
ar
X

iv
:0

90
1.

25
51

v2
 [

m
at

h.
L

O
]

 1
2

M
ar

 2
00

9

The computational content of classical arithmetic∗

Jeremy Avigad

March 12, 2009

Dedicated to Grigori Mints in honor of his seventieth birthday.

Abstract

Almost from the inception of Hilbert’s program, foundational and

structural efforts in proof theory have been directed towards the goal of

clarifying the computational content of modern mathematical methods.

This essay surveys various methods of extracting computational informa-

tion from proofs in classical first-order arithmetic, and reflects on some of

the relationships between them. Variants of the Gödel-Gentzen double-

negation translation, some not so well known, serve to provide canonical

and efficient computational interpretations of that theory.

1 Introduction

Hilbert’s program was launched, in 1922, with the specific goal of demon-
strating the consistency of modern, set-theoretic methods, using only finitary
means. But the program can be viewed more broadly as a response to the rad-
ical methodological changes that had been introduced to mathematics in the
late nineteenth century. Central to these changes was a shift in mathemati-
cal thought whereby the goal of mathematics was no longer viewed as that of
developing powerful methods of calculation, but, rather, that of characterizing
abstract, possibly infinite, mathematical structures, often in ways that could
not easily be reconciled with a computational understanding.

Grisha’s work over the years has touched on almost every aspect of proof
theory, both of the reductive (foundational) and structural sort, involving a
wide range of logical frameworks. But much of his work addresses the core
proof-theoretic concern just raised, and has served to provide us with a deep
and satisfying understanding of the computational content of nonconstructive,
infinitary reasoning. Such work includes his characterization of the provably
total computable functions of IΣ1 as exactly the primitive recursive functions

∗This work has been partially supported by NSF grant DMS-0700174 and a grant from the
John Templeton Foundation.

1

http://arXiv.org/abs/0901.2551v2

([28, 29]); his method of continuous cut elimination, which provides a finitary
interpretation of infinitary cut-elimination methods ([32, 11]); and his work on
the epsilon substitution method (for example, [35, 37]).

Grisha has also been a friend and mentor to me throughout my career.
The characterization of the provably total computable functions of IΣ1 just
mentioned was, in fact, also discovered by Charles Parsons and Gaisi Takeuti,
all independently. I shudder to recall that at a meeting at Oberwolfach in 1998,
when I was just two-and-a-half years out of graduate school, I referred to the
result as “Parsons’ theorem” in a talk before an audience that, unfortunately,
included only the other two. Grisha asked the first question after the talk was
over, and nothing in his manner or tone even hinted that I had made a faux pas
(it didn’t even occur to me until much later). In fact, I still vividly remember
his encouraging and insightful comments, then and in later discussion. (For the
record, Gaisi was equally gracious and supportive.)

In this essay, I will discuss methods of interpreting classical first-order arith-
metic, often called Peano arithmetic (PA), in computational terms. Although
the study of PA was central to Hilbert’s program, it may initially seem like a toy
theory, or an artificially simple case study. After all, mathematics deals with
much more than the natural numbers, and there is a lot more to mathematical
argumentation than the principle of induction. But experience has shown that
the simplicity of the theory is deceptive: via direct interpretation or more elabo-
rate forms of proof-theoretic reduction, vast portions of mathematical reasoning
can be understood in terms of PA [4, 13, 43].

Here, I will be concerned with the Π2, or “computational,” consequences of
PA. Suppose PA proves ∀x ∃y R(x, y), where x and y range over the natural
numbers and R(x, y) is a decidable (say, primitive recursive) relation. We would
like to understand how and to what extent such a proof provides an algorithm
for producing such a y from a given x, one that is more informative than blind
search. There are four methods that are commonly used to extract such an
algorithm:

1. Gödel’s Dialectica interpretation [18, 6], in conjunction with a double-
negation interpretation that interprets PA in its intuitionistic counterpart,
Heyting arithmetic (HA)

2. realizability [22, 23, 27, 45], again in conjunction with a double-negation
translation, and either the Friedman A-translation [14] (often also at-
tributed to Dragalin and Leivant, independently) or a method due to
Coquand and Hofmann ([12, 1]) to “repair” translated Π2 assertions

3. cut elimination ([15]; see, for example, [41])

4. the epsilon substitution method ([19, 8])

These four approaches really come in two pairs: the Dialectica interpretation
and realizability have much in common, and, indeed, Paulo Oliva [39] has re-
cently shown that one can interpolate a range of methods between the two; and,

2

similarly, cut elimination and the epsilon substitution method have a lot in com-
mon, as work by Grisha (e.g. [36]) shows. That is not to say that there aren’t
significant differences between the methods in each pairing, but the differences
between the two pairs are much more pronounced.

For one thing, they produce two distinct sorts of “algorithms.” The Dialec-
tica interpretation, and Kreisel’s “modified” version of Kleene’s realizability, ex-
tract terms in Gödel’s calculus of primitive recursive functionals of finite type,
denoted PRω in Section 2 below. In contrast, cut elimination and the epsilon
substitution method provide iterative procedures, whose termination can be
proved by ordinal analysis. Specifically, one assigns (a notation for) an ordinal
less than ε0 to each stage of the computation in such a way that the ordinals
decrease as the computation proceeds. Terms in PRω and ≺ε0-recursive algo-
rithms both have computational meaning, and there are various ways to “see”
that the computations terminate; but, of course, any means of proving termi-
nation formally for all such terms and algorithms has to go beyond the means
of PA.

Second, as indicated above, the first two methods involve an intermediate
translation to HA, while the second two do not. It is true that the Dialectica
interpretation and realizability can be applied to classical calculi directly (see
[42] for the Dialectica interpretation, and, for example, [2, 38] for realizability);
but I know of no such interpretation that cannot be understood in terms of a
passage through intuitionistic arithmetic [2, 5, 44]. In contrast, cut elimination
and the epsilon substitution method apply to classical logic directly. That is
not to deny that one can apply cut elimination methods to intuitionistic logic
(see, for example, [46]); but the arguments tend to be easier and more natural
in the classical setting.

Finally, there is the issue of canonicity. Algorithms extracted from proofs in
intuitionistic arithmetic tend to produce canonical witnesses to Π2 assertions;
work by Grisha [33, 34] shows, for example, that algorithms extracted by var-
ious methods yield the same results. In contrast, different ways of extracting
witnesses from classical proofs yield different results, conveying the impression
that there is something “nondeterministic” about classical logic. (There is a
very nice discussion of this in [47, 48]. See also the discussion in Section 6
below.) Insofar as one has a natural translation from classical arithmetic to
intuitionistic arithmetic, some of the canonicity of the associated computation
is transferred to the former theory.

In this essay, I will discuss realizability and the Dialectica interpretation, as
they apply to classical arithmetic, via translations to intuitionistic arithmetic.
After reviewing some preliminaries in Section 2, I will discuss variations of
the double-negation interpretation in Section 3. One, in particular, is very
efficient when it comes to introducing negations; in Section 4, I will show that,
when combined with realizability or the Dialectica interpretation, this yields
computational interpretations of classical arithmetic that are efficient in their
use of higher types. In Section 5, I will consider another curious double-negation
interpretation, and diagnose an unfortunate aspect of its behavior.

I am grateful to Philipp Gerhardy, Thomas Streicher, and an anonymous

3

referee for helpful comments and corrections.

2 Preliminaries

Somewhat imprecisely, one can think of intuitionistic logic as classical logic
without the law of the excluded middle; and one can think of minimal logic
as intuitionistic logic without the rule ex falso sequitur quodlibet, that is, from
⊥ conclude anything. Computational interpretations of classical logic often
pass through minimal logic, which has the nicest computational interpretation.
(One can interpret intuitionistic logic in minimal logic by replacing every atomic
formula A by A ∨ ⊥, so the difference between these two is small.)

To have a uniform basic to compare the different logics, it is useful to take
the first-order logical symbols to be ∀, ∃, ∧, ∨, →, and ⊥, with ¬ϕ defined to be
ϕ→ ⊥. However, when it comes to classical logic, it is often natural to restrict
one’s attention to formulas in negation-normal form, where formulas are built
up from atomic and negated atomic formulas using ∧, ∨, ∀, and ∃. A negation
operator, ∼ϕ, can be defined for such formulas; ∼ϕ is what you get if, in ϕ,
you exchange ∧ with ∨, ∀ with ∃, and atomic formulas with their negations.
Note that ∼∼ϕ is just ϕ. Classically, every formula ϕ has a negation-normal
form equivalent, ϕnnf , obtained by defining (θ → η)nnf to be ∼θnnf ∨ ηnnf , and
treating the other connectives in the obvious way. This has the slightly awkward
consequence that (¬ϕ)nnf translates to ∼ϕnnf ∨ ⊥, but simplifying θ ∨ ⊥ to θ
and θ ∧ ⊥ to ⊥ easily remedies this.

There are a number of reasons why negation-normal form is so natural for
classical logic. First of all, it is easy to keep track of polarities: if ϕ is in
negation-normal form, then every subformula is a positive subformula, except
for, perhaps, atomic formulas; an atomic formula A occurs positively in ϕ if it
occurs un-negated, and negatively if it occurs with a negation sign before it.
Second, the representation accords well with practice: any classically-minded
mathematician would not hesitate to prove “if ϕ then ψ” by assuming ¬ψ and
deriving ¬ϕ, or by assuming ϕ and ¬ψ and deriving a contradiction; so it is
convenient that ϕ → ψ, ¬ψ → ¬ϕ, and ¬(ϕ ∧ ¬ψ) have the same negation-
normal form representation. Finally, proof systems for formulas in negation-
normal form tend to be remarkably simple (see, for example, [41, 46]).

It was Gödel [18] who first showed that the provably total computable func-
tions of arithmetic can be characterized in terms of the primitive recursive func-
tionals of finite type (see [6, 20]). The set of finite types can be defined to be the
smallest set containing the symbol N, and closed under an operation which takes
types σ and τ to a new type σ → τ . In the intended (“full”) interpretation, N

denotes the set of natural numbers, and σ → τ denotes the set of all functions
from σ to τ . A set of terms, PRω, is defined inductively as follows:

1. For each type σ, there is a stock of variables x, y, z, . . . of type σ.

2. 0 is a term of type N.

4

3. S (successor) is a term of type N → N.

4. if s is a term of type τ → σ and t is a term of type τ , then s(t) is a term
of type σ.

5. if s is a term of type σ and x is a variable of type τ , then λx s is a term
of type τ → σ.

6. If s is a term of type σ, and t is a term of type N → (σ → σ), then Rst is
a term of type N → σ.

Intuitively, s(t) denotes the result of applying s to t, λx s denotes the function
which takes any value of x to s, and Rst denotes the function defined from s

and t by primitive recursion, with Rst(0) = s and Rst(S(x)) = t(x,Rst(x)) for
every x. In this last equation, I have adopted the convention of writing t(r, s)
instead of (t(r))(s).

It will be convenient below to augment the finite types with products σ× τ ,
associated pairing operations (·, ·), and projections (·)0 and (·)1. Product types
can be eliminated in the usual way by currying and replacing terms t with
sequences of terms ti. It will also be convenient to have disjoint union types
σ + τ , an element of which is either an element of σ or an element of τ , tagged
to indicate which is the case. That is, for each such type we have insertion
operations, inl and inr, which convert elements of type σ and τ respectively
to an element of type σ + τ ; predicates isleft(a) and isright(a), which indicate
whether a is tagged to be of type σ or τ ; and functions left(a) and right(a),
which interpret a as an element of type σ and τ , respectively. References to
such sum types can be eliminated by taking σ + τ to be N × σ × τ , defining
inl(a) = (0, a, 0τ), defining inr(a) = (1, 0σ, a), where 0σ and 0τ are constant zero
functionals of type σ, τ respectively, and so on.

In the next section, I will describe various double-negation interpretations
that serve to reduce classical arithmetic, PA, to intuitionistic arithmetic, HA
— in fact, to HA taken over minimal logic. These show that if PA proves a Π2

formula ∀x ∃y R(x, y), then HA proves ∀x ¬¬∃y R(x, y); in fact, a variant HA′

of HA based on minimal logic suffices. This reduces the problem to extracting
computational information from the latter proof.

One method of doing so involves using Kreisel’s notion of modified real-
izability, combined with the Friedman A-translation. One can extend HA to
a higher-type version, HAω, which has variables ranging over arbitrary types,
and terms of all the primitive recursive functionals. Fix any primitive recursive
relation A(y); then to each formula ϕ(x̄) in the language of arithmetic, one

5

inductively assigns a formula “a realizes ϕ(x̄),” as follows.

a realizes ⊥ ≡ A(a)

a realizes θ ≡ θ, if θ is atomic

a realizes ϕ ∧ ψ ≡ ((a)0 realizes ϕ) ∧ ((a)1 realizes ϕ)

a realizes ϕ ∨ ψ ≡ ((isleft(a) ∧ left(a) realizes ϕ)∨

(isright(a) ∧ right(a) realizes ψ))

a realizes ϕ→ ψ ≡ ∀b (b realizes ϕ→ a(b) realizes ψ)

a realizes ∀x ϕ(x) ≡ ∀x (a(x) realizes ϕ(x))

a realizes ∃x ϕ(x) ≡ (a)1 realizes ϕ((a)0)

Now, suppose classical arithmetic proves ∀x ∃y R(x, y), for some primitive
recursive relation R. Then, using a double-negation translation, HA′ proves
∀x ¬¬∃y R(x, y), and hence it proves ¬¬∃y R(c, y) for a fresh constant c. Fix
A(y) in the realizability relation above to be the formula R(c, y). Inductively,
one can then extract from the proof of term t of PRω such that HAω proves
that t realizes ¬¬∃y R(x, y). Now notice that the identity function, id , realizes
¬∃y R(c, y), since a realizer to ∃y R(c, y) is simply a value of a satisfying R(c, a).
Thus if a realizes ∃y R(c, y), then a(id) satisfies R(c, a(id)). Viewing a, now, as
a function of c, yields the following conclusions:

Theorem 2.1. If classical arithmetic proves ∀x ¬¬∃y R(x, y), there is a term
F of PRω of type N to N such that HAω proves ∀x R(x, F (x)).

See [45, 24] for more about realizability, and [14] for the A-translation.
Gödel’s Dialectica interpretation provides an alternative route to this result.

In fact, one obtains a stronger conclusion, namely that the correctness of the
witnessing term can be proved in a quantifier-free fragment PRω of HAω. To
each formula ϕ in the language of arithmetic, one inductively assigns a formula
ϕD of the form ∃x ∀y ϕD(x, y), where x and y are now tuples of variables of
appropriate types. Assuming ψD = ∃u ∀v ψD(u, v), the assignment is defined
as follows:

θD
≡ θ, if θ is atomic

(ϕ ∧ ψ)D
≡ ∃x, u ∀y, v (ϕD ∧ ψD)

(ϕ ∨ ψ)D
≡ ∃z ∀y, v (isleft(z) ∧ ϕD(left(z), y)∨

(isright(z) ∧ ψD(right(z), v)))

(ϕ→ ψ)D
≡ ∃U, Y ∀x, v (ϕD(x, Y (x, v)) → ψD(U(x), v))

(∀z ϕ(z))D
≡ ∃X ∀z, y ϕD(X(z), y, z)

(∃z ϕ(z))D
≡ ∃z, x ∀y ϕD(x, y, z)

The clause for implication is the most interesting among these, and can be
understood as follows: from a witness, x, to the hypothesis, U(x) is supposed
to return a witness to the conclusion; and given a purported counterexample,

6

v, to the conclusion, Y (x, v) is supposed to return a counterexample to the
hypothesis. Since we have defined ¬ϕ to be ϕ → ⊥, notice that (¬ϕ)D is
∃Y ∀x ¬ϕD(x, Y (x)).

The Dialectica interpretation of ∀x ¬¬∃y R(x, y) is ∃Y ∀x ¬¬R(x, Y (x)),
which is intuitionistically equivalent to ∃Y ∀x R(x, Y (x)), given the decidability
of primitive recursive relations. One can show that from a proof of ϕ in HA,
one can extract a term F such that for every x, PRω proves ϕD(x, F (x)), once
again yielding Theorem 2.1.

3 Some double-negation translations

We have seen that one can use modified realizability or the Dialectica interpreta-
tion to extract algorithm from a proof of a Π2 statement in classical arithmetic,
modulo a method of reducing classical arithmetic to intuitionistic arithmetic.
Double negation translations provide the latter.

A formula is said to be negative if it does not involve ∃ or ∨ and each atomic
formula A occurs in the form ¬A; in other words, the formula is built up from
negated atomic formula using ∀, ∧, →, and ⊥. Over minimal logic, negative
formulas are stable under double negation, which is to say, if ϕ is any negative
formula, then HA proves that ¬¬ϕ is equivalent to ϕ (see, for example, [46]).

The Gödel-Gentzen double-negation translation maps an arbitrary first-
order formula ϕ to a negative formula, ϕN :

⊥
N

≡ ⊥

θN
≡ ¬¬θ, if θ is atomic

(ϕ ∧ ψ)N
≡ ϕN

∧ ψN

(ϕ ∨ ψ)N
≡ ¬(¬ϕN

∧ ¬ψN)

(ϕ→ ψ)N
≡ ϕN

→ ψN

(∀x ϕ)N
≡ ∀x ϕN

(∃x ϕ)N
≡ ¬∀x ¬ϕN

The translation has the following properties:

Theorem 3.1. For any formula ϕ and set of sentences Γ:

1. Classical logic proves ϕ↔ ϕN

2. If ϕ is provable from Γ in classical logic, then ϕN is provable from ΓN in
minimal logic.

Since the HA proves the ·N translations of its own axioms, we have as a
corollary:

Corollary 3.2. If PA proves ϕ, then HA proves ϕN .

In fact, one can strengthen the corollary in three ways:

7

1. Since HA proves ¬¬θ → θ for atomic formulas θ, one can define θN to be
θ.

2. Assuming the language of HA includes, say, symbols denoting the primi-
tive recursive functions, every negated atomic formula, ¬θ, has an atomic
equivalent, θ̄; so one can define (¬θ)N to be θ̄.

3. The theorem remains true if one replaces HA by a suitable variant, HA′,
based on minimal logic.

These considerations hold in the theorems that follow as well.
The reason to be concerned about negations is that they are undesirable

with respect to the two computational interpretations given in the last section,
since they lead to the use of more complicated types in the resulting terms of
PRω. There is a variant of the double-negation translation known as the Kuroda
translation that fares slightly better in this regard: for any formula ϕ, let ϕKu

denote the result of doubly-negating atomic formulas, and adding a double
negation after each universal quantifier, and, finally, adding a double-negation
to the front of the formula. Then we have:

Theorem 3.3. For every formula ϕ, ϕKu ↔ ϕG is provable in minimal logic.
Hence PA proves ϕ if and only if HA proves ϕKu .

Note that intuitionistic logic, rather than minimal logic, is required in the con-
clusion.

Late in 2005, Grisha asked whether a version of the Dialectica interpretation
designed by Shoenfield [42], for classical arithmetic, could be understood as
a composition of the usual Dialectica interpretation together with a double-
negation translation. I set the question aside and solved it a few months later
[5], only to find that Ulrich Kohlenbach and Thomas Streicher had solved it
more quickly [44]. In a way that can be made precise, the Shoenfield translation
corresponds to the following version of the double-negation interpretation (itself
a variant of a translation due to Krivine), expressed for a basis involving the
connectives ¬, ∧, ∨, and ∀. We define ϕKr to be ¬ϕKr , where ϕKr is defined
recursively by clauses below. It helps to keep in mind that ϕKr is supposed to
represent the negation of ϕ:

θKr ≡ ¬θ, if θ is atomic

(¬ϕ)Kr ≡ ¬ϕKr

(ϕ ∧ ψ)Kr ≡ ϕKr ∨ ψKr

(ϕ ∨ ψ)Kr ≡ ϕKr ∧ ψKr

(∀x ϕ)Kr ≡ ∃x ϕKr

Note that we can eliminate either ∨ or ∧ and retain a complete set of connectives,
but including them both is more efficient. Formulas of the form ∃x ϕ, however,
have to be expressed as ¬∀x ¬ϕ to apply the translation.

8

Theorem 3.4. For every formula ϕ, ϕKr ↔ ϕG is provable in minimal logic.
Hence PA proves ϕ if and only if HA′ proves ϕKr .

The ·Kr -translation is particularly good when it comes to formulas in negation-
normal form; it only adds two quantifiers for each existential quantifier, as well
as one at the beginning. But one can do even better [2]. Taking advantage of
the classical negation operator, now ϕM is defined to be ¬(∼ϕ)M , where the
map ψ 7→ ψM is defined recursively as follows:

θM ≡ θ, if θ is atomic or negated atomic

(ϕ ∨ ψ)M ≡ ϕM ∨ ψM

(ϕ ∧ ψ)M ≡ ϕM ∧ ψM

(∃x ϕ)M ≡ ∃x ϕM

(∀x ϕ)M ≡ ¬∃x (∼ϕ)M .

Once again, we have

Theorem 3.5. For every formula ϕ in negation-normal form, ϕM ↔ ϕG is
provable in minimal logic. Hence PA proves ϕ if and only if HA′ proves ϕM .

The ·M -translation is extremely efficient with respect to negations, introduc-
ing, roughly, one at the beginning of the formula, and one for every quantifier
alternation after an initial block of universal quantifiers. Alternatively, can de-
fine (ϕ ∧ ψ)M in analogy to (∀x ϕ)M , as ¬((∼ϕ)M ∨ (∼ψ)M). This gives the
translation the nice property that given the formulas ϕM and (∼ϕ)M , one is
the negation of the other. But there is a lot to be said for keeping negations to
a minimum.

Of course, the ·M -translation extends to all classical formulas by identifying
them with their canonical negation-normal form equivalents. Since the transla-
tion relies on the negation-normal form representation of classical formulas, it
shares many nice properties with a more complicated double-negation transla-
tion due to Girard [17]. It is this translation that I will use, in the next section,
to provide an efficient computational interpretation of classical arithmetic.

Let me close with one more translation, found in [3], which is interesting in
its own right. For reasons that will become clear later on, I will call it “the
awkward translation”: if ϕ is any formula in negation-normal form, let ϕawk

denote ¬(∼ϕ).

Theorem 3.6. For any formula ϕ, ϕG → ϕawk is provable in minimal logic.
Hence, PA proves ϕ if and only if HA′ proves ϕawk .

Proof. Once can show by induction that if ψ is any formula in negation-normal
form, then ψ → ψG is provable in minimal logic. So minimal logic proves that
∼ϕ implies (∼ϕ)G, and hence that ¬(∼ϕ)G implies ϕawk . But since ∼ϕ is
classically equivalent to ¬ϕ, ¬(∼ϕ)G is equivalent to ¬¬ϕG, which is implied
by ϕG.

9

The ·awk -translation is almost absurdly efficient with respect to negations:
the one classical negation on the inside adds no negations at all (recall that in
arithmetic, negated atomic formulas have atomic equivalents), and the transla-
tion adds only one negation on the outside. But the attentive reader will have
noticed that the first assertion in Theorem 3.6 is slightly weaker than the cor-
responding assertions in the the theorems that precede it: only one direction of
the equivalence is minimally valid. We will see, in Section 5, that this means
that the translation fares very poorly with respect to modus ponens, making it
impossible to translate ordinary proofs piece by piece.

For pure first-order logic, an alternative proof of Theorem 3.6 can be found
in [3]. Benno van den Berg (personal communication) later hit upon this same
translation, independently. In [3], I claimed that with intuitionistic logic in place
of minimal logic, the result is a consequence of a characterization of Glivenko
formulas due to Orevkov, described in a very nice survey [30, Section 3.2.5]
of Russian proof theory by Grisha.1 That seems to be incorrect; but van den
Berg and Streicher have pointed out to me that in that case the result follows
a theorem due to Mints and Orevkov [30, page 404, paragraph 4].

4 Interpreting classical arithmetic

We now obtain direct computational interpretations of classical arithmetic sim-
ply by combining the ·M -translation of Section 3 with the computational inter-
pretations of HA′ given in Section 2. One annoying consequence of the use of
the classical negation operator in the ·M -translation is that it is impossible to
carry out the translation of a formula ϕ from the inside out: depending on the
context in which a subformula ψ occurs, the computational interpretation of the
full formula may depend on either the computational interpretation of ψ or the
computational interpretation of ∼ψ. In practice, then, it is often more conve-
nient to carry out the interpretation in two steps, applying the ·M -translation
first, and then one of the two computational interpretations described in Sec-
tion 2. Nonetheless, it is interesting to see what happens when the steps are
composed, which is what I will do here. Both translations apply to formulas in
negation-normal form, and we can assume that negated atomic subformulas are
replaced by their atomic equivalents.

As in Section 2, the appropriate version of classical realizability is defined
relative to a fixed primitive recursive predicate A(y). Most of the clauses look

1There are typographical errors on page 401 of that paper, which Grisha has corrected for
me. The last class eight lines from the bottom of the page should be {→−,∼−,∨+,∃+}; the
last class seven lines from the bottom of the page should be {→−,∼−,∨+,→+, ∀+}; and the
first class at the bottom line should be {→+,∼+,∨−}.

10

just like ordinary modified realizability:

a realizes θ ≡ θ, if θ is atomic

a realizes ϕ ∧ ψ ≡ ((a)0 realizes ϕ) ∧ ((a)1 realizes ϕ)

a realizes ϕ ∨ ψ ≡ ((isleft(a) ∧ left(a) realizes ϕ)∨

(isright(a) ∧ right(a) realizes ψ))

a realizes ∃x ϕ(x) ≡ (a)1 realizes ϕ((a)0)

The only slightly more complicated clause is the one for the universal quantifier.
Take a refutes ϕ to be the formula ∀b (b realizes ϕ→ A(a(b))).

a realizes ∀x ϕ(x) ≡ a refutes ∃x ∼ϕ(x)

One can then straightforwardly extract, from any proof of a formula ϕ in clas-
sical arithmetic, a term a that refutes ∼ϕ. But now notice that the identity
function realizes ∀x Ā(x), where Ā is the negation of A; so, from a proof of
∃y A(y) in classical arithmetic, since the identity function realizes ∀x Ā(x), one
obtains a term a satisfying A(a). This provides a direct proof of Theorem 2.1.
Details can be found in [2]. A more elaborate realizability relation, based on
the A-translation, can be found in [9].

The corresponding variant of the Dialectica translation is similarly straight-
forward. As with the Shoenfield variant [42, 5], each formula ϕ is mapped to a
formula ϕD

′

of the form ∀x ∃y ϕD′(x, y), where x and y are sequences of vari-
ables. Assuming ψD

′

is ∀u ∃v ψD′(u, v), the translation is defined recursively,
as follows:

θD
′

≡ θ, if θ is atomic

(ϕ ∧ ψ)D
′

≡ ∀x, u ∃y, v (ϕD′(x, y) ∧ ψD′(u, v))

(ϕ ∨ ψ)D
′

≡ ∀x, u ∃y, v (ϕD′(x, y) ∨ ψD′(u, v))

(∀z ϕ)D
′

≡ ∀z, x ∃y ϕD′(x, y)

This time, it is the clause for the existential quantifier that is slightly more
complicated. If (∼ϕ(z))D

′

is ∀r ∃s (∼ϕ)D′ (z, r, s), define

(∃z ϕ)D
′

≡ ∀S ∃z, r ¬(∼ϕ)D′(z, r, S(z, r)).

On can interpret this as saying that for any function S(z, r) that purports to
witness ∀z, r ∃s (∼ϕ)D′ (z, r, s), there are a z and an r denying that claim.
Once again, one can straightforwardly extract, from any proof of a formula ϕ in
classical arithmetic, a term a satisfying ∀x ϕD′(x, a(x)). This provides another
direct proof of Theorem 2.1.

5 Back to the awkward translation

I would now like to come back to the “awkward translation,” discussed at the end
of Section 3. I will do this via what at first might seem to be a digression through

11

Kreisel’s no-counterexample interpretation. Let ϕ be a formula in prenex form,
for example,

∃x ∀y ∃z ∀w θ(x, y, z, w).

The Herbrand normal form ϕH of ϕ is obtained by replacing the universally
quantified variables of ϕ by function symbols that depend on the preceding
existential variables, to obtain

∃x, z θ(x, f(x), z, g(x, z)).

It is not hard to check that, in classical logic, ϕ implies ϕH . Thus, by a slight
variant of Theorem 2.1 (relativizing it to function symbols), if classical arith-
metic proves ϕ, there will be terms F1(f, g) and F2(f, g) of PRω such that HAω

proves

∀f, g θ(F1(f, g), f(F1(f, g)), F2(f, g), g(F1(f, g), F2(f, g))).

Think of f and g as providing purported counterexamples to the truth of ϕ, so
that F1 and F2 effectively foil such counterexamples. The no-counterexample
interpretation is simply the generalization of this transformation to arbitrary
prenex formulas.

One need not invoke Herbrand normal form to arrive at the previous con-
clusion. One can check that if ϕ is a prenex formula, the no-counterexample
interpretation of ϕ is essentially just the Dialectica interpretation of ϕawk , so
the result follows from Theorem 3.6 as well.

The no-counterexample interpretation can be viewed as a computational in-
terpretation of arithmetic. But, in a remarkable article [25], Kohlenbach has
shown that it is not a very modular computational interpretation, in the sense
that it does not have nice behavior with respect to modus ponens. To make this
claim precise, note that the set of (terms denoting) primitive recursive function-
als, PRω, can be stratified into increasing subsets PRω

n , in such a way that any
finite fragment of HA has a Dialectica interpretation (or modified realizability
interpretation) using only terms in that set. Kohlenbach [25, Proposition 2.2]
shows:

Theorem 5.1. For every n there are sentences ϕ and ψ of arithmetic such
that:

1. ϕ is prenex.

2. ψ is a Π2 sentence, that is, of the form ∀x ∃y R(x, y) for some primitive
recursive relation R.

3. Primitive recursive arithmetic proves ϕ.

4. PA proves ϕ→ ψ.

5. ϕ and every prenexation of ϕ→ ψ has a no-counterexample interpretation
with functionals in PRω

0 .

12

But:

6. There is no term F of PRω

n which satisfies the no-counterexample inter-
pretation of ψ; that is, there is no term F such that ∀x R(x, F (x)) is true
in the standard model of arithmetic.

Theorem 5.1 shows that there is no straightforward way to combine witnesses to
the no-counterexample interpretations of ϕ and ϕ → ψ, respectively, to obtain
a witness to the no-counterexample interpretation of ψ.

The problem with the awkward translation is that, similarly, it may behave
poorly with respect to modus ponens. Consider pure first-order logic with a
single predicate symbol, A(x). Then there are formulas ϕ and ψ such that ψawk

doesn’t follow from ϕawk and (ϕ → ψ)awk in minimal logic: just take ϕ to be
the formula ∀x A(x) and ψ to be ⊥. In that case, ϕawk ∧ (ϕ → ψ)awk → ψawk

is equivalent, over minimal logic, to the double-negation shift, ∀x ¬¬A(x) →

¬¬A(x), which is not even provable in intuitionistic logic.
When I showed the awkward translation to Grisha, he remarked right away

that its behavior has something to do with Kohlenbach’s result. At the time, I
had no idea what he meant; but writing this paper finally prodded me to sort
it out. Grisha was right: Theorem 5.1 can, in fact, be used to show that the
awkward translation does not provide a modular translation of Peano arithmetic
to Heyting arithmetic, in the following sense.

Theorem 5.2. For any fragment T of HA, there are formulas ϕ and ψ such
that the following hold:

1. PA proves ϕ and ϕ→ ψ, but

2. T together with ϕawk and (ϕ→ ψ)awk does not prove ψawk .

This shows that modus ponens fails under the ·
awk -translation, in a strong way.

Since PA proves ϕ and ϕ → ψ, it also proves ψ, and so by Theorem 3.6, HA
proves ψawk . But having the translation ϕawk and (ϕ → ψ)awk may not help
much in obtaining such a proof of ψawk ; indeed, obtaining a proof of ψawk from
ϕawk and (ϕ→ ψ)awk may be no easier than simply proving ψawk outright.

Proof. Given T , first let n be large enough so that the Dialectica interpretation
of T uses only terms in PRω

n , and then let ϕ and ψ be as in Theorem 5.1. If there
were a proof of ψawk from ϕawk and (ϕ → ψ)awk in T , applying the Dialectica
interpretation, one would obtain terms witnessing the Dialectica interpreta-
tion of ψawk from terms witnessing the Dialectica interpretations of ϕawk and
(ϕ→ ψ)awk . But the Dialectica interpretation of ϕawk is the no-counterexample
interpretation of ϕ, and it is not hard to check that the Dialectica interpretation
of (ϕ → ψ)awk is the no-counterexample interpretation of one of the prenexa-
tions of ϕ → ψ. Thus there would be a witness to the no-counterexample
interpretation of ψ in PRω

n , contrary to the choice of ϕ and ψ.

13

6 Conclusions

As noted in the introduction, conventional wisdom holds that classical logic is
“nondeterministic,” in that different ways of extracting algorithms from classi-
cal proofs can yield different results. Sometimes, however, nondeterminacy is
unavoidable. For example, even minimal logic can prove ∃x A(x) ∧ ∃y A(y) →
∃z A(z), and any computational interpretation of this formula will have to
choose either x or y to witness the conclusion. The difference is that this sen-
tence is typically not taken to be an axiom of minimal logic; rather, there are
two axioms, ϕ ∧ ψ → ϕ and ϕ ∧ ψ → ψ, and any proof of the sentence has to
choose one or the other. In contrast, standard calculi for classical logic provide
cases where there are multiple choices of witnesses, with no principled reason
to choose one over the other. For example, starting from canonical proofs of
A(a) → ∃x A(x) and A(b) → ∃x A(x), one can weaken the conclusions to ob-
tain proofs of ϕ → (A(a) → ∃x A(x)) and ¬ϕ → (A(b) → ∃x A(x)), for an
arbitrary formula, ϕ. Then, using the law of the excluded middle, ϕ ∨ ¬ϕ, one
can combine these to obtain a proof of A(a) ∧ A(b) → ∃x A(x) where there is
little reason to favor a or b as the implicit witness to the existential quantifier.
(This example is essentially that given by Lafont [16, p. 150].)

This shows that standard classical calculi are nondeterministic in a way
that proofs in intuitionistic and minimal logic are not. Girard [17] has neatly
diagnosed the source of the nondeterminacy, and has provided a calculus for
classical logic that eliminates it by forcing the prover to make an explicit choice
in exactly those situations where an ambiguity would otherwise arise.2 But note
that the realizability interpretation of Section 4 also avoids this nondeterminacy;
the translation procedure described in [2] is fully explicit and unambiguous.
With respect to the example discussed in the last paragraph, the interpretation
chooses a or b based on the logical form of ϕ.3 Indeed, the results of [2] show
that the witnesses obtained in this way coincide with those obtained using a
natural class of cut-elimination procedures.

Yet another response to the example above is that of Urban and Bierman
[47, 48], who simply embrace the nondeterminism as an inherent part of the
computational interpretation of classical logic. In fact, Urban [47] has provided
a nondeterministic programming language to interpret classical logic in a natural
way. Passing through a double-negation interpretation, as we have done here,
amounts to making specific choices to resolve the nondeterminism. It is an
open-ended conceptual problem to understand which deterministic instances of
the general nondeterministic algorithms can be realized in such a way.

2One way to understand what is going on is to notice that in minimal logic there are two
distinct ways of proving ¬¬(ϕ∧ψ) from ¬¬ϕ and ¬¬ψ, and this inference is needed to verify
the classical axiom ¬¬θ → θ under the double-negation translation. Another way is to notice
that since, in classical logic, ϕ and ¬¬ϕ are equivalent, there is little reason to favor ϕ or
¬ϕ in situations where intuitionistic logic treats them differently. I am grateful to Thomas
Streicher for these insights.

3More generally, what breaks the symmetry alluded to in the previous footnote is that ϕ
and ¬¬ϕ have the same negation-normal form, which is distinct from (and dual to) that of
¬ϕ.

14

At this point, however, we should be clearer as to the goals of our analysis.
Ordinary mathematical proofs are not written in formal languages, and so the
process of extracting an algorithm from even a rather constructive mathematical
argument can involve nondeterminism of sorts. And, despite some interesting
explorations in this direction [10], it is far from clear that classical arithmetic
can be used as an effective programming language in its own right. But formal
methods are actively being developed in support of software verification [21],
and a better understanding of the computational content of classical logic may
support the development of better logical frameworks for that purpose [40].
Formal translations like the ones described here have also been effective in “proof
mining,” the practice of using logical methods to extract mathematically useful
information from nonconstructive proofs [7, 24, 26].

Grisha’s work has, primarily, addressed the general foundational question
as to the computational content of classical methods. In that respect, the gen-
eral metatheorems described here provide a satisfying answer: for the most
part, classical mathematical reasoning does have computational content, which
is to say, algorithms can be extracted from classical proofs; but by suppressing
computational detail, the proofs often leave algorithmic detail underspecified,
rendering them amenable to different implementations. Grisha’s work has thus
contributed to an understanding of the computational content of classical arith-
metic that is mathematically and philosophically satisfying, providing a solid
basis for further scientific research.

References

[1] Jeremy Avigad. Interpreting classical theories in constructive ones. J.
Symbolic Logic, 65:1785–1812, 2000.

[2] Jeremy Avigad. A realizability interpretation for classical arithmetic. In
Logic Colloquium ’98 (Prague), pages 57–90. Assoc. Symbol. Logic, Urbana,
IL, 2000.

[3] Jeremy Avigad. Algebraic proofs of cut elimination. J. Log. Algebr. Pro-
gram., 49:15–30, 2001.

[4] Jeremy Avigad. Number theory and elementary arithmetic. Philosophia
Mathematica, 11:257–284, 2003.

[5] Jeremy Avigad. A variant of the double-negation translation. Carnegie
Mellon Technical Report CMU-PHIL 179.

[6] Jeremy Avigad and Solomon Feferman. Gödel’s functional (“Dialectica”)
interpretation. In Handbook of proof theory, pages 337–405. North-Holland,
Amsterdam, 1998.

[7] Jeremy Avigad, Philipp Gerhardy, and Henry Towsner. Local stability of
ergodic averages. To appear in Transactions of the American Mathematical
Society.

15

[8] Jeremy Avigad and Richard Zach. The epsilon calculus. Stanford Encyclo-
pedia of Philosophy, 2002.
http://plato.stanford.edu/entries/epsilon-calculus/.

[9] Ulrich Berger, Wilfried Buchholz, and Helmut Schwichtenberg. Refined
program extraction from classical proofs. Ann. Pure Appl. Logic, 114:3–25,
2002.

[10] Ulrich Berger, Helmut Schwichtenberg, and Monika Seisenberger. The War-
shall algorithm and Dickson’s lemma: two examples of realistic program
extraction. Journal of Automated Reasoning, 26:205–221, 2001.

[11] Wilfried Buchholz. Notation systems for infinitary derivations. Archive for
Mathematical Logic, 30:277–296, 1991.

[12] Thierry Coquand and Martin Hofmann. A new method of establishing
conservativity of classical systems over their intuitionistic version. Mathe-
matical Structures in Computer Science, 9:323–333, 1999.

[13] Solomon Feferman. Infinity in mathematics: Is Cantor necessary? In
G. Toraldo di Francia, editor, L’infinito nella scienza, pages 151–209. Isti-
tuto della Enciclopedia Italiana, 1987. Reprinted in Solomon Feferman, In
the Light of Logic, Oxford University Press, New York, 1998, pages 28–73
and 229–248.

[14] Harvey M. Friedman. Classically and intuitionistically provable functions.
In H. Müller and D. Scott, editors, Higher Set Theory, pages 21–27.
Springer, Berlin, 1978.

[15] Gerhard Gentzen. Die Widerspruchsfreiheit der reinen Zahlentheorie.
Mathematische Annalen, 112:493–465, 1936. Translated as “The consis-
tency of elementary number theory” in Gerhard Gentzen, Collected Works
(edited by M. E. Szabo), North-Holland, Amsterdam, 1969, pages 132–213.

[16] Jean-Yves Girard. Proofs and Types, translated and with appendices by
Paul Taylor and Yves Lafont. Cambridge University Press, Cambridge,
1989.

[17] Jean-Yves Girard. A new constructive logic: classical logic. Math. Struc-
tures Comput. Sci., 1:255–296, 1991.

[18] Kurt Gödel. Über eine bisher noch nicht benützte Erweiterung des finiten
Standpunktes. Dialectica, 12:280–287, 1958. Reprinted with English trans-
lation in Feferman et al., eds., Kurt Gödel: Collected Works, volume 2,
Oxford University Press, New York, 1990, pages 241–251.

[19] David Hilbert and Paul Bernays. Grundlagen der Mathematik. Springer,
Berlin, first volume, 1934, second volume, 1939.

16

http://plato.stanford.edu/entries/epsilon-calculus/

[20] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
λ-calculus. Cambridge University Press, Cambridge, 1986.

[21] C. A. R. Hoare. The verifying compiler: A grand challenge for computing
research. J. ACM, 50:63–69, 2003.

[22] S. C. Kleene. On the interpretation of intuitionistic number theory. J.
Symbolic Logic, 10:109–124, 1945.

[23] S. S. Kleene. Introduction to Metamathematics. North-Holland, Amster-
dam, fourth reprint, 1964 edition, 1952.

[24] U. Kohlenbach. Applied proof theory: proof interpretations and their use
in mathematics. Springer-Verlag, Berlin, 2008.

[25] Ulrich Kohlenbach. On the no-counterexample interpretation. J. Symbolic
Logic, 64:1491–1511, 1999.

[26] Ulrich Kohlenbach and Paulo Oliva. Proof mining: a systematic way of
analyzing proofs in mathematics. Tr. Mat. Inst. Steklova, 242(Mat. Logika
i Algebra):147–175, 2003.

[27] Georg Kreisel. Interpretation of analysis by means of constructive function-
als of finite type. In Arendt Heyting, editor, Constructivity in Mathematics,
North-Holland, Amsterdam, 1959, pages 101–128.

[28] Grigori Mints (Minc). Quantifier-free and one-quantifier systems. Zap.
Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 20:115–133,
285, 1971.

[29] Grigori Mints (Minc). What can be done in primitive recursive arithmetic.
Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 60:93–
102, 223–224, 1976. Studies in constructive mathematics and mathematical
logic, VII.

[30] Grigori Mints. Proof theory in the USSR 1925–1969. Journal of Symbolic
Logic, 56:385–424, 1991.

[31] Grigori Mints. Selected Papers in Proof Theory. Bibliopolis / North-
Holland, Naples / Amsterdam, 1992.

[32] Grigori Mints. Normalization of finite terms and derivations via infinite
ones. [31], pages 73–76.

[33] Grigori Mints. On E-theorems. [31], pages 105–115.

[34] Grigori Mints. Stability of E-theorems and program verification. [31], pages
117–121.

[35] Grigori Mints. Strong termination for the epsilon substitution method.
Journal of Symbolic Logic, 61:1193–1205, 1996.

17

[36] Grigori Mints. Cut elimination for a simple formulation of epsilon calculus.
Ann. Pure Appl. Logic, 152(1-3):148–160, 2008.

[37] Grigori Mints and Sergei Tupailo. Epsilon subsitution method for the ram-
ified language and ∆1

1-comprehension rule. In Andrea Cantini et al., editor,
Logic and Foundations of Mathematics, pages 107–130. Kluwer, the Nether-
lands, 1999.

[38] Chetan R. Murthy. An evaluation semantics for classical proofs. In Pro-
ceedings, Sixth Annual IEEE Symposium on Logic in Computer Science,
pages 96–107, Amsterdam, 1991.

[39] Paulo Oliva. Unifying functional interpretations. Notre Dame J. Formal
Logic, 47:263–290, 2006.

[40] Frank Pfenning. Logical frameworks. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, pages 1063–1147.
Elsevier and MIT Press, 2001.

[41] Helmut Schwichtenberg. Proof theory: Some aspects of cut-elimination.
In Jon Barwise, editor, Handbook of Mathematical Logic, North-Holland,
Amsterdam, 1977, pages 867–895.

[42] Joseph R. Shoenfield. Mathematical Logic. Association for Symbolic Logic,
Urbana, IL, 2001. Reprint of the 1973 second printing.

[43] Stephen G. Simpson. Subsystems of Second-Order Arithmetic. Springer,
Berlin, 1999.

[44] Thomas Streicher and Ulrich Kohlenbach. Shoenfield is Gödel after Krivine.
MLQ Math. Log. Q., 53:176–179, 2007.

[45] A. S. Troelstra. Realizability. In Handbook of proof theory, volume 137
of Stud. Logic Found. Math., pages 407–473. North-Holland, Amsterdam,
1998.

[46] A. S. Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cam-
bridge University Press, Cambridge, second edition, 2000.

[47] Christian Urban. Classical Logic and Computation. PhD thesis, University
of Cambridge, 2000.

[48] Christian Urban and Gavin M. Bierman. Strong normalisation of cut-
elimination in classical logic. Fund. Inform., 45:123–155, 2001.

18

	Introduction
	Preliminaries
	Some double-negation translations
	Interpreting classical arithmetic
	Back to the awkward translation
	Conclusions

