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Abstract 

 There is now substantial agreement about the representational component 

of a normative theory of causal reasoning: Causal Bayes Nets.  There is less 

agreement about a normative theory of causal discovery from data, either 

computationally or cognitively, and almost no work investigating how 

teaching the Causal Bayes Nets representational apparatus might help 

individuals faced with a causal learning task.  Psychologists working to 

describe how naïve participants represent and learn causal structure from data 

have focused primarily on learning from single trials under a variety of 

conditions. In contrast, one component of the normative theory focuses on 

learning from a sample drawn from a population under some experimental or 

observational study regime.  Through a virtual Causality Lab that embodies 

the normative theory of causal reasoning and which allows us to record 

student behavior, we have begun to systematically explore how best to teach 

the normative theory.  In this paper we explain the overall project and report 

on pilot studies which suggest that students can quickly be taught to (appear 

to) be quite rational.   
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1. Introduction 

By the early to mid 1990s, a normative theory of causation with qualitative as well as 

quantitative substance, called “Causal Bayes Nets” (CBNs),
4
 achieved fairly widespread 

acceptance among key proponents in Computer Science (Artificial Intelligence), 

Philosophy, Epidemiology, and Statistics.  Although the representational component of 

the normative theory is at some level fairly stable and commonly accepted, how an ideal 

computational agent should learn about causal structure from data is much less settled, 

and is, in 2005, still a hot area of research.
5
   To be clear, the Causal Bayes Net 

framework arose in a community that had no interest in modeling human learning or 

representation.  They were interested in how a robot, or an ideal computational agent, 

with obviously far different processing and memory capacities than a human, could best 

store and reason about the causal structure of the world.   Much of the early research in 

this community focussed on efficient algorithms for updating beliefs about a CBN from 

evidence (Spiegelhalter and Lauritzen, 1990; Pearl, 1988) , or on efficiently learning the 

qualitative structure of a CBN from data (Pearl, 1988, Spirtes, Glymour, and Scheines, 

2000).   

In contrast, the psychological community, interested in how humans learn, not in how 

they should learn if they had practically unbounded computational resources, studied 

associative and causal learning for decades.  The Rescorla-Wagner theory (1972) was 

offered, for example, as models of how humans (and animals, in some cases), learned 

associations and causal hypotheses from data.  Only later, in the early 1990s, did Causal 

Bayes Nets make their way into the pscychological community, and only then as a model 

that might describe everyday human reasoning.  At the least, a broad range of 

psychological theories of human causal learning can be substantially unified when cast as 

different versions of parameter learning within the CBN framework (Danks, 2005), but it 

is still a matter of vibrant debate whether and to what degree humans represent and learn 

about causal claims as per the normative theory of CBNs (e.g., Danks, Griffiths, & 

Tenenbaum, 2003; Glymour, 1998, 2000; Gopnik, et al., 2001; Gopnik, et al., 2004; 

Griffiths, Baraff, & Tenenbaum, 2004; Lagnado & Sloman, 2002, 2004; Sloman & 

Lagnado, 2002; Steyvers, et al., 2003; Tenenbaum & Griffiths, 2001, 2003; Tenenbaum 

& Niyogi, 2003; Waldmann & Hagmayer, in press; Waldmann & Martignon, 1998).    

                                                 
4
 See (Spirtes, Glymour, and Scheines, 2000; Pearl, 2000; Glymour and  Cooper, 1999),  

5
 See, for example, recent proceedings of Uncertainty and Artificial Intelligence Conferences: 

http://www.sis.pitt.edu/~dsl/UAI/  
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Nearly all of the psychological research on human causal learning involves naïve 

participants, that is, individuals who have not been taught the normative theory in any 

way, shape, or form. Almost all of this research involves single-trial learning: observing 

how subjects form and update their causal beliefs from the outcome of a series of trials, 

each either an experiment on a single individual, or a single episode of a system’s 

behavior.  No work, as far as we are aware, attempts to train people normatively on this 

and related tasks, nor does any work we know of compare the performance of naïve 

participants and those taught the normative theory.  The work we describe in this paper 

begins just such a project.  We are specifically interested in seeing if formal education 

about normative causal reasoning helps students draw accurate causal inferences. 

Although there has been, to our knowledge, no previous research on subjects trained in 

the normative theory, there has been research on whether naïve subjects approximate 

normative learning agents. Single trial learning, for example, can easily be described by 

the normative theory as a sequential Bayesian updating problem.  Some psychologists 

have considered whether and how people update their beliefs in accord with the Bayesian 

norm (e.g., Danks, et al., 2003; Griffiths, et al., 2004; Steyvers,  et al., 2003; Tenenbaum 

& Griffiths, 2001, 2003; Tenenbaum & Niyogi, 2003), and have suggested that some 

people at least approximate a normative Bayesian learner on simple cases.   This research 

does not extend to subjects who have already been taught the appropriate rules of 

Bayesian updating, either abstractly or concretely.  

 In the late 1990s, currcular material became available that taught the normative theory 

of CBNs.
6
  Standard introductions to the normative theory in computer science, 

philosophy, and statistics do not directly address the sorts of tasks that psychologists have 

investigated, however.  First, as opposed to single trial learning, the focus is on learning 

from samples drawn from some population.  Second, little or no attention is paid to the 

severe computational (processing time) and representational (storage space) limitations of 

humans. Instead, abstractions and algorithms are taught that could not possibly be used 

by humans on any but the simplest of problems.  

In the normative theory, learning about which among many possible causal structures 

might obtain is typically cast as iterative:  

1) enumerate a space of plausible hypotheses,  

2) design an experiment that will help distinguish among these hypotheses,  

3) collect a sample of data from such an experiment,  

                                                 
6
 See, for example: www.phil.cmu.edu/projects/csr.  
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4) analyze these data with the help of sophisticated computing tools like R
7
 or 

TETRAD
8
 in order to update the space of hypotheses to those supported or 

consistent with these data, and  

5) go back to step 2.   

Designing an experiment, insofar as it involves choosing which variable or variables 

to manipulate, is a natural part of the normative theory and has just recently become a 

subject of study.
9
  The same activity, that is, picking the best among many possible 

experiments to run, has been studied by Lagnado and Sloman, 2004, Sobel and Kushnir, 

2004, Steyvers, et al., 2003, and Waldmann & Hagmayer, in press. 

Another point of contact is what a student thinks the data collected in an experiment 

tells them about the model that might be generating the data.  Starting with a set of 

plausible models, some will be consistent with the data collected, or favored by it, and 

some will not. We would like to know whether students trained in the normative theory 

are better, and if so in what way, at determining what models are consistent with the data. 

In a series of four pilot experiments, we examined the performance of subjects 

partially trained in the normative theory on causal learning tasks that involved choosing 

experiments and deciding on which models are consistent with the data.  Although we did 

not use single-trial learning, we did use tasks similar to those studied recently by 

psychologists, especially Steyvers, et al., 2003. Our students were trained for about a 

month in a college course on causation and social policy.  The students were not trained 

in the precise skills tested by our experiments.  Although our results are not directly 

comparable to those discussed in the psychological literature, they certainly suggest that 

students trained on the normative theory act quite differently than naïve participants.  

Our paper is organized as follows. We first briefly describe what we take to be the 

normative theory of causal reasoning.  We then describe the online corpus we have 

developed for teaching it.  Finally, we describe four pilot studies we performed in the fall 

of 2004 with the Causality Lab, a major part of the online corpus.   

 

2. The Normative Theory of Causal Reasoning 

Although Galileo pioneered the use of fully controlled experiments almost 400 years 

ago, it wasn’t until Sir Ronald Fisher’s (1935) famous work on experimental design that 

                                                 
7
 www.r-project.org/  

8
 www.phil.cmu.edu/projects/tetrad  

9
 See Eberhardt, Glymour, and Scheines (2005), Murphy (2001), and Tong and Koller (2001). 
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real headway was made on the statistical problem of causal discovery. Fisher’s work, like 

Galileo’s, was confined to experimental settings in which treatment could be assigned.  In 

Galileo’s case, however, all the variables in a system could be perfectly controlled, and 

the treatment could thus be isolated and made to be the only quantity varying in a given 

experiment.  In agricultural or biological experiments, however, it isn’t possible to 

control all the quantities, e.g., the genetic and environmental history of each person. 

Fisher’s technique of randomization not only solved this problem, but also produced a 

reference distribution against which experimental results could be compared statistically.  

His work is still the statistical foundation of most modern medical research.   

 

Representing Causal Systems:  Causal Bayes Nets 

Sewall Wright pioneered representing causal systems as “path diagrams” in the 1920s 

and 1930s (Wright, 1934), but until about the middle of the 20
th

 century the entire topic 

of how causal claims can or cannot be discovered from data collected in non-

experimental studies was largely written off as hopeless.  Herbert Simon (1954) and 

Hubert Blalock (1961) made major inroads, but gave no general theory. In the mid 1980s, 

however, artificial intelligence researchers, philosophers, statisticians and 

epidemiologists began to make real headway on a rigorous theory of causal discovery 

from non-experimental as well as experimental data.
10

   

Like Fisher’s statistical work on experiments, CBNs seek to model the relations 

among a set of random variables, such as an individual’s level of education or annual 

income.  Alternative approaches aim to model the causes of individual events, for 

example the cause(s) of the space shuttle Challenger disaster. We confine our attention to 

relations among variables. If we are instead concerned with a system in which certain 

types of events cause other types of events, we represent the occurrence or non-

occurrence of the events by binary variables. For example, if a blue light bulb going on is 

followed by a red light bulb going on, we use the variables Red Light Bulb [lit, not lit] 

and Blue Light Bulb [lit, not lit]. 

Any approach that models the statistical relations among a set of variables must first 

confront what we call the ontological problem: how do we get from a messy and 

complicated world to a coherent and meaningful set of variables that might plausibly be 

related either statistically or causally.  For example, it is reasonable to examine the 

association between the number of years of education and the number of dollars in yearly 

                                                 
10

 See, for example, Spirtes, Glymour and Scheines (2000), Pearl (2000), Glymour and Cooper (1999). 
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income for a sample of middle aged men in Western Pennsylvania, but it makes no sense 

to examine the average level of education for the aggregate of people in a state like 

Pennsylvania and compare it to the level of income for individual residents of New York.  

Nor does it make sense to posit a “variable” whose range of values is not exclusive 

because it includes: has blond hair, has curly hair, etc. After teaching causal reasoning to 

hundreds of students over almost a decade, the ontological problem seems the most 

difficult to teach and the most difficult for students to learn. We need to study it much 

more thoroughly, but for the present investigation, we will simply assume it has been 

solved for a particular learning problem. 

Assuming that we are given a set of coherent and meaningful variables, the normative 

theory involves representing the qualitative causal relations among a set of variables with 

a directed graph in which there is an edge from X to Y just in case X is a direct cause of 

Y relative to the system of variables under study.  X is a direct cause of Y in such a 

system if and only if there is a pair of ideal interventions that hold the other variables in 

the system Z fixed and change only X, such that the probability distribution for Y also 

changes.  We model the quantitative relations among the variables with a set of 

conditional probability distributions: one for each variable given each possible 

configuration of values of its direct causes (see Figure 1).    

The asymmetry of causation is modeled by how the system responds to ideal 

intervention, both qualitatively and quantitatively.  Consider, for example, a two variable 

system: Room Temperature (of a room an individual is in) [<55
o
, 55-85

o
, >85

o
], and 

Wearing a Sweater [yes, no], in which the following graph and set of conditional 

probability tables describe the system: 

 

Room 

Temperature 

Wearing a 

Sweater 

P(RT = <55) = .1 

P(RT = 55-85) = .8 

P(RT = >85) = .1 

P(Wearing a Sweater | RT < 55) = .98 

P(Wearing a Sweater | RT = 55-85) = .5 

P(Wearing a Sweater | RT > 85) = .04 

 

Figure 1: Causal Bayes Net   

 

Ideal interventions are represented by adding an intervention variable that is a direct 

cause of only the variables it targets. Ideal interventions are assumed to have a simple 

property: if I is an intervention on variable X, then when I is active, it removes all the 
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other edges into X. That is, the “other” causes of X no longer influence X in the post-

intervention, or manipulated, system.  Figure 2 captures the change and non-change in 

the Figure 1 graph in response to interventions on Room Temperature (A) and on 

Wearing a Sweater (B), respectively.   

 

Room 

Temperature 
Wearing a 

Sweater 

Room 

Temperature 

Wearing a 

Sweater 

I I 
A) B) 

 

Figure 2: Manipulated graph 

Modeling the system’s quantitative response to interventions is almost as simple. 

Generally, we conceive of an ideal intervention as imposing not a value but rather a 

probability distribution on its target.   We thus model the move from the original system 

to the manipulated system as leaving all conditional distributions intact save those over 

the manipulated variables, in which case we impose our own distribution. For example, if 

we assume that the interventions depicted in Figure 2 impose a uniform distribution on 

their targets when active, then Figure 3 shows the two manipulated systems that would 

result from the original system shown in Figure 1.
11

 

                                                 
11

 Ideal interventions are only one type of manipulation of a causal system. We can straightforwardly use 

the CBN framework to model interventions that affect multiple variables (so-called “fat hand” 

interventions), as well as those that influence, but do not determine, the values of the target variables (i.e., 

that do not “break” all of the incoming edges). Of course, causal learning is significantly harder in those 

situations. 
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Room 

Temperature 

Wearing a 

Sweater 

P(RT = <55) = .1 

P(RT = 55-85) = .8 

P(RT = >85) = .1 

P(Wearing a Sweater | RT < 55) = .98 

P(Wearing a Sweater | RT = 55-85) = .5 

P(Wearing a Sweater | RT > 85) = .04 

Room 

Temperature 
Wearing a 

Sweater 

Room 

Temperature 

Wearing a 

Sweater 

I 

I 

P(RT = <55 | I) = .33 

P(RT = 55-85 | I) = .33 

P(RT = >85 | I) = .33 

P(Wearing a Sweater | RT < 55) = .98 

P(Wearing a Sweater | RT = 55-85) = .5 

P(Wearing a Sweater | RT > 85) = .04 

P(RT = <55) = .1 

P(RT = 55-85) = .8 

P(RT = >85) = .1 

P(Wearing a Sweater  | I) = .5 

  

Figure 3: Original and Manipulated Systems 

 

To simplify later discussions, we will include the “null” manipulation (i.e., we 

intervene on no variables) as one possible manipulation.  A Causal Bayes Net and a 

manipulation define a joint probability distribution over the set of variables in the system.  

If we use “experimental setup” to refer to an exact quantitative specification of the 

manipulation, then when we collect data we are drawing a sample from the probability 

distribution defined by the original CBN and the experimental setup.   

 

Learning Causal Bayes Nets 

There are two distinct types of CBN learning given data: parameter estimation and 

structure learning.  In parameter estimation, one fixes the qualitative (graphical) structure 

of the model and estimates the conditional probability tables by minimizing some loss 

function or maximizing the likelihood of the sample data given the model and its 

parameterization. In contrast, structure learning aims to recover the qualitative structure 

of graphical edges. The distinction between parameter estimation and structure learning is 

not perfectly clean, since “close-to-zero parameter” and “absence of the edge” are 

roughly equivalent.  Danks (2005) shows how to understand most non-Bayes net 

psychological theories of causal learning (e.g., Cheng, 1997; Cheng & Novick, 1992; 
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Perales & Shanks, 2003; Rescorla & Wagner, 1972) as parameter estimation theories for 

particular graphical structures.  

A fundamental challenge for CBN structure learning algorithms is the existence of 

Markov equivalence classes: sets of CBNs that make identical predictions about the way 

the world looks in the absence of experiments. For example, A � B and A  B both 

predict that variables A and B will be associated. Any dataset that can be modeled by  

A � B can be equally well-modeled by A  B, and so there is no reason—given only 

observed data—to prefer one structure over the other. This observation leads to the 

standard warning in science that “correlation does not equal causation.” However, 

patterns of correlation can enable us to infer something about causal relationships (or 

more generally, graphical structure), though perhaps not a unique graph. Thus, structure 

learning algorithms will frequently not be able to learn the “true” graph from data, but 

will be able to learn a small set of graphs that are indistinguishable from the “truth.” 

For learning the structure of the causal graph, the normative theory splits into two 

approaches: constraint-based and scoring.  The constraint-based approach (Spirtes, et. al, 

2000) aims to determine the class of CBNs consistent with an inferred (statistical) pattern 

of independencies and associations, as well as background knowledge. Any particular 

CBN entails a set of statistical constraints in the population, such as independence and 

tetrad constraints.  Constraint-based algorithms take as input the constraints inferred from 

a given sample, as well as background assumptions about the class of models to be 

considered, and output the set of indistinguishable causal structures. That is, the 

algorithms output the models which (i) entail all and only the inferred constraints, and (ii) 

are consistent with background knowledge.   The inference task is thus split into two 

parts: 1) statistical: inference from the sample to the constraints that hold in the 

population, and 2) causal: inference from the constraints to the Causal Bayes Net or Nets 

that entail such constraints.  



 10 

 

X1 X3 X2 

X1 X3 X2 

X1 X3 X2 

X1 X3 X2 

Representation of  

Equivalence Class 

 (Pattern) 

Equivalence Class 

 

Figure 4: Equivalence Class for X1 _||_ X2 | X3 

 

Suppose, for example, that we observe a sample of 100 individuals on variables X1, 

X2, and X3, and after statistical inference conclude that X1 and X2 are statistically 

independent, conditional on X3 (i.e., X1 _||_ X2 | X3). If we also assume that are no 

unobserved common causes for any pair of X1, X2, and X3, then the PC algorithm (SGS, 

2000) would output the Pattern shown on the left side of Figure 4. That pattern is a 

graphical object which represents the Markov equivalence class shown on the right side 

of  Figure 4; all three graphs predict exactly the same set of unconditional and conditional 

independencies.  In general, two causal graphs entail the same set of independencies if 

and only if they have the same adjacencies and same unshielded colliders, where X and Y 

are adjacent just in case X � Y or X  Y, and Z is an unshielded collider between X and 

Y just in case X � Z  Y and X and Y are not adjacent. Thus, in a Pattern, we need only 

represent the adjacencies and unshielded colliders.  Constraint-based searches first 

compute the set of adjacencies for a set of variables and then try to “orient” these 

adjacencies, i.e., test for colliders among triples in which X and Y are adjacent, Y and Z 

are adjacent, but X and Z are not: X – Y – Z.    

Testing high order conditional independence relations—relations that involve a large 

number of variables in the conditioning set—is computationally expensive and 

statistically unreliable, so the constraint-based approach sequences the tests to minimize 

the number of higher order conditional independence facts actually tested.  Compared to 

other methods, constraint-based algorithms are extremely fast and under multivariate 

normal distributions (linear systmes) can handle hundreds of variables.  Constraint-based 

algorithms can also handle models with unobserved common causes.  Their drawback is 

that they are subject to errors if statistical decisions made early in the algorithm are 

incorrect. 
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If handed the independence relations true of a population, people could easily perform 

by hand the computations required by a constraint-based search, even for many causal 

structures with dozens of variables. Of course, people could not possibly compute all of 

the precise statistical tests of independence relations required, but they could potentially 

approximate a subset of such (unconditional and conditional) independence tests (see 

Danks, 2004 for one very tentative proposal). 

In the score-based approach (Heckerman, 1995), we assign a “score” to a CBN that 

reflects both (i) the closeness of the CBN’s “fit” of the data, and (ii) the plausibility of the 

CBN prior to seeing any data.  We then search (in a variety of ways) among all the 

models consistent with background knowledge for the set that have the highest score.  

The most common scoring based approach is based on Bayesian principles: calculate a 

score based on the CBN’s “prior” – the probability we assign to the model being true 

before seeing any data, and the model’s likelihood – the probability of the observed data 

given this particular CBN.
12

   Scoring based searches are very accurate, but are very slow, 

as calculating each model’s score is very expensive.  Given a flat prior over the models 

(i.e., equal probabilities on all models), the set of models that have the highest Bayesian 

score is identical to the Markov equivalence class of models output by a constraint-based 

algorithm.   

Bayesian approaches are straightforwardly applied to standard psychological tasks. By 

computing the posterior over the models after each new sample point, we get a learning 

dynamics for that problem (as in, e.g., Danks, et al., 2003; Griffiths, et al., 2004; 

Steyvers, et al., 2003; Tenenbaum & Griffiths, 2003).  However, even if naïve subjects 

act like approximately rational Bayesian structure learners in cases involving 2 or 3 

variables, they cannot possibly implement the approach precisely, nor can they possibly 

implement the approach for larger numbers of variables, e.g., 5-10. Hence, the Bayesian 

approach is not necessarily appropriate for teaching the normative theory.  

 

3. The Causality Lab 

Convinced that the qualitative story behind causal discovery should be taught to 

introductory level students either prior to or simultaneously with a basic course on 

statistical methods, a team
13

 from Carnegie Mellon and the University of California, San 

Diego created enough online material for an entire semester’s course in the basics of 

                                                 
12

Strictly, the CBN with parameters set to the maximum-likelihood estimates.  
13

This team included Richard Scheines, Joel Smith, Clark Glymour, David Danks, Mara Harrell,  Sandra 

Mitchell, Willie Wheeler, Joe Ramsey, and more recently, Matt Easterday. 
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CBNs.  By the spring of 2004, over 2,600 students in over 70 courses at almost 30 

different colleges or universities had taken all or part of our online course, which is 

available through Carnegie Mellon’s Open Learning Initiative at www.cmu.edu/oli/.  

Causal and Statistical Reasoning (CSR) involves three components: 1) 16 lessons, or 

concept modules; 2) a virtual laboratory for simulating social science experiments, the 

“Causality Lab”
14

; and 3) a bank of over 120 case studies: reports of “studies” by social, 

behavioral, or medical researchers. Each of the concept modules contains approximately 

the same amount of material as a text-book chapter. The Causality Lab embodies the 

normative theory by making explicit all the ideas we discussed above.   

 

Figure 5: The Causality Lab Navigation Panel 

Figure 5 shows the navigation panel for the lab. Each of the icons may be clicked to 

reveal and in some cases manipulate the contents of an object for a given exercise.  The 

instructor creates the “true” CBN with an exercise building tool, and this constitutes the 

“true graph” to be discovered by the student. Of course, just as real scientists are confined 

                                                 
14

 The Causality Lab is available free at www.phil.cmu.edu/projects/causality-lab  
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to one side of the Humean curtain, so are students of the Causality Lab. In most 

exercises, they cannot access any of the icons in the left column, all of which represent on 

aspect of the truth to be discovered. Students cannot simply click and see the truth.   

Using the earlier example of room temperature and sweaters, suppose the true graph 

and conditional probability distributions are as given in Figure 1.  To fully determine the 

population from which the student may draw a sample, however, he or she must also 

provide the (possibly null) experimental setup.  Once the student specifies one or more 

experimental setups, he or she can “collect data” from any of them. 

For example, suppose we clicked on the Experimental Setup icon and then created 

three distinct experimental setups (Figure 6).  On the left, both Room Temperature and 

Sweater will be passively observed. In the middle, the value of Room Temperature will 

be randomly assigned (indicated by the icon of a die attached to Room_Temp), and the 

value of Sweater will be passively observed. On the right, the value of Sweater will be 

randomly assigned, and the value of Room Temperature will be passively observed. 

 

 

Figure 6: Three Experimental Setups 

As the navigation panel in Figure 5 shows, it is the combination of the experimental 

setup and the true CBN that defines the manipulated system, which determines the 

population probability distribution.  So if we click on “Collect Data” from Exp-Setup 1 

(far left side of Figure 6), then we will be drawing a sample from the distribution shown 

at the top of Figure 3.  If we collect data from Exp-Setup 2, then our sample will be 

drawn from the distribution shown in the middle of Figure 3, and so on.  The fact that the 

sample population depends on both the experimental setup and the true CBN is a pillar of 

the normative theory, but this fact is rarely, if ever, taught. 

Once a sample is pseudo-randomly drawn from the appropriate distribution, we may 

inspect it in any way we wish.  To keep matters as qualitative as possible, however, the 

focus of the Causality Lab is on independence constraints—the normative theory’s 
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primary connection between probability distributions and causal structure. In particular, 

the Predictions and Results window allows the student to inspect, for each experimental 

setup: 

1. the independence relations that hold in the population
15

; and 

2. the independence relations that cannot be rejected at α = .05 by a statistical test 

applied to any sample drawn from that population 

 

 

Figure 7: Independence Results 

For example, Figure 7 shows the results of an experiment in which wearing a sweater 

is randomly assigned and a sample of 40 individuals was drawn from the resulting 

population.  The Predictions and Results window indicates that, in the population, Room 

Temperature and Sweater Wearing are independent (notated as ‘_||_’). The lab also 

allows students to inspect histograms or scatterplots of their samples, and then enter their 

own guesses as to which independence relations hold in a given sample. In this example, 

a student used the histograms to guess that Room Temperature and Sweater Wearing 

were associated (not independent), though the statistical test applied to the sample of 40 

                                                 
15

 If the instructor writing the exercise allows the student to “see” the population. 



 15 

could not reject the hypothesis of independence. Thus, one easy lesson for students is that 

statistical tests are sometimes better at determining independence relations than students 

who eyeball sample summaries. 

Students can also create hypotheses and then compare the predictions of their 

hypotheses to the results of their experiments.  For example, we may rebel against 

common sense and hypothesize that wearing a sweater causes the room temperature.  The 

Causality Lab helps the students learn that their hypothetical graph only makes testable 

predictions about independence in combination with an experimental setup, which leads 

to a manipulated hypothetical graph (see Figure 5).  

 

Causal Discovery in the Lab 

Equipped with the tools of the Causality Lab, we can decompose the causal discovery 

task into the following steps:  

1. Enumerate all the hypotheses that are consistent with background knowledge. 

2. Create an experimental setup and collect a sample of data. 

3. Make statistical inferences about the independences that hold in the population 

from the sample 

4. Eliminate or re-allocate confidence in hypotheses on the basis of the results 

from step 3. 

5. If no unique model emerges, go back to step 2. 

Steps 1 (enumeration) and 3 (statistics) are interesting, though only necessary if one is 

following a constraint-based approach. The interesting action is in steps 2 and 4.  As 

operationalized in the Causality Lab and defined in the normative theory, the first part of 

step 2 (experimental design) amounts to determining, for each variable under study, 

whether that variable will be observed passively or have its values assigned randomly.    

Depending upon the hypotheses still under consideration, experimental setups differ in 

the informativeness of the experiment’s results. For example, suppose the currently active 

hypotheses include: 1) X � Y � Z and 2) X  Y � Z. An experimental setup (call it 

ES1) in which X is randomized and Y and Z are passively observed will uniquely 

determine the correct graph no matter the outcome.
16

 A different experiment (call it ES2) 

in which Z is randomized and X and Y passively observed will tell us nothing, again 

regardless of the outcome of the experiment. The difference in the experiments’ 

                                                 
16

 Assuming, of course, that the statistical inferences are correct. 
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informativeness arises because the manipulated graphs are distinguishable in ES1, but 

not in ES2 (Figure 8). In ES1, the two possibilities have different adjacencies (X � Y in 

one, and no edges in the other) and thus entail different sets of independencies.  In ES2, 

however, the two manipulated graphs are indistinguishable; they have the same 

adjacencies.   
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Figure 8: Informative and Uninformative Experimental Setups 

From this perspective, the causal discovery task involves determining, for each 

possible experimental setup one might use, the set of manipulated hypothetical graphs 

and whether they are (partially) distinguishable.  This is a challenging task. What are the 

general principles for experimental design, if any? When the goal is to parameterize the 

dependence of one effect on several causes, then there is a rich and powerful theory of 

experimental design from the statistical literature (Berger, 2005; Cochran and Cox, 

1957).  When the goal is to discover which among many possible causal structures are 

true, however, the theory of optimal experimental design is much less developed.  From a 

Bayesian perspective, we must first specify a prior distribution over the hypothetical 

graphs. Given such a distribution, each experimental setup has an expected gain in 

information (reduction in uncertainty), and one should thus pick the experiment that 

would most reduce uncertainty (Murphy, 2001; Tong & Koller, 2001). Computing this 

gain is intractable for all but the simplest of cases, though Steyvers et al, (2003) argue 
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that naïve subjects approximate just this sort of behavior. Regardless of the descriptive 

question, a theory of so-called “active learning” provides normative guidance as to the 

optimal sequencing of experiments. Taking a constraint-based approach, Eberhardt, 

Glymour, and Scheines (2005) have shown that for N variables, N-1 experiments that 

randomize at most a single variable are always sufficient to identify the correct graph, 

and in the worst case that many are necessary.   

Although there is not yet a graphical characterization of the best experiment given a 

set of active hypotheses, we do have a few powerful heuristics.  For example, passive 

observation is sufficient, under a constraint-based approach, to identify all the 

adjacencies among a set of variables.  Given the adjacencies, an intervention on X will 

orient all the edges adjacent to X. Suppose X and Z are adjacent. If X and Z are 

independent after an intervention on X, then the edge is X  Z; if X and Z are 

associated, then the edge must be X � Z.  

 

4. Pilot Studies 

An obvious question about teaching the normative theory is: does learning it improve 

student’s performance on causal learning tasks?  In the fall of 2004, one of us (Scheines) 

taught an upper level seminar at Carnegie Mellon on Causation and Social Policy.  For 

about a month in the middle of the class, the students went through the CSR material and 

learned the rudiments of the representational theory of CBNs.  The class covered the idea 

of causation, causal graphs, manipulations, manipulated models, independence, 

conditional independence, and d-separation,
17

 but included no instruction on model 

equivalence, and no instruction on a procedure for causal discovery.  All fifteen of the 

students in the class agreed to participate in a pilot study in which they were given four 

discovery tasks.  The students all worked for a little over an hour in a computer cluster.   

We were unable to enforce strict silence between students, and thus the results of our 

pilot study cannot be considered rigorous.  They are, nevertheless, interesting and 

suggestive. 

In all of our experiments, participants were allowed to see the full independence 

relations that hold in the population defined by an experimental setup of their choice, and 

so no statistical judgments were required. We recognize that this is different from the 

standard presentation in psychological experiments, but our intent was to focus on the 

skills involved in causal discovery from known facts about the population, as opposed to 

                                                 
17

 D-separation enables us to compute the independence relations entailed by a causal graph. 
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making statistical inferences from samples.  To provide familiarity with the Causality 

Lab interface, all participants were provided a simple training problem. In the training 

task, the students were instructed to (i) do a passive observation, then (ii) eliminate all the 

models they could, and finally (iii) determine the true graph using the fewest number of 

experiments.   

 

Experiment 1 

In Experiment 1, we asked students to determine which model in Figure 9 was the true 

graph in the minimum number of experiments.   Students were randomly assigned to a 

model, and there was no effect of condition. 

 

 X Y Z 

X Y Z 

M1 

M2 

 

Figure 9: Choices in Experiment 1 

The experiment explored whether students understood the difference between direct and 

indirect causation.  All 15 students learned the correct model in a single experiment. We 

were also interested in the students’ choices of experimental targets. Table 1 shows the 

independence relations entailed by both models in every possible experimental setup, as 

well as whether M1 and M2 can be distinguished in that experiment.  From a normative 

point-of-view, no one should choose to randomize Z, since that experiment will not 

distinguish between these two models. Randomizing Y is optimal, as under that 

intervention the two models make different predictions about both X _||_ Z and X _||_ Z | 

Y. Steyvers, et al. (2003) report a source bias in choosing interventions: people prefer to 

intervene on variables believed to have no edges into them (i.e., no causes in the system). 

If this bias holds, then people should prefer to randomize on X, when they randomize on 

any variable at all. Note that the source bias refers only to choices among experiments; no 

prediction was made about whether people will prefer to experiment or passively 

observe. 
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Table 1: Independencies Implied by M1 and M2 

 

Experimental 

Setup 

X _||_ Y X  _||_ Z X _||_ Z | Y M1 and M2 

Distinguishable? 

Passive Observation Neither Neither M1, not M2 Yes 

Randomize X Neither Neither M1, not M2 Yes 

Randomize Y Both M1, not M2 M1, not M2 Yes 

Randomize Z Neither Both  No 

 

Figure 10 shows the frequency with which each experiment was chosen first. All 

students were normatively correct; no one chose to randomize on Z. Our students 

preferred the passive observation, which can be explained by its use in the training 

experiment.  And in contrast to the results reported in Steyvers, et. al. (2003), students 

exhibited no source bias whatsoever: six of the seven who chose to intervene did so on 

the mediating variable Y.  
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Figure 10: Choice of Experiments in Experiment 1 

 

Experiment 2 
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In the second experiment, the students had to choose among four possibilities (Figure 

11). They were again told to find the true graph in the minimum number of experiments, 

though they understood that they were not required to do the passive observation 

experiment first. Since M3 and M4 are essentially the same a priori, we randomized the 

students to a true graph of either M1, M2, or M3.    

 

A C B A C B
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A C B
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Figure 11: Possibilities in Experiment 2 

This experiment aimed to determine whether students could choose an informative 

intervention; in this problem, the choice of experimental setup matters a lot, as shown in 

Table 2.  For example, if we passively observe all variables, then we can tell only 

whether M1 is the true model or not the true model (i.e., that the true model is one of: 

{M2, M3, M4}).  The normatively optimal experiment to perform is the one in which the 

middle variable C is randomized. That experiment is guaranteed to uniquely identify the 

correct model, regardless of outcome.  

 

Table 2: Distinguishable Models by Intervention Choice 

Experimental Setup Distinguishable? 

Passive Observation M1 from {M2, M3,  M4} 

Randomize A M1 from {M2, M3} from M4 

Randomize B M1 from {M2, M4} from M3 

Randomize C M1 from M2 from M3 from M4 

 

Again, students were quite successful in the overall task: 14 out of 15 correctly 

identified the model.  The number of experiments it took to arrive at an answer varied 

considerably: two experiments was the mode, but several students used three or four.   

Figure 13 shows the students’ first experimental choice (top graph), and the target of the 
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first intervention they performed regardless of when that first intervention experiment 

occurred (bottom graph). Clearly, students preferred passive observation as a first choice, 

but the first choice for an intervention was overwhelmingly the mediator C as opposed to 

either endpoint variables A or B.   
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Figure 12: Results of Experiment 2 

 

Experiment 3 

In the third experiment, students were told that the true model was one of the models 

in Figure 13, and we randomly assigned students to have either the Single Edge model or 

the Chain model (both highlighted in Figure 13) as the true underlying causal structure. 

(Students were not told that those were the only two possibilities.) All participants were 
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required to (i) begin with the passive observation experiment, (ii) eliminate as many 

models as possible after each experiment, and (iii) find the true model in the minimum 

number of experiments.  Students recorded the experimental design used to eliminate 

each model except the final one. Students did not create use the hypothetical graph 

window of the Causality Lab, and so had no computational aids to calculate the 

independencies implied by each hypothesis under a given experimental setup. 

In our experiment, over two thirds of participants (11 of 15) answered correctly, and 

success was independent of condition. Including the passive observation, students 

averaged just under 3 experiments before reaching a final answer, and the number of 

experiments was also independent of condition.  As one would expect, the 11 students 

who got the answer right averaged fewer significantly fewer experiments than the 4 who 

got it wrong. For the remaining analyses, we restrict our attention to the participant 

responses after only the initial passive observation. 
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Figure 13: Possibilities for Experiment 3 

One question behind our experiment was whether students acted as if they understood 

the concept of Markov equivalence classes (MECs): sets of models that are 

indistinguishable by passive observation, since they imply the same set of independence 

relations.  In Figure 14 we show again the 18 possible models, but group them in boxes 

corresponding to the nine Markov equivalence classes.   
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Figure 14: Equivalence Classes for the Passive Observation in Experiment 3 

Individuals who (act as if they) understand the idea of Markov equivalence classes 

should, for every equivalence class, either keep or remove all its members together after 

the passive observation stage. For equivalence classes D, E, and F, which have only a 

single member, this necessarily happens, so we exclude those classes. We then define a 

(weighted) MEC “integrity” score as:  

 

Σ 
mec ∈ {A,B,C,G,H,I} 

 |mec| : if all models in mec were  

             included or all excluded: 

     0     : otherwise 

15 

MEC-Integrity = 

 

The weighting captures the fact that it is more challenging to have MEC integrity for 

equivalence classes G, H, and I, which have three members, than it is for equivalence 

classes A, B, or C, which have two. If a participant always keeps or removes members of 

a MEC together, then MEC-Integrity equals 1; if members of a MEC are never kept or 

removed together, then MEC-Integrity equals 0. Figure 16 shows that students exhibited 

an extremely high degree of MEC integrity: twelve of fifteen participants were perfect, 

and only one student was massively confused.  
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Figure 15: MEC Integrity 

Even if someone exhibited perfect MEC integrity, they might still be retaining or 

excluding the wrong graphs (or the wrong MECs), given the data they received.  To 

measure whether they are including too many graphs, we computed the percentage of 

commission errors: 

 

  # of graphs retained by student, but not in correct MEC 
Commission Error = 

# of graphs not in correct MEC 
 

 

Similarly, to measure whether they are excluding graphs equivalent to the truth, we 

computed the percentage of omission errors: 

 

  # of graphs in the correct MEC omitted by the student 
Omission Error = 

# of graphs in the correct MEC 
 

 

Not surprisingly, students were not as good on the accuracy of their inferences. Figure 16 

shows that, although their omission error was quite low (very few correct graphs were 



 25 

left out), students often retained more graphs than were consistent with the passive 

observation. 
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Figure 16: Commission and Omission Error 

Interestingly, we think we can explain why.  Although we did not include equivalence 

classes D, E,  and F in our computation of MEC-Integrity (because they each have only 

one graph as a member), we did include those graphs in our calculations of omission and 

commission error.  These graphs each have the same adjacencies as some equivalence 

class, though they differ from the class in edge orientation.  In Figure 14, classes D and G 

share the same adjacencies, as do E and H, and F and I.  If, for example, the true graph 

was C � B � A (part of equivalence class H) and I included every graph in classes E 

and H, then I would have a perfect score on MEC-Integrity, but a non-zero commission 

error. In general, if I attend only to adjacencies and ignore orientations, I will (provably) 

always receive a perfect score on MEC-Integrity, even though I might make a number of 

commission errors.  

After looking at the data we hypothesized that students were quite good at determining 

the correct adjacencies, but not very good at determining the correct orientations.  To 

explore this, we first computed participants’ Adjacency-Integrity to determine whether 

the students included or excluded graphs that share adjacencies as a unit.   
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Σ 
adj ∈ {A,B,C,D+G,E+H,F+I} 

 |adj| : if all models in adj were  

             included or all excluded: 

     0     : otherwise 

18 

Adjacency-Integrity = 

 

 

The histogram in Figure 17 shows that students had relatively high Adjacency 

Integrity, suggesting that the high MEC-Integrity scores were due (at least in part) to 

people keeping/removing graphs with the same adjacencies, and not necessarily those 

that made the identical observational predictions. 
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Figure 17: Adjacency-Integrity 

This explanation does not completely account for students’ performance. Many 

included graphs that were neither Markov nor adjacency equivalent to the truth. But not 

all mistakes are quite the same. Suppose the truth is A � B � C. Including the graph A 

� B  C is arguably a less severe mistake than including the graph B � C � A. In the 

former case, the adjacencies were correctly learned, though not the orientations. In the 

latter case, however, a true adjacency (A — B) was excluded and a false adjacency (C — 

A) was included. We will say that a graph G is adjacency consistent with a graph H if 

either G’s adjacencies are a subset of H’s, or vice versa. The former error in this example 

is adjacency consistent with the truth; the latter error is not.  
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To better understand the severity of the students’ errors, we computed the proportion 

of the commission errors that were adjacency consistent with the true MEC.   

 

  # of graphs committed that are adjacency consistent 
Adjacency Consistent 

Error # of graphs committed 
= 

 

Figure 19 shows that students’ errors tend to be adjacency consistent; the majority of 

their mistakes involved keeping a graph that was either a subgraph or supergraph of the 

truth  
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Figure 18: Adjacency Consistent Error 

 

Of course, this high percentage could arise if most graphs are adjacency consistent 

with the truth (though this is not actually the case in this experiment). To normalize for 

the number of errors that could be adjacency consistent or inconsistent, we also 

computed: 
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  # of committed graphs that are adjacency consistent 
Adjacency Consistent 

Inclusion # of committable graphs that are adjacency consistent 
= 

 

  # of committed graphs that are adjacency inconsistent 
Adjacency Inconsistent 

Inclusion # of committable graphs that are adjacency inconsistent 
= 

 

If students were indifferent between adjacency consistent and adjacency inconsistent 

errors, then the within-student difference between these two measures should center 

around 0. As Figure 19 shows, it clearly does not. 

These results seem to indicate that: 

1. Students have very high Adjacency-Integrity (Figure 17); 

2. A large fraction of the graphs committed are adjacency consistent (Error! 

Reference source not found.); and 

3. The fraction of the committable adjacency consistent graphs that are actually 

committed is much higher than the fraction of committable adjacency inconsistent 

graphs that are actually committed (Figure 19). 
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Figure 19: Adjacency Consistent - Adjacency Inconsistent Inclusion 
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We interpret these results to mean that, like constraint-based algorithms, and 

consistent with Danks (2004), students are using one cognitive strategy for detecting 

when two variables are adjacent, and another for detecting how the adjacencies are 

oriented, especially in the case of data collected from passive observation.  Detecting 

whether X and Y are adjacent is as simple as detecting whether X and Y are independent 

conditional on any set.  Detecting whether X – Y – Z is oriented as: X � Y  Z or as 

one of: {X � Y � Z, X   Y � Z ,  X   Y  Z } is much more difficult.     

 

5. Conclusions 

The pilot studies discussed here are suggestive, but still quite prelimary. Subjects had 

direct access to the independence data true of the population, and in several of our 

experiments the choices they confronted were limited.  Nevertheless, these studies 

suggest that there is a lot to be learned from comparing naïve subjects to those trained 

even for a short time on the normative theory of Causal Bayes Networks.   For whatever 

reason, trained subjects can reliably differentiate between direct and indirect causation, 

and many can do so with an optimal strategy for picking interventions.  Indeed, our first 

experiment suggests that trained students are not subject to source bias in picking 

interventions, even though they were never trained in this particular skill.  We speculate 

that simple training in the normative theory sensitizes subjects to the connection between 

conditional independence and indirect causation, and attending to the mediating variable, 

which is the conditioning variable, leads subjects to intervene on the mediator instead of 

the source.  Our pilot studies also suggest that only minimal training in the normative 

theory is needed to exhibit sensitivity to model equivalence, a core idea in the normative 

theory.  Finally, they suggest that students pursue a strategy by which they find which 

pairs of variables are adjacent and then attempt to find in which direction the causal 

relations obtain.   

Strategies for automatically learning causal structures in the normative theory divide 

into “constraint-based” and “score-based” methods.
18

  In constraint based methods, one 

decides on individual constraints, e.g., independence or conditional independence facts, 

in order to decide on local parts of the model, e.g., whether a given pair of variables are 

adjacent or not.  In score based searches, one computes a score reflecting the goodness of 

                                                 
18

 For a detailed but accessible primer, read the chapter on score-based vs. constrain-based methods in 

Glymour and Cooper, 1999.   
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fit of the entire model.  Human subjects, both naïve and trained, arguably execute a 

simple version of a constraint-based search.  Our subjects used particular independence 

relations to decide on questions of adjacency, and were reliable at this, and then used 

interventions to decide on orientation for local fragments of the model, and were 

moderately reliable at this.  None judged models as a whole and attempted to maximize 

some global score.  As it turns out, constraint-based approaches are much more efficient, 

but less accurate in the face of noisy data.  Our conjecture is that human subjects employ 

a constraint-based approach because it allows a sequence of decisions, each involving a  

potentially very simple computation, like whether two variables are independent or not.  I 

In systems of more than toy complexity, that is, systems involving more than two or 

three variables, a score-based strategy would become computationally prohibitive for a 

human cognitive agent, while a constraint-based approach would still be viable.  Since a 

constraint-based approach also lends itself to an anytime approach, that is, using only the 

simplest constraints first and then stopping “anytime” the constraints under test become 

too complicated to compute or to trust statistically, it is also well suited to systems with 

severe computational or memory constraints, e.g., human learners.  

Nevertheless, we do not claim that evolution has trained humans to execute anything 

like the theoretically correct version of a constraint-based search for causal structure. 

Even minimally trained subjects using a constraint-based approach well suited for toy 

systems but not theoretically correct might quickly be overcome by the complexity of a 

five variable system.  In informal observation this is exactly what happens.  Even on 

systems involving four variables, if subjects are given no background knowledge 

whatsoever about which variables are prior to which others, e.g., which variable is the 

“outcome” variable, then they become quickly lost in the more than fifty models in their 

search space.  In future experiments, we will investigate the discontinuities in 

performance for trained subjects as a function of system complexity. We will train 

subjects to execute a modified version of a constraint-based approach that would handle 

much larger systems, and see if this will help students to become truly more reliable 

causal learners. 
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