1 e ^2 L^ J

B,K[" O.K]
« 3 A ' c A s.t. A1 covers K and A' € A2 LA2 J.

Proof: (a) => Let effective discovery method 4> identify A-adequate hypotheses over K. Define

A'(t, i) <=> 3n s.t. <Kt|n) = i and Vm < n, (Kt|n) = #.

A1 covers K and A ' g A since 0 identifies A-adequate hypotheses over K with certainty. By
B.K[" O, K]

definition, A1 e ^ L^i J. But we also have

Vt e K, -TA'(t, i) » 3k * i s.t. 0(t|n) = k and Vm < n, 0(t|n) = #
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B.KF O,K]
SOA'eA, [A, J.

<= Suppose that A ' c A covers K and A1 e z / L̂ V J. Let VERIFYft, i] be an [effective! positive

test for A1. Now we can define the foltowing [effective] discovery method, which identifies A-

adequate hypotheses over K with certainty.

DISCOVER(a):
set n := length(a)
if Vi <; n, VERIFY^, i), VERIFY(a2, i),.... VERIFY(an, 9 all fail to produce 1 in
n computational steps, return #
else, return the first i such that the first non-# output of TEST on a is 1.

(b) => Let effective discovery method <t> identify A-adequate hypotheses over K in the limit.

Define

Af(t,i)«3nVm>n<t>(t|m) = i.

A* covers K and A ' g A since <j> identifies A-adequate hypotheses over K. By definition, A* e
B . K L O.K]

**2 l2^ J. Since $ convenes to some i on each te K, we also have that

Vt € K, ^A'(t, i) «=> 3n Vm > n <f>(t|m) * i.

SOA'G A2
F O,K]
L̂ 2 J.

=> (effective case) Suppose that A ' c A covers K and A1 e ^ . Then there is a recursive relation

S such that for each i e co, t e K, A'(t, i) <=> 3n Vm S(t, i, n, m). Let P|< be a decision procedure for

S. Let code-.a?- -> co be a fixed, recursive bijection from pairs of numbers to numbers, and let (,)i,

(.)2 be recursive functions such that ((x)-|, (x)2) is the inverse of code. Define

LIMDISCOVER(a) =

(nx < length(a): Vm < length(a), Pk(a, (x)i, (x)2, m)) does not return 0 in length(a) steps)i

if there is such an x.

# otherwise.

LIMDISCOVER is computable because the minimization and quantifiers are all bounded. Let t e

K. Then since Af covers K, there is some i e co s.t. A'(t, i). Thus, 3n Vm S(t, i, n, m). Pick x = \iy.

Vm, S(t, (y)i, (y)2, m). For each y < x, —iS(t, i, n, m) so there is some ky, and some w < k, such that
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—iS(t|ky, i, n, w). Let k* = sup{ky: y < x}. Thus, Vk £ k*, the value of the minimization expression in

the definition of LIMDISCOVER on t|k is at least x. Since 3n Vm S(tf (x)2, n, m), the value of the

minimization never exceeds x after k#, so Vk > k*. LlMDISCOVER(t|k) - (x)2. Since 3n Vm S(t, (x)2,

n, m), we also have that A'(t, (x)2). and hence that A(t, (x)2), as required. The ineffective case is

similar, with references to computation omitted. •

9. Learning Theory Results as Relative Complexity Classifications

The following examples illustrate how the standard paradigms of language leamability and

function identification drop out as special cases of the approach adopted here. From our

perspective, standard results in learning theory may be thought of as strong relative complexity

classifications for relations of type co" X co.

Funct ion Ident i f icat ion:

The problem of identifying set Rec of total recursive functions:

Adequacy relation: Afun(t, i) » <|>j = t

Background knowledge: K c Rec

One of the first negative results about function identification is that the collection of all recursive

functions is identifiable in the limit, but not effectively so. The positive result follows from the fact
B, Rec B, Rec

that Afun(t, i) <=> ft = t <=> Vn 0j(n) = tn. Since the relation ^(n) = tn is
 Ai , Afun €

 ni . The

situation is different in the computable case: Afun(t, i) «=> <t>i = t <=> Vn <|>j(n) = tn » Vn 3k <t>j(n)itn.

Gold's negative result together with Theorem 10 tells us that this characterization is optimal, i.e.
0, Rec 0, Rec

that Afun ^ n2 - fz . Indeed, Gold's result tells us in light of theorem 10 that there is no A c
0, Rec

AfUn covering Rec such that A G Z 2

Language Identification by RE index:

The problem of identifying language class L e RE:

Adequacy relation: ARE(t, i) » Wj = rng(t)

Background knowledge: K[_ = {t: 3S e L s.t. rng(t) = S}.

Here, the basic theorem is that no collection of languages L' containing all finite languages and

one infinite language is identifiable in the limit, even by an ineffective learner [11]. In our
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generaOzed notation, this is the claim that A R E hypotheses are not identifiable over K f , which
B.Kf

together with Theorem 10 implies that there is no A1 c A R E covering K\j such that A1 € I? A

general upper bound meeting Golds lower bound is easy to calculate.

3k s.t. n = t|<]

Hence, AREO, i) G n 2
f -I?

Another standard example is the collection Lfjn of all finite languages.

3k Vk' > k Vn fo(n)!I« n e mg(t|k')J e zj Ku".

Language Identification by recursive index:

The problem of identifying language class L Q RE:

Adequacy relation: AR(t, i) <* ft « Xrng(t)

Background knowledge: K|_ = {t: 3S G L s.t. rng(t) = S}.

Let L* be as in the last example. Gold showed that L' is not identifiable by an effective learner even

when the data presentations are assumed to be primitive recursive. Let Prim be the set of all

primitive recursive sequences. Let K1 = K(j n Prim. Then Gold's result shows that there is no A c
0, KL* n Prim

AR covering KL* n Prim such that A e ^ . Once again it is easy to compute an upper

bound that matches Gold's lower bound:

ft - Xrng(t) »

Vn[[(3m n = tm)=>3kft(n)Ii]
_ 0 , KRE o. KL- ^ Prim

Vn Vm 3m' 3k 3k' [...] e n 2 c n 2

9. Characterizations of Reliable Discovery with Bounded Mind-Changes
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Given the results so far, one might guess that A-adequate hypotheses are identifiable over K in n

mind-changes just in case 3Af c A s.t. A1 covers K and A1 € n j ^ ' K u zjf0 'K. But in fact:

Proposition 11: 3A, K s.t. A G z™ i K but Vn, A-adequate hypotheses are not identifiable over K

in n mind-changes even by a non-computable method.

Proof. Define A(t, i ) « 0 occurs in t at least i times, and let K = uP. Evidently, A e £1 = sT . But a

simple diagonal argument permits us to fool an arbitrary discovery method an arbitrary number of

times. B

The problem is that discovery depends not only on the topology of each hypothesis, but also on

how the data presentations for different hypotheses are interleaved together. This interleaved

structure of the adequacy relation can be captured exactly if we generalize the notion of n-

feathers slightly.

K Is a 1 -feather fori mod A with shaft \^>\e K n A j .

K to an n+1 -feather for i mod A with shaft t <=>
t € K n Aj and
Vn3t f6 K3ke co s.t.

t|n = t'|n and

K is an n-feather with shaft t for K mod A with shaft f, and t1 e A|<.

K to an n-feather fort mod A <=> 3t s.t. K is an n-feather for i mod A with shaft t.

K is an exact n-feather for i mod A <=>
K is an n-feather for i mod A and Vm > n, K is not an m-feather for i mod A.

Theorem 9.1:

A-adequate hypotheses are identifiable over K in n mind-changes starting with # »

Vi, K is not an n-feather for i.

Proof: Analogous to the proof of Theorem 6.1. B

Example: Recall the case of learning finite languages by RE index. It is easy to see that ^Un is an

n-feather for A R E for each n, so the finite languages are not identifiable under any bounded

number of mind changes.

10. Conclusion
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Complete characterizations have been presented for effective and ineffective hypothesis

assessment, in the short run, in the long run, and with bounded mind changes. Complete

characterizations have also been presented for effective and ineffective discovery in the limit, and

for non-effective discovery with bounded mind-changes. It remains to characterize effective

discovery with bounded mind changes.
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