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Abstract

In both linear and nonlinear multiple regression, when regressors are correlated the

existence of an unmeasured common cause of regressor Xj and outcome variable Y may

bias estimates of the influence of other regressors, Xk; variables having no influence on

Y whatsoever may thereby be given significant regression coefficients. The bias may be

quite large. Simulation studies show that standard regression model specification

procedures make the same error. The strategy of regressing on a larger set of variables

and checking stability may compound rather than remedy the problem. A similar

difficulty in the estimation of the influence of other regressors arises if some Xj is an

effect rather than a cause of Y. The problem appears endemic in uses of multiple

regression on uncontrolled variables, and unless somehow corrected appears to

invalidate many scientific uses of regression methods. We describe an implementation in

the TETRAD II program of a model specification algorithm that avoids these and certain

other errors in large samples. We recommend that such an algorithm be applied before

regression is used to estimate influence.1
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1. Introduction

Regression models are commonly used to estimate the "influence" that regressors X have

on an outcome variable, Y.2 If the relations among the variables are linear then for each

Xj the expected change in Y that would be produced by a unit change in Xi if all other X

variables were forced to be constant can be represented by a coefficient, say aj. It is

obvious and widely noted (see, for example, Fox, 1984) that the regression estimate of

aj will be incorrect if Xi and Y have one or more unmeasured common causes, or in

conventional statistical terminology, the estimate will be biased and inconsistent if the

error variable for Y is correlated with Xi. To avoid such errors, it is sometimes

recommended (Pratt and Schlaifer, 1988) that investigators enlarge the set of potential

regressors and determine if the regression coefficients for the original regressors

remain stable, in the hope that confounding common causes, if any, will thereby be

measured and revealed. Regression estimates are known often to be unstable when the

number of regressors is enlarged, because, for example, additional regressors may be

common causes of previous regressors and the outcome variable (Mosteller and Tukey,

1977). The stability of a regression coefficients for X when other regressors are added

is taken to be evidence that X and the outcome variable have no common cause. Mosteller

and Tukey did not regard this technique or any other as adequate to deal with the problem

of unmeasured common causes in regression, and chiefly on the basis of such

considerations they warned that:

George Box has [almost] said "The only way to find out what will happen when a

complex system is disturbed is to disturb the system, not merely to observe it

passively." These words of caution about "natural experiments" are uncomfortably

strong. Yet in today's world we see no alternative to accepting them as, if anything,

too weak.(p. 320)

We wish to show that the problems of regression methods for assessing causal influence

are even more fundamentally flawed. And we offer an alternative procedure for such

inferences that under quite general conditions is demonstrably reliable when given

population correlations, and that, in cases where the truth is known independently, has

proved reliable and informative on simulated and empirical data sets.



2. When Regression Fails to Measure Influence

It does not seem to be recognized that when regressors are statistically dependent the

existence of an unmeasured common cause of regressor Xj and outcome variable Y may

bias estimates of the influence of other regressors, X|<; variables having no influence on

Y whatsoever, nor even a common cause with Y, may thereby be given significant

regression coefficients. The error may be quite large even in the large sample limit. The

strategy of regressing on a larger set of variables and checking stability may compound

rather than remedy this problem. A similar difficulty may arise if one of the measured

candidate regressors is an effect, rather than a cause, of Y, a circumstance that we think

may sometime occur in uncontrolled studies.

To illustrate the problem, consider the following linear structures, where for

concreteness we specify that that exogenous and error variables are all uncorrelated and

jointly normally distributed, the error variables have zero means, and linear

coefficients are not zero. Only the X variables are assumed to be measured. Each set of

linear equations is accompanied by a directed graph illustrating the assumed causal and

functional dependencies among the non-error variables:



Structure 1 Structure 2

Y = a1 X1 + a2 X5 + ey
X1 = a3 X2 + a4 X4 + e1
X3 = a5X2 + a 6 Y + e3

Y = a1 X1 + a2X5 + a3 T + ey
X1 = a4 X2 + a5 X4 + e1
X3 = a6 X2 + a7 T + e3

X1 X2 - • X3

X5

Structure 3 Structure 4

Y = a1 X1 + a2 X5 + a3 T2 + a4 X3 + ey
X1 = a5 X2 + a6 X4 + e1
X2 = a7 T1 + e2

X3 = a8 T1 + a9 T2 + e3

Y = a1 X1 + a2 X5 + a3 T2 + a4 X3 + ey
X1 = a5 X2 + a6 X4 + e1

X2 = a7 T1 + e2

X3 = a8 T1 + a9 T2 + e3

X5 = a10X6 + a11 X7 +e5

X1 X1

Figure 1

In large samples, for data from each of these structures linear multiple regression will

give all variables in the set {X1, X2, X3, X5} non-zero regression coefficients, even

though X2 has no direct influence on Y in any of these structures, and X3 has no direct or

indirect influence direct or indirect on Y in structures 1, and 2, and the effect of X3 in

structures 3 and 4 is confounded by an unmeasured common cause. The regression



estimates of the influences of X2 and X3 will in all four cases be incorrect. If a

specification search for regressors had selected X1 or X5 alone, or both variables, a

regression on these variables singly or together would give consistent, unbiased

estimates of their influence on Y. But the textbook procedures in commercial statistical

packages will in all of these cases fail to identify {X1} or {X5} or {X1, X5} as the

appropriate subset of regressors.

It is easy to produce examples of the difficulty by simulation. Using structure 1, twenty

sets of values for the linear coefficients were generated, half positive and half negative,

each with absolute value greater than .5. For each system of coefficient values a random

sample of 5,000 units was generated by substituting those values for the coefficients of

structure 1 and using unit exogenous and error variances and zero exogenous means3.

Each sample was given to MINITAB, and in all cases the program found that {X1, X2, X3,

X5} is the set of regressors with significant regression coefficients. In addition, in

MINITAB the STEPWISE procedure, selection by Mallow's Cp, and selection by adjusted

R2 all always selected either the set {X1, X2, X3, X5} or the set {X1, X2, X3, X4, X5}

(although in some cases they disagreed on which of these sets was selected.)

The difficulty can be remedied if one measures all common causes of the outcome

variable and the candidate regressors, and if none of the candidate regressors are effects,

rather than causes, of the outcome variable, but unfortunately nothing in regression

methods informs one as to when these conditions obtain. The addition of extra candidate

regressors may create the problem rather than remedy it; in the four structures

illustrated, if X3 were not measured the regression estimate of X2 would be consistent

and unbiased.

The problem we have illustrated is quite general; it will bias the estimate of the

influence of any regressor Xk that causes or has a common unmeasured cause with any

regressor Xi such that Xi and Y have an unmeasured common unmeasured cause (or Xj is

an effect of Y). Depending on the true structure and coefficient values the error may be

quite large. It is easy to construct cases in which a variable with no influence on the

outcome variable has a standardized regression coefficient larger than any other single

regressor. Completely parallel problems arise for categorical data.

A further problem both for regression and for regression model selection procedures

arises with small samples and large numbers of variables. A test of the hypothesis that a



regression coefficient is zero, for example, is essentially a test of the hypothesis that

the partial correlation of the regressor and the outcome variable vanishes when all of

the remaining regressors are controlled for. The power of the test for a fixed sample size

decreases as the number of control variables increases. A procedure that could use tests

of lower order vanishing partial correlations to locate regressors that actually influence

the outcome variable would in some cases be more reliable.

In the next section we will describe a rigorous solution to these problems. The solution

also addresses the usual concern that the dependency between a regressor and an outcome

variable may be confounded by an unmeasured common cause of both.

3. Graphical Causal Models and Algorithms

Ever since Sewell Wright's (1934) work, causal dependencies among variables in a

population of units have occasionally been represented by directed graphs in which

vertices represent random variables and a directed edge from one variable X to another Y

indicates that even if all other variables considered were forced to be constant, some

variation in X would produce variation in Y. Kiiveri and Speed (1982) made explicit the

formal connection between directed acyclic graphs representing causal structure and

distributional properties of a population of units so structured. One equivalent of their

axiom (where we indicate sets of variables by boldface) is:

The Markov Condition. Directed acyclic graph G and a probability distribution

P on the vertices V of G satisfy the Markov condition if and only if for every W in

V, W is independent of the set of its non-descendants given its immediate parents.

The Markov Condition entails that the joint density for P can be "factorized," that is,

written as a product of marginal and conditional densities obtained by multiplying the

exogenous densities by the conditional densities of their immediate children, and so on.

Because of the factorization, for directed graphical models of discrete variables if the

sampling distribution is multinomial a maximum likelihood estimate of the distribution

can be obtained directly without the need for iterative procedures required to estimate

many log-linear models.

In addition to the Markov Condition we assume:



The Faithfulness Condition: Graph G and distribution P on the vertices of G

are faithful provided every conditional independence relation in P follows from

the Markov Condition for G.

We believe these conditions are tacitly assumed in many statistical models of causal

influence, and in regression models in particular. It is easy enough to produce

populations in which they are violated, for example: (i) If some measured variables are

deterministic functions of others, the Faithfulness Condition may be violated; (ii) if the

population is a mixture of units with different causal structures the Markov Condition

will be violated; (iii) if the population is a mixture of linear systems with the same

causal structure but different values of linear coefficients, the Markov Condition may be

violated; and, (iv) in a population of linear systems with the same structure, exogenous

variances and linear coefficients, if the linear coefficients satisfy special constraints

then the Faithfulness Condition may be violated. Case (iv) arises in linear models, for

example, when linear coefficient values for different dependencies have the exact values

required to cancel one another, as in figure 2 when a = - be.

It can be shown that (Spirtes, Scheines and Glymour, 1992)

Theorem 1: If P is faithful to some directed acyclic graph, then P, G satisfy the

Markov and Faithfulness Conditions if and only if

(i) for all vertices, X, Y of G, X and Y are adjacent if and only if X and Y are

dependent conditional on every set of vertices of G that does not include X or Y; and



(ii) for all vertices X, Y, Z such that X is adjacent to Y and Y is adjacent to Z and X

and Z are not adjacent, X -> Y <- Z is a subgraph of G if and only if X, Z are

dependent conditional on every set containing Y but not X or Z.

Consideration of part (i) of this theorem explains why in structure 1 of figure 1

regression procedures incorrectly select X2 as a variable directly influencing Y: The

structure and distribution satisfy the Markov and Faithfulness conditions, but linear

regression takes a variable Xj to influence Y provided the partial correlation of Xj and Y

controlling for all other X variables does not vanish. Part (i) of Theorem 1 shows that

the regression criterion is insufficient. It follows immediately from Theorem 1 that,

assuming the Markov and Faithfulness Conditions, regression of Y on a set X of variables

will only yield an unbiased estimate of the influences of the X variables provided in the

true structure no X variable is the effect of Y or has a common unmeasured cause with Y.

Theorem 1 immediately suggests an algorithm for inferring the set of directed acyclic

graphs that a given distribution is faithful to when the two conditions are met (Spirtes,

Glymour and Scheines, 1990):

SGS algorithm:

for each pair of variables check whether they are dependent conditional on every

subset of the remaining variables; if so put an edge between them;

for each triple X adjacent to Y adjacent to Z with X, Z not adjacent, check if X, Z

are dependent conditional on every set of the remaining variables that contains Y;

if so orient the adjacencies into Y otherwise not;

output all graphs in which the orientations of all remaining edges do not produce

cycles or new collisions A -> B <- C unless A and C are adjacent.

Given the population correlations, or correct decisions about statistical dependencies in

the population, the algorithm will return correct information about the causal structure

when there are no unmeasured common causes. SGS is not, however, feasible save for

small numbers of variables, since all subsets of regressors must be checked, and the

computational and statistical requirements of the algorithm therefore increase

exponentially with the number of variables, regardless of the true structure. Another
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procedure, the PC algorithm (Spirtes, Glymour and Schemes, 1991), while less

intuitive in statement, is asymptotically input/output equivalent to SGS (assuming the

Markov and Faithfulness conditions) and for fixed low degree of the graph faithful to the

distribution, PC requires exponentially fewer conditional independence tests than SGS.

With adequate sample sizes, PC will run on a hundred or more variables for samples

from sparse graphs.4

The algorithms described assume that no unmeasured common causes contribute to

statistical dependencies among the measured variables. Building on work of Verma

(1990), Spirtes (1992) found a generalization of the PC algorithm that is feasible for

sparse graphs and in the large sample limit returns correct information about structure

whether or not unmeasured common causes act, provided the entire system of variables,

including any unknown common causes, satisfies the Markov and Faithfulness

Conditions-of course, the marginal distribution over the measured variables need not

satisfy either condition. Even the statement of the "Fast Causal Inference" (FCI)

algorithm requires an intricate set of graph-theoretic concepts. A statement of the

algorithm and proofs of the correctness are given in Spirtes (1992) and in Spirtes,

Scheines and Glymour (1992). For an illustration of the power of the procedure,

consider the following quite imaginary structure, in which the variables in boxes are

unmeasured:



Environmental
Pollution

Genotype

da damage Uigcapatfy

smoking measured breathing
dysfunction

income parent's smoking
habits

Figure 3

Given large sample correlations from a linear structure represented by this graph,

normally distributed exogenous and error variables, and uncorrelated errors, the FCI

algorithm recovers the structure almost uniquely. The output is:
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citia damage heart cfisease lungcapady

smoking measured breathing
dysfunction

0
income parents smoking

habits

Figure 4

The double headed arrows indicate the presence of unmeasured common causes; the "o" at

the ends of two edges indicate that the procedure cannot determine whether or not those

ends should have an arrowhead.

Prior substantive knowledge about causal order can be integrated with each of these

algorithms. If it is known, for example, that C occurs later than A and B, then no sets

including C are used in testing whether A and B should be adjacent; if it is known that A

precedes B, then an edge between A and B must be oriented into B.

4. The Solution and Its Application

Assuming appropriate variables have been measured and the population sampled satisfies

the Markov and Faithfulness conditions, the PC and FCI algorithms offer a

straightforward method for addressing the particular difficulties with regression noted

in the first two sections.

We begin by noting that for the twenty samples from structure 1, in every case our

implementation of the PC algorithm-which of course assumes there are no latent

variables- selects {X1, X5} as the variables that directly influence Y. Our
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I

implementation of the FCI algorithm, which makes no such assumption, in every case

says that X1 directly influences Y, that X5 may, and that the other variables do not.

In each of the other three structures in figure 1 with sufficiently large samples

multiple regression methods will make comparable errors, always including X2 and X3

among the "significant" or "best" or "important" variables. In contrast the FCI

algorithm will give the following results:

Structure Direct Influence No Direct Influence Undetermined

2 X1 X2,X3,X4 X5

3 X1 X4 X2,X3,X5

4 X1,X5 X4,X6, X7 X2, X3

In all of these cases the procedure either correctly determines that X2 and X3 have no

influence on Y, or determines that the issue cannot be decided.

4.1 Example 1: Components of the Armed Forces Qualification Test

The AFQT is a test battery used by the United States armed forces. It has a number of

component tests, including those listed below:

Arithmetical Reasoning (AR)

Numerical Operations (NO)

Word Knowledge (WK)

In addition a number of other tests, including those listed below, are not part of the AFQT

but are correlated with it and with its components:

Mathematical Knowledge (MK)

Electronics Information (El)

General Science (GS)

Mechanical Comprehension (MC)

12



Given scores for these 8 measures on 6224 armed forces personnel, a linear multiple

regression of AFQT on the other seven variables gives significant regression coefficients

to all seven and thus fails to distinguish the tests that are in fact linear components of

AFQT. The covariance matrix is given below

n = 6224

af no wk ar mk ei me gs

253.985

29.649 51.7649

60.3604 6.29317 41.967

57.6566 14.5143 16.0226 40.9329

29.3763 18.2701 13.2055 20.6052 40.7386

36.2318 2.10733 22.6958 16.3664 12.1773 63.1039

35.8244 4.45539 17.4155 20.3952 16.459 35.1981 62.9647

38.251 5.61516 27.1492 14.7402 14.8442 29.9095 26.6842 48.93

Given the prior information that AFQT is not a cause of any of the other variables, the PC

algorithm in TETRAD II correctly picks out {AR, NO, WK} as the only variables adjacent

to AFQT, and hence the only variables that can be components of AFQT. (Spirtes,

Glymour, Scheines and So re n sen, 1990)5 in this case regression methods probably fail

because of structural problems like those discussed in the first section of this papter.

4.2 Example 2: Causes of Spartina Biomass

A recent textbook on regression (Rawlings 1988) skillfully illustrates regression

principles and techniques for a biological study in which it is reasonable to think there

is a causal process at work relating the variables. According to Rawlings, Linthurst

(1979) obtained five samples of Spartina grass and soil from each of nine sites on the

Cape Fear Estuary of North Carolina. Besides the mass of the grass (bio), fourteen

variables were measured for each sample:

1. Free Sulfide (h2s)

2. Salinity (sal)

3. Redox potentials at ph 7 (eh7)

4. Soil pH in water (ph)
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5. Buffer acidity at pH 6.6 (buf)

6. Phosphorus concentration (p)

7. Potassium concentration (k)

8. Calcium concentration (ca)

9. Magnesium concentration (mg)

10. Sodium concentration (na)

11. Manganese concentration (mn)

12. Zinc concentration (zn)

13. Copper concentration (cu)

14. Ammonium concentration (nh4)

The correlation matrix is as follows:

bio h2s sal eh7 ph buf p k ca mg na mn zn cu nh4

1.0

.33 1.0

-.10 .10 1.0

.05 .40 .31 1.0

.77 .27 -.05 .09 1.0

-.73 -.37 -.01 -.15 -.95 1.0

-.35 -.12 -.19 -.31 -.40 .38 1.0

-.20 .07 -.02 .42 .02 -.07 -.23 1.0

.64 .09 .09 -.04 .88 -.79 -.31 -.26 1.0

-.38 -.11 -.01 .30 -.18 .13 -.06 .86 -.42 1.0

-.27 0.00 .16 .34 -.04 -.06 -.16 .79 -.25 -.90 1.0

-.35 .14 -.25 -.11 -.48 .42 .50 -.35 -.31 -.22 -.31 1.0

-.62 -.27 -.42 -.23 -.72 .71 .56 .07 -.70 .35 .12 .60 1.0

.09 .01 -.27 .09 .18 -.14 -.05 .69 -.11 .71 .56 -.23 .21 1.0

-.63 -.43 -.16 -.24 -.75 .85 .49 -.12 -.58 .11 -.11 .53 .72 .93 1.0

The aim of the data analysis was to determine for a later experimental study which of

these variables most influenced the biomass of Spartina in the wild. Greenhouse

experiments would then try to estimate causal dependencies out of the wild. In the best

case one might hope that the statistical analyses of the observational study would

correctly select variables that influence the growth of Spartina in the greenhouse. In the

worst case, one supposes, the observational study would find the wrong causal structure,
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or would find variables that influence growth in the wild (e.g., by inhibiting or

promoting growth of a competing species) but have no influence in the greenhouse.

Using the SAS statistical package, Rawlings first analyzed only six variables: the

outcome variable, bio, together with sal, pH, k, na and zn. He found that

(i) in a multiple regression of bio on sal, pH, k, na and zn only pH has a significant

regression coefficient;

ii) backward elimination of one variable at a time yields a best model with pH and k

as the only regressors;

iii) all subsets, i.e., all possible regressions, yields a best model with pH and na as

the only regressors;

Rawlings subsequently considered all fifteen variables, analyzing the variable set first

with a multiple regression and then with two stepwise regression procedures from the

SAS package. A search through all possible subsets of regressors was not carried out,

presumably because the candidate set of regressors is too large. The results are as

follows:

(iv) a multiple regression of bio on all other variables gives only k and cu

significant regression coefficients;

(v) the two stepwise regression procedures6 both yield a model with pH, mg, ca and

cu as the only regressors, and regression on just these variables gives them all

significant coefficients;

(vi) simple regressions one variable at a time identify pH, buf, ca, zn and nh4.

Seven different methods and six different results; what is one to think? This analysis is

supplemented by a ridge regression, which increases the stability of the estimates of

coefficients, but the results for the point at issue-identifying the important variables-

-are much the same as with least squares. Rawlings also provides a principal

components factor analysis and various geometrical plots of the components. The result

is only a clustering of regression variables. He reports that "None of the results was
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satisfying to the biologist; the inconsistencies of the results were confusing and

variables expected to be biologically important were not showing signfiicant effects." (p.

3 6 1 ) .

If we apply the PC algorithm to the Linthurst data then judged by this sample there is

one extremely robust conclusion; the only variable that may directly influence biomass

in this sample7 is pH; pH is distinguished from all other variables by the fact that the

correlation of every other variable with bio vanishes when pH is controlled for.8 The

relation is not symmetric; the correlation of pH and bio, for example, does not vanish

when buf is controlled. The algorithm finds pH to be the only variable adjacent to bio no

matter whether we use a significance level of.05 to test for vanishing partial

correlations, or a level of 0.1, or a level of 0.2. We find the same result at all of these

significance levels if we include only the five variables in Rawling's first set of

candidate regressors or if we include all fourteen of the regressors. In all of these cases,

the PC algorithm or the FCI algorithm yield the result that pH and only pH can be

directly connected with bio. Of course, over a larger range of values of the variables

there is little reason to think that biomass depends linearly on the regressors, or that

factors that have no influence in producing variation within this sample would continue

to have no influence. Nor can our analysis determine whether the relationship between

pH and biomass is confounded by one or more unmeasured common causes, but the

principles of the theory suggest that in this case that is unlikely. If pH and biomass have

a common unmeasured cause T, say, and any other variable, Z, among the 13 others

either causes pH or has a common unmeasured cause with pH, then Z and biomass should

be correlated conditional on pH, which appears not to be the case.

The program and theory lead us to expect that if pH is forced to have some constant value

like those in the sample, then manipulations of other variables within the ranges

evidenced in the sample will have no effect on the growth of Spartina. Lindhurst's thesis

confirms the prediction. In an experiment Lindhurst describes, samples of Spartina

were collected from a salt marsh creekbank and transplanted to a greenhouse . Using a 3

X 4 X 2 (ph X salinity X aeration) randomized complete block design with four blocks,

the plants were given a common nutrient solution with varying values pH and salinity

and aeration. The aeration variable turned out not to matter in this experiment. Acidity

values were pH 4, 6 and 8. Salinity of the nutrient solutions was adjusted to 15, 25 35

and 45 %o. In contrast, in the observational data Rawlings reports (p. 358), almost all

16



salinity measurements are around 30--the extremes are 24 and 38. Compared to the

experimental study rather retricted variation was observed in the wild sample. The

observed values of pH in the wild, however, are clustered at the two extremes; only four

observations with within half a pH unit of 6, and no observations at all occurred at pH

values between 5.6 and 7.1.

Lindhurst found experimentally that growth varied with salinity at ph 6 but not at the

other pH values, 4 and 8, while growth varied with pH at all values of salinity.(po.

104). Each variable was correlated with plant mineral levels. Lindhurst considered a

variety of mechnisms by which extreme pH values might control plant growth:

At pH 4 and 8, salinity had little effect on the performance of the species. The pH

appeared to be more dominant in determining the growth response, (p. 108)

The overall effect of pH at the two extremes is suggestive of damage to the root

directly, thereby modifying its membrane permeability and subsequently its

capacity for selective uptake, (p. 109).

A comparison of the observational and experimental data suggests that the PC prediction

was essentially correct and can be extrapolated through the variation in the populations

sampled in the wild, but cannot be extrapolated through pH values that approach

neutrality.

In this case multiple regression of biomaas on all of the other measured variables

probably failed because the sample size was small compared to the number of variables,

so that the tests for vanishing partial regression coefficients had little power. In

contrast, the TETRAD procedure never needed to test for more than a second order

vanihsing partial correlation.

4.3 Example 3: The Effects on Foreign Investment on Third World
Political Forms

Timberlake and Williams (1984) used regression to claim foreign investment in third-

world countries promotes dictatorship. They measured political exclusion (po) (i.e.,

dictatorship), foreign investment penetration in 1973 (fi), energy development in

1975 (en), and civil liberties (cv). Civil liberties was measured on an ordered scale
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from 1 to 7, with lower values indicating greater civil liberties. Their correlations for

72 "non-core" countries are

po
f i

en

cv

1.0 - .175

1.0

- .480

.330

1.0

.868

- .391

- .430

1.0

Their inference is unwarranted. Their model and the TETRAD II model (obtained with the

PC algorithm using a .12 significance level to test for vanishing partial correlations)

are shown in figure 5.9

f ' .762

f i en — po • cv

f

Model Model

1.061 ; 1o

Regression TETRAD II A <>

9-
Figure 5

Neither PC nor FCI will orient the fi-en and en-po, edges, or determine whether they

are due to at least one unmeasured common cause. Maximum likelihood estimates of the

TETRAD II model require that the influence of fi on po (if any) be negative, and the model

easily passes a likelihood ratio test with the EQS program. If the TETRAD II model is

correct, Timberlake and William's regression model appears to be a case in which an

effect of the outcome variable is taken as a regressor, as in structure 1 of figure 1.

4.4 Example 4: College Plans

Sewell and Shah (1968) studied five variables from a sample of 10,318 Wisconsin high

school seniors. The variables and their values are:
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sex (sex), measured by 0 for male and 1 for female;

Intelligence Quotient (iq), measured from least to highest by numerical values;

college plans (cp), measured by 0 for yes and 1 for no;

parental encouragement (pe), measured by 0 for low and 1 for high;

socioeconomic status (ses), measured from least to highest by numerical values 0,1,

2, 3.

They offer the following causal hypothesis:

ses

i q • pe • cp

sex

Figure 6

The data were reanalyzed by Fienberg (1977), who attempted to give a causal

interpretation using log-linear models, but found a model that could not be given a

graphical interpretation.

Given prior information that orders the variables by time as follows

1 sex

2 iq pe ses

3 cp

so that later variables cannot be specified to be causes of earlier variables, the TETRAD

II output with the PC algorithm is the structure:
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ses

cp

Figure 7

The program cannot orient the edge between iq and ses. It seems very unlikely that the

child's intelligence causes the family socioeconomic status, and the only sensible

interpretation is that ses causes iq, or they have a common unmeasured cause. Choosing

the former, we have a directed graph whose joint distribution can be estimated directly

from the sample. We find, for example, that the maximum likelihood estimate of the

probability that males have college plans is .72, while the probability for females is

.68. Judged by this sample the probability a child with low IQ, no parental

encouragement, and low socioeconomic status plans to go to college is .011; more

distressing, the probability that a child otherwise in the same conditions but with a high

IQ plans to go to college is only .124.

4.5 Example 5. More Simulated Data

The short-run reliabiities of search procedures that make unpredictable sequential tests

of hypotheses can, so far as we know, only be established by simulation studies. To

illustrate what can (and should) be done in this regard we generated data from the graph

of figure 8:

X2 X3

Y X4

e
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Figure 8

For both the linear and the discrete cases, one hundred trials were run at each of sample

sizes 2,000 and 10,000 using the SGS algorithm. Results were scored separately for

errors concerning the existence and the directions of edges, and for correct choice of

regressors. Recall that an edge existence error of commission (Co) occurs when any pair

of variables are adjacent in the output but not in the pattern of the graph in figure 5. An

edge direction error of commission occurs when any arrowhead not in the pattern of (b)

occurs in the output in an edge occurring in the pattern of (b). Errors of omission (Om)

are defined analogously in each case. The results are tabulated as the average over the

trial distributions of the ratio of the number of actual errors to the number of possible

errors of each kind. The proportion of trials in which both (Both) actual causes of Y

were correctly identified (with no incorrect causes), and in which one (One) but not

both causes of Y were correctly identified (again with no incorrect causes) were

recorded for each sample size:

Variable
Type

Linear

Linear

Discrete

Discrete

#trials

100

100

100

100

n

2000

10,000

2000

10,000

%Edge Existence
Errors

Co

1.4

1.6

0.6

1.2

Om

3.6

1.0

16.6

7.4

%Edge Direction
Errors

Co Cm

3.0 5.4

2.7 2.2

29.5 21.8

30.0 9.1

%Both %One
Correct

Cause(s)

85.7

90

38

60

3.6

7

34
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For purposes of prediction and policy, the numbers in the last two columns suggest that

the procedure quite reliably finds real causes of the outcome variable when the

statistical assumptions of the simulations are met, the sample is large and a causal

structure like that in figure 14 obtains.

5. Conclusion

In the absence of very strong prior knowledge, multiple regression should not be used to

select the variables that influence an outcome or criterion variable in data from

uncontrolled studies. So far as we can tell, the popular automatic regression search
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procedures should never be used at all in any contexts where causal inferences are at

stake. We recommend that in such contexts the unconfounded causes of the outcome

variable, if any, be identified by the PC or FCI algorithms or some equally reliable

procedure, and multiple regression applied using the variables thus selected.
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member of the population for unit change in Xi; (iv) the population average change in Y

for unit change in Xi; etc. Under interpretations (iii) and (iv) the regression coefficient

is an unreliable estimate whenever Xi also influences other regressors that influence Y.

Interpretation (ii) is equivalent to (i) if the units are homogeneous and the stochastic

properties are due to sampling; Otherwise, regression will be unreliable under

interpretation (i) except in special cases, e.g., when the linear coefficients, as random

variables, are independently distributed (in which case the analysis given in this paper

still applies (Glymour, Spirtes and Schemes, 1991a)).

3We used the Monte procedure in TETRAD II (Spirtes, Scheines, Meek and Glymour,

1 9 9 1 ) .
4 The PC and FCI algorithms are implemented in the TETRAD II program using Fisher's Z

and a normal table to test for vanishing partial correlations in the linear case, and G 2

(Fienberg, 1977) to test for conditional independence among discrete variables. The

default significance level is .05. At present the program is available to anyone with a

Unix machine with PASCAL compiler and network connection by writing Richard

Scheines at rs2l@andrew.cmu.edu
5 ln fact, we were inadvertently misinformed that all seven tests are components of AFQT

and we first discovered otherwise with the SGS algorithm.
6The "maximum R-squareM and Hstepwise" options in PROC REG in the SAS program.

^Although the definition of the population in this case is unclear, and must in any case be

drawn quite narrowly.
8More exactly, at .05, with the exception of mg the partial correlation of every

regressor with bio vanishes when some set containing pH is controlled for; the

correlation of mg with bio vanishes when ca is controlled for.

^Searches at lower significance levels remove the adjacency between fi and en.
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