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OF THEORIES OF PREDICATIVE STRENGTH 

JEREMY AVIGAD AND RICHARD SOMMER 

Abstract. We use model-theoretic methods described in [3] to obtain ordinal analyses of a number of 

theories of first- and second-order arithmetic, whose proof-theoretic ordinals are less than or equal to F0. 

?1. Introduction. In [3] we introduced a model-theoretic approach to ordinal 
analysis as an interesting alternative to cut elimination. Here we extend these 
methods to the analysis of stronger theories of first- and second-order arithmetic 
which are nonetheless predicatively justifiable. 

When used in this sense, the word "predicative" refers to a foundational stance 
under which one is willing to accept the set of natural numbers as a completed 
totality, but not the set of all subsets of the natural numbers. In this spirit, predicative 
theories bar definitions that require quantification over the full power set of N, 
depicting instead a universe of sets of numbers that is constructed "from the bottom 
up." Work of Feferman and Schfitte has established that the ordinal F7 is the least 
upper bound to the strength of such theories (see for example, [4]). More recently 
a number of theories that are not prima facie justifiable on predicative grounds have 
been shown to have, in fact, predicative strength, in the sense of proving the same 
arithmetic statements as their predicatively justifiable counterparts. The analysis of 
such theories is our present concern. 

This paper is best read as a sequel to [3]. In Section 2 we recap basic definitions 
from that source and introduce some new notation. In Section 3 we present a lemma, 
due to the second author, that allows one to build transfinite jump hierarchies, 
yielding ordinal analyses of the theories (HI-CA)<6,.>. In Sections 4 and 5 we 
analyze the theories A CA and I' -AC respectively, and in the two remaining sections 
we treat the theories IDn, ID<.,,, ATRo, and ATR. (Stricly speaking, ATR goes 
beyond the bounds of predicativity, since its ordinal is FO; but we have included it 
here because its analysis is not much more difficult than that of ATRo.) 

?2. Preliminaries. Suppose we have fixed an initial segment of the countable 
ordinals, and assigned cofinal sequences A [0], A[1], A[2], . .. to limit ordinals A. The 
notion of an oa-large set of ordinals is defined inductively, as follows: 

* Every set is 0-large. 
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* A set A is (P + 1)-large if it is nonempty and A - {min(A)} is fl-large. 
* If A is a limit, then a set A is A-large if it is nonempty and A - {min(A)} is 

A[min(A)]-large. 
Fix a nonstandard model of arithmetic Id. The approach to ordinal analysis 

described in [3] involves starting with an appropriately large interval [a, b] with 
nonstandard endpoints in Id, and using it to build a model IV of the theory in 
question. The constructions proceed by extracting from [a, b] a nonstandardly- 
large subset A, and possibly other X-finite sets S, with various combinatorial 
properties. The first-order part of AV is then taken to be any limit I of points in A 
(that is, any initial segment of Id with no greatest element, in which points of A 
occur cofinally), and elements of the second-order universe of AX are obtained by 
taking intersections of the sets S with I (these intersections are denoted SI). The 
trick is to design the combinatorial properties of A and S so that, "in the limit," SI 
will have desired properties in X. In practice we often blur the distinction between 
an X-finite set S and its potentially unbounded counterpart in I, and drop the 
superscript from SI. 

For example, suppose we want to guarantee that, in the limit, S will be the Turing 
jump of T; that is 

I = S=T' 

where T' { x I Trio (x, T) } and Trio (x, Z) _ By ()(x, y, Z) is a complete ?1 truth 
predicate relative to Z. Our goal is to define a finitary combinatorial notion "S 
approximates the Turing jump of T in A," written 

A -S = S , 

which will guarantee that S = T' holds in I. The motivation behind the definition 
is that in order determine the jump of a set Z it is sufficient to have bounds on where 
to find witnesses y to the formula 3y ?(x, y, Z). We introduce the notation 1a b by 

jab (Z) {e < a I y < b O(e,y,Z)}, 

and we take 

Ia'oo(Z) {e < a I 3y 0(e,y,Z)} 

Clearly for all natural numbers a there is a value az such that 
a.az (z) = jIaoo (Z) 

and any integer greater than az will also satisfy this equation. Also note that 

Z/ = Ui 
, c 

(Z). 

a 

Our definition of A - S -T', where A {ao, . . ., ak} (with the elements listed 
in increasing order), is motivated by the desire to have ak behave like oo and the 
mapping ai p-4 ai+1 satisfy the properties of a mapping a p-> az described above. 

In the next definition we use the notation Sa to denote the set { x c S I x < a 
note that this agrees with the definition of SI if we identify a with the set of natural 
numbers less than a. 

DEFINITION 2.1. Let A {ao, a1, . . ., ak}, S, and T be finite sets. Say that S 
approximates the Turing jump of T in A, written A - S = T', if the following hold: 
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i. for every i < k, jai ai+? (T) = jaiak (T), and 
ii. k > 1 implies Sakt-- = jak-1 akt(T). 

Although there is, for each T, a unique set S satisfying S = T', note that sets S 
such that A - S = T' are not uniquely determined, since the definition does not 
say anything about what numbers greater than ak- 1 are in S. 

The following lemma states the fundamental property of the "approximates the 

jump" relation. 

LEMMA 2.2. Let A, S, and T definite sets in Id such that 

X - (A - S = T'). 

Then for any limit I of A, 

I - S= T'. 

The proof of this lemma is straightforward and can be found in [3]. Recall that a 

set A = {ao, a,, . . ., ak} is spread out if for all i < k - 3, 2ai < ai+1. In [3] it is also 

shown that if A is spread out and there is a set S such that A J S = 0', then I will 

be a model of JZI. 
The next lemma lists some basic properties of "approximates the jump." 

LEMMA 2.3. 

1. For any S, T, and a, 

0 S = T' and {a} S T'. 

2. If B c AandA i S =T'thenB jS = T'. 
3. Suppose B is obtained from A by replacing the minimum element of A by a 

smaller number (i.e., B (A - {min A}) U {min B} and min B < min A), then 
A - S = T' implies B S = T'. 

4. Suppose A {ao, . . ., ak} and k > 1. Then 

A - S = T' 

if and only if 

Sak-1 = jak-k1ak (T), A-f{ao} S = T' and ] aoal (T) = jao?ak (T). 

For the analysis of predicative theories we need a sufficiently strong notation 

system. The one that follows is based on Veblen's sequence of ordinal functions Ad, 
each of which enumerates the fixed points of its predecessors (for more information 

see [3, 4]). 

DEFINITION 2.4. Our set of ordinal notations is defined inductively, as follows: 

* 0 is an ordinal notation. 
* If a 1, a2 . .ak are ordinal notations other than 0, then so is 

al1 + a2 + - --+ k- 

* If ae and /3 are ordinal notations, so is p(cp, a). 
* If ae is an ordinal notation, so is F,. 

Notations of the form ae + 1 (that is, a + p (0, 0)) are called successor notations. A 

notation that is neither 0 nor a successor notation is called a limit notation. 
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The symbol -< denotes the usual order relation for notations of this form. When 
we refer to notations such as 1, con, cOn, Ea, yn, and so on, these are to be taken as 
abbreviations for their usual representations with 0, +, and p. In particular, we use 
a* n to denote the term 

ae + a + + a 

in which there are n terms in the sum, co& to denote p (0, ar), and (on (f) to denote 
the n-fold iteration 

o(a(, f((.... ,)(a 

Our treatment of ordinal addition violates unique readability, since, for example, 
the term ae + fi + y can be interpreted by associating to the left or to the right. 
As it turns out, blurring this distinction is convenient, and one can check that the 
definitions and proofs below are insensitive to the way such a term is parsed. 

DEFINITION 2.5. Sequences are assigned to limit notations as follows. (Here A 
always denotes a limit ordinal.) 

1. (ae + /3)[n] =def aY + (/[n]). 
2. coc+1 [n] =def .c) * (n + 2) 
3. (o (a, A) [n] =def (p (a, A[n] + 1). 
4. p (ae + 1, 0) [n] =def ?2 (1)- 

5. o(aG + 1,fl + 1)[n]f=def (Pn+2G((a + 1,) + 1). 
6. ~o(A, 0) [n ]=def 9o(A[n], A[n]). 
7.o (A(, P + 1) [n] =def (o (A[n] + 1, (o (A, P) + 1). 
8. Fo[fn] Yn+1 

9. Fc+I[n] = yr+. 
10. FA[n] = FA[n]+-- 

We have chosen these particular limit sequences to facilitate our constructions, 
though they differ from the "standard" assignments only slightly. 

Note that different notations can denote the same ordinal, as is the case with 
so and cowo. Further note that equivalent notations need not have equivalent limit 
sequences; for example, eo[n] = On+2, but co60[n] = e)'n+2+l. We assume that to 
each notation ae there has been assigned a canonical normal form a, satisfying the 
following: 

LEMMA 2.6. For any notations ae and /3, we have 

1. If a =/3 (that is, a andfl- o a) then a5 3. 
2. a_&- . 

We will also assume, for simplicity, that ae + 1 = &- + 1. 
Because our constructions take place in a model of arithmetic, we need to assume 

that notations ae have been coded as numbers '--- in a reasonable way. The require- 
ments in [3] were very minimal; here, because the models we construct contain jump 
hierarchies that are again indexed by ordinals, we need to assume that the following 
two lemmas are satisfied. 

LEMMA 2.7. If k > 2 and a = a l + + ak, then 'a > Ioi for i=1, 2, k, 
and '-- 

> k. 
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LEMMA 2.8. There is a (standard) number k such that for every notation a and 
natural number x, 

ra[x]f < (r< Dx)k, 

and 

rco 
a 7< Fra ) 

Choosing a coding that satisfies these is not difficult. In fact, under a reasonable 
coding scheme the first condition of the second lemma will follow from the fact that 
the "length" of ca[x] is less than x times the length of a. Furthermore, the bounds 
stated in this lemma are not essential: any bound that is elementary in x and -a- 
will do. 

Lemma 2.9 below is a corollary of Lemma 2.7, by a straightforward induction on 
codes of notations. Note that statements (1) and (2) are logically equivalent. 

LEMMA 2.9. 

1. If A is a limit notation and A[n] -< y -C A then Fyl > n. 
2. If A is a limit notation, y -C A, and Iry < n then y - A[n]. 

?3. Approximating transfinite jump hierarchies. In this section we use appropri- 
ately large intervals to build approximations to jump hierarchies indexed by ordinals 
notations. In this context, it is traditional to use only notations in normal form. To 
simplify notation we adopt the convention that whenever an ordinal is used as an 
index to such a hierarchy, it is implicitly "cast" to normal form. In other words, Ha 

is to be interpreted as H., and we define H-,,, to be the disjoint union 0yes< Hy. 

DEFINITION 3. 1. The set H is an a-level jump hierarchy, written aya(H), if the 
following conditions hold: 

1. Successor conditions: if y -C ae then 

H,+1 = (Hy)'. 

2. Limit conditions: if A -q ae is a limit notation then 

HA = HrA. 

If Ho = S then H is an oa-level jump hierarchyfrom S, which is written Xs (H). 

Note that the definition does not specify what Hi is when i is not a notation in 
normal form, or when i is a notation in normal form that denotes an ordinal greater 
than ae, so H is not uniquely determined. 

DEFINITION 3.2. Suppose A { ao ... , ak}. The set H approximates an a-level 
jump hierarchy in A, written A Za (H), if the following conditions hold: 

1. Successor conditions: if y a aL and 1ry < ai, where i < k, then 

{aiai+l, ... *ak} k Hy+1 = (Hi y) . 

2. Limit conditions: if A -< aL is a limit notation and 'r- < ak, then 

HA = H A. 

If Ho = S then H approximates an a -level jump hierarchy from S in A, which is 
written A k Xs(H). 
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The following lemma asserts the fundamental property of the relation A V (H). 

LEMMA 3.3. Suppose 

M l= (A Y aa (H)), 

A is spread out, and I is any limit of A. Then 

I [- a(H) 

PROOF. Assume A - XZa(H) and suppose I is a limit of A. If 1ry c I then 
for some i < k, y" < ai c I. Thus if y -C a!, by the successor conditions of 
Definition 3.2 we have that {ai, . . ., ak} I H)H+l = (H_') . Since as c I we have 
that I is a limit of {ai,..., ak}, and Lemma 2.2 implies 

I l= H,+1 =- 

If y -< ae is a limit notation in I then y" <ak, and so 

I - H), = Hy 

follows from the limit conditions of Definition 3.2. - 

The following definition will be useful in proving Lemma 3.6 below. A lemma 
listing basic properties of approximate jump hierarchies follows the definition. 

DEFINITION 3.4. We say H agrees with J up to 0X, and write H =- J, if H-a = 

J-ca I 

LEMMA 3.5. 

1. _, is an equivalence relation. 
2. If fl - a and H =_, J then H =-p J. 
3. For anyH and a, 0 Xa (H). 
4. For anyAandH, A K o(H). 
5. If B C A and A a, (H) then B Xa (H). 
6. If /? -- (x and A a is(H) then A a i(H). 
7. If H _, J andA Z,-a(H) then A Z,-za(J). 
8. Suppose B is obtainedfrom A by replacing A's minimum element by a smaller 

integer (i.e., B = (A -{minA}) U {minB} where minB < minA), then 
A F Zj, (H) implies B Xj (H). 

The proofs of the above are straightforward from the definitions. To augment 
our notation, we add to the assertion A - 

X# (H) the information that A is ax-large 
by writing 

A cX Z(H) 

The following lemma can be thought of as a model-theoretic counterpart to the 
predicative cut-elimination lemma (see, for example, [8]). 

LEMMA 3.6. Suppose there is a set H such that A; 
O 

Z'fl(H). Then there is a 

spread out B C A and a set J -= H such that B cF,+,p (J). 
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PROOF. Suppose A; i (H). We will prove the lemma by transfinite induc- 

tion on p(p, or). In the event a = 0 or ae is a limit the result is easy. If 0 = 0 then, 
by Lemma 3.5.3, we get the result by taking B = 0 and J = H. 

If ae is a limit then A - {ao} is p(p, a[ao] + 1)-large, where ao = min A. Applying 
the induction hypothesis, we get B and J such that B C A - {ao}, J - H, and 

I a[ao]+l- 

B ~ leflcopJ). 
Taking B = (B - {minB}) U {ao}, we have that B c A, B is oa-large and, by 
Lemma 3.5.8, B K Zfl+WP (J). To see that B is spread out it is enough to note that, 
for any set X, if X is spread out and Y is obtained from X by replacing min X with 
something smaller, then Y is spread out. 

We will handle three separate cases for ae = o + 1, according to whether p is 
0, a successor, or a limit. In each of these cases we will appeal to the induction 
hypothesis to get sets B and J such that 

(1)~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 (1) ~~~~~B c A - aol, 

(2) J H, 

and 

(3) B Ffl+Cp( 

The set B is one element short of being oa-large, and in each case we add ao to B to 
get B. We suppose 

B = {bobl,...bk}, 

and so bo = ao and k is the cardinality of B. The trick is to pick B such that 
B = B U {bo} has the right properties; this will go differently in the different cases, 
but there are points of similarity that we mention now. 

Our main focus is to establish 

(4) B + coP (J), 

For this we need to show that the successor and limit conditions of Definition 3.2 
hold. In part, we will use (3), but we also use 

(5) if p 7& 0 then B~ cf +P[b0] (o), 

and 

(6) if p = 0 and k > 1 then jboJb(J) jbo.bk (] ) 

Before showing how to get B and J satisfying (1), (2), (3), (5), and (6), we will use 
these conditions to get (4). For this we need to say how J is defined. 

Define J by 

(7) if p 7& 0 set l-q+op =def ofpA-P and JpfA+oP =def J<I3?P, 

and 

(8) if p = 0 set J_<4 =def f=y, and if k > 1 set J+ =def iklk (Jn). 
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To show (4) from the above, we need to pay special attention to the k = 0 case; 
this corresponds to B 0. First we show the limit conditions for (4). If B + 0 
then using Lemma 3.5, (1), (2), (3) and the definition of J given by (7) and (8) 
we get the limit conditions for (4), but if B = 0 then the limit conditions for (3) 
are trivially satisfied, and so (3) doesn't help for establishing the limit conditions 
for (4). Nonetheless, when p 7& 0, we can use (5) to get the limit conditions for 
A fC + coP[bo], and if /3 + coP is a limit, which it is when p 7& 0, the conditions 
A- + coP and r < bk imply, by Lemma 2.9, that A -C /3 +coP[bk]; since k = 0 this 
means A -C /3 + coP[bo], and we have the desired limit conditions in the case p 7& 0. 
If p 0 then, for A a limit, A zq /3 + coP if and only if A / ,X so the limit conditions 
for (4) follow from (1), (2), (8) and the fact A zX(H) (using Lemma 3.5.5 and 

3.5.7). 
The successor conditions for (4) in the cases y /+ coP and 'y < bi, when i > 0, 

follow from (3); in the case y -C /3 + coP, ry < bo, and p :/ 0, we use Lemma 2.9 to 
get y -< /3 + coP [b0], and then the result follows from (5). If p = 0 then coP 1 and 
y -C f6 + coP if and only if either y -C /3 or y = /. The successor conditions for y -< /, 
in the event p = 0, follow from (1), (2), (8) and the assumption A za(H) (using 

Lemma 3.5.5 and 3.5.7). In order to take care of the case y = P, first note that if 
k = 0 then this case follows from Lemma 2.3.1. If k > 1, the desired successor 
condition follows from Lemma 2.3.4, (6), and the second part of (8). 

The fact B c A follows from B c A, bo = minA and B =def B U {bo}. The fact 
J =- H follows from the definition of J and (2). A bit of an argument is needed in 
order to show that B is spread out; we will take care of that as we go through the 
cases for proving (3), (5), and (6). 

Case p = 0 and c = co + 1: Notice that this is the main case of Lemma 2.2 which 
was proved as Lemma 8.3 in [3]; since the argument is presented there in detail 
(as well as in several cited references), we will be brief here. Note that A - {ao} 
is cow(ao + 2)-large. By a property for partitioning co'l-large sets (see [3, Lemma 
5.5]), there is an increasing partition of A - {ao} into ao + 2 many coao-large sets 
PO, PI, . . ., Pao+,. By the pigeon-hole principle we can select j > 1 such that for 
all e < ao, 

(9) (,uy < max A) ? (e, y, H}p) V (min P1, max P]. 

By the induction hypothesis there is a set B c P1 and a set J _ H such that 

i.e., such that (3) holds. 
Assume k > 1. Since min P1 < b, < bk < max Pi, (9) implies 

jbo..bi~ jbo,bk( Y); 

i.e., (6) holds. 
To see that B is spread out, note that, by the induction hypothesis, B is spread 

out, so we need only verify that if k > 3 then 2bo < bl. Since we selected j > 1, the 
co..-large set Po sits between bo and bl. If aoo < 3 then (removing elements from B 
if necessary) we can get by with k < 2, so assume ago > 3. Then by a property of 
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co'-large sets when s > 3 (see [3, Lemma 5.6]), 2min Po < max PO, and so 2bo < bl, 
as desired. 

Case p = po + 1 and a = co + 1: Apply the induction hypothesis ao + 2 times 
starting with the 0po +2(p (p, ao) + 1)-large set A - {ao} in place of A resulting in 
sets B* and JP such that JP =p H and 

(10) B * 

( 
+P (aoao2) (J ) 

Then apply the induction hypothesis again with B* - {min B*} in place of A and 
JP in place of H, to get 

(11) B c B* - {minB*} 

and 

(12) J 
-/3+cPO(ao+2) J 

such that 

BF0~ t3,,(I); 

i.e., (3) holds. Using the fact that /3 + coP[bo] = + cWoa (bo + 2), (10) and (12) 
imply 

(13) B Za+W [bo] 

Using Lemma 3.5.5 and ( 11) we have 

(14) B U {min B *} p+?P [bo] (J) 

So, by Lemma 3.5.8 we have 

B 3# +coP[bo] (h); 

i.e., (5) holds. 
To see that B is spread out, use bo < min B*, (1 1), and the fact B* is spread out 

(which is given by the induction hypothesis). 
Case p is a limit and a = co + 1: Apply the induction hypothesis with the 

p(p[bo] + 1, 'p(p, aoo) + 1)-large set A - {ao} in place of A resulting in sets B* and 
JP such that 

(15) B * + o(j ) ? lfl+cwPlbI 

Apply the induction hypothesis again with the p (p, ago)-large set B* - {min B* } in 
place of A and JP in place of H to get B and J such that 

So (3) holds. By Lemma 3.5.5 and (15), 

(16) B U {min B* } 6f+Cop[bo (+)I 

Using Lemma 3.5.8, we then have 

(17) B -Xfl+0)p[bo (I).- 
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Since p is a limit, /3 + coP[bo] / p + coP[bo]+l, and so 

(18) B a?f+cO[bo](J) 

i.e., (5) holds. 
To see that B is spread out, use bo < minB*, B - {bo} C B* - {minB*}, and 

the fact that B* is spread out (which is given by the induction hypothesis). - 

Relativizing the construction in Lemma 3.6 and setting 3 = 0 yields 

LEMMA 3.7. Suppose C and T are sets and C is (p(p, ao)-large. Then there are sets 
A and H such that A is an a-large subset of C and spread out, and A - 

,Tp (H). 

The following lemma asserts that the various levels of a transfinite jump hierarchy 
code the truth of arithmetic formulas involving previous levels. To state it, we 
expand the language of arithmetic to include constants that denote sets of the form 

H),, so that if y is a formula with parameters H,,..., Hk, the code rag can refer 
to these parameters. 

LEMMA 3.8. There is an IAo + exp-definable function 

TruthCode(7'-, x) 

with the following property: whenever 

X l= IAo + exp +Y. (H), 

yV is a Y1 (H;,..., Hyk) formula, and 

a -f>-(sup{y, Yk}+M), 

then the equivalence 

y +-+ TruthCode(F'yfl) C Hp 

holds in IV. 

The proof of this lemma is routine. 
The constructions in this section enable us to build models of theories that assert 

the existence ofjump hierarchies. If ae is a limit notation in normal form, (1I-- CA) ha 
is a theory in the language of second-order arithmetic that consists of the basic 
defining axioms for successor, plus, and times, arithmetic comprehension with 
parameters, an induction axiom for sets of natural numbers, and axioms 

X X), (X) 

for every (standard) notation y -C ae (see [6]). 

THEOREM 3.9. Suppose a and b are nonstandard elements of /I such that 

X F [a, b] is p (a, 0)-large, 

where ac is a limit notation. Then there are a cut a < I < b and afinite set S in Id 
such that 

X/ = (I, { SiI| i E I } 

is a model of (1-10-CA)<~,. (In particular, if ae is an e-number, this is equivalent to 

(H1-CA) .) 
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PROOF. Since [a, b] is W(a, 0)-large, [a + 1, b] is (a[a + 1], a[a + 1])-large. By 

Lemma 3.7 there are sets A and H such A g a?ca[a+1] (H). One can verify that 

since ae is a limit notation and A is a[a + 1]- large, A is also co-large. (In the 
"counting down" procedure it is impossible to pass from an ordinal greater than co 
to an ordinal less than co, without hitting co first.) As a result, the set A has at least 
a + 1 elements. Let 

A' =def {ao, al,..., aa} 

denote the first a + 1 elements of A, let I be any limit of A', and let 

J def{ j I ajCI}, 

so that J is a limit of {0, 1. a}. 
Let XV be the model defined by 

-V =def (I, { (HW)I k I, j c J}) 

We claim that IV models (H710-CA)<6co. Verifying that arithmetic comprehension 
holds is not difficult, using Lemma 3.8. And since every standard y -< coo is less 
than con"] for some standard n, and H), is then equal to H jJ",I for some appropriate 
k, 

X F 3X zy(X), 

as desired. As in [3, Theorem 9.4] the second-order universe of At can be coded 
into a single set S. A 

?4. Constructing a model of ACA. The theory ACA is a subsystem of second- 
order arithmetic consisting of quantifier-free defining equations for successor, plus, 
and times, an axiom schema (A CA) of comprehension for arithmetic formulas with 
numeric and set parameters, and full second-order induction. Since the arithmeti- 
cally definable sets form a natural interpretation of the second-order variables of 
this theory, it isn't surprising that an co-level jump hierarchy can be used to build a 
model. Indeed, one can verify that if H is such a hierarchy in a model 

-I = (I, {H}) 

of the weak base theory IAo + exp, then 

Jf =def (K , { Hi 1 I ik c I}) 

will satisfy (A CA). But now the second-order universe of At' is definable in At, so, 
for example, given any arithmetic formula 0 (X, Y) we have that 

At' F X VY O(X, Y) 

if and only if 

At Fz 3x, i Vy, j 0(H[x IH[x']). 

In short, second-order quantification in At' reduces to first-order quantification 
relative to the parameter H in At. This suggests that to build a model of ACA 
we only need to build a model in which first-order induction holds relative to an 
co-level jump hierarchy H. But Lemma 3.7 makes this easy: starting from a suitably 
large interval we can obtain finite sets H and A such that A is eo-large and H 
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approximates an co-level jump hierarchy in A. Then we can use the techniques of 
[3] to thin A down so that first-order induction will hold relative to the parameter 
H in any limit of A. 

THEOREM 4.1. Suppose X is a model of true arithmetic, anda andb are nonstandard 
elements of XI such that 

X I= [a, b] is 6e,5-large. 

Then there are a cut a < I < b and afinite set S coded in Id such that 

(I,{S j I}) 
is a model of ACA. 

PRooF. Recall that e, abbreviates (1,6eo). Applying Lemma 3.7 we obtain a 

sets A and a set H such that AF ,Z',(H). As in [3] we can thin A to an co-large 

set A' (and build another jump hierarchy from H), so that first-order induction is 
guaranteed to hold relative to H in any limit I. Now if we take 

-I =def (I,{HEk] I ik c I}) 

the previous discussion shows that AX will be a model of ACA. As usual, we can 
code the second-order universe of AV into a single set S. -1 

?5. Constructing a model of 4 -AC. We would like to extend the construction of 
the previous section to model the theory V}-AC, which adds to ACA the S1 axiom 
of choice, (} -AC). It is important to realize, however, that the simple approach to 
building a model of j1 -ACo described in [3] falls short. That construction relied on 
the fact that the assertion 

(19) Vx BY (x, Y) 

in the final model implied 

(20) I l= Vx 3y p (x, H[y 1) 

for a single parameter e. Furthermore-and this is crucial-such a parameter e 
could be found in the model, that is, in the cut I. This fact allowed us to express 
the truth of (20) in any limit I with a formula in Id, and then find the least such e. 

In the construction in the previous section, however, we needed to index the jump 
hierarchy by all the elements of I, so that the fact that (19) holds in the final model 
does not necessarily imply that there is an e in I satisfying (20). On the other hand, 
if e is beyond I then the formula (20) is not coded below any ai in I, and hence the 
truth of (20) in I is not expressible in Id. As a result, the construction for Ej-ACo 
falls apart here. 

The solution is to use the jump lemma to build a much larger hierarchy, allowing 
us to refer to more sets from within I. We will show that if we have an oa-level 
hierarchy for a suitable a, we can find an initial segment K of ae such that whenever 
(19) holds of the hierarchy along K, then (20) holds when e is replaced by any 
notation y s K in I; and K has the further property that whenever such a formula 
holds for every y above K, it holds for some y in K as well. 

In previous constructions we've proceeded by building a single set S that codes 
the sets of a second-order universe {S, }. We would like to make this process more 
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explicit now. If p is a second-order formula, we define p relativized to S to be 
the translation of p whereby second-order quantifiers are taken to range over the 
collection of sets coded by S. For example, if (p is the second-order formula 

VX1 3X2 VX3 0(XI, X2, X3), 

where 0 is arithmetic, then S is the formula 

VX1 3x2 VX3 0(SxJ, Sx,2, SX3). 

Using relativization we can express the fact that a S codes the second-order part 
of a model of a particular theory. 

DEFINITION 5.1. Let S be a set of natural numbers. Say that S is an co-model of 
S1-A C if (A CA) and (I' -AC) hold relativized to S. 

LEMMA 5.2. Suppose 

(X, {S}) 

is a model of Peano Arithmetic in which induction holds relative to the parameter S, 
and 

X I= S is an co-model of 21 -AC. 

Then 

V=def (,{S | i iCK}) 

is a model of 1 -AC. 

PROOF. Straightforward. Second-order induction in IV follows from first-order 
induction in (X, {S}). -A 

Having reduced our task to that of constructing an co-model of 1 -AC, we now 
come to the main lemma in this section. We pause to note that the proof was 
inspired by similar "pseudohierarchy" constructions in [6, 7] (see also [10, 11]). The 
constructions in [6, 7] however, rely on deep proof-theoretic results and Gddel's 
second incompleteness theorem, whereas, in contrast, the constructions here are 
more direct. 1 

In clause (2) of the following lemma, as in Lemma 3.8, we allow arithmetic 
formulas p to include parameters of the form H,. Intuitively it states that anything 
(coded low enough) that happens in the jump hierarchy at stage /Pi already happens 
before stage aii. 

LEMMA 5.3. Suppose C is a p(a(, (x)-large set, and co' is coded below 2min(C) Then 
there is a set 

A = {aona, *. ak} C C 

such that A is a-large and spread out, a set H such that A F ?s,(H), and sequences 
of ordinal notations 

0 = alo -- all -- ?l2 a - q?k -< fk A * -<4 0=oa[ao] 

'We would like to point out that our methods also allow us to build a model of the Eaxiom scheme 
of dependent choice, (1 -DC), by building a jump hierarchy H, using the methods of [12] to guarantee 
that transfinite induction holds relative to H, and then employing the techniques of [6, 1 1]. In this case, 
however, we do not know of a more direct construction. 
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such that for each 0 < i < k the following hold: 

1. If i < k - 4, the codes for caj and /hi are less than 2a7+1 

2. If p(X) is an arithmetic formula coded below ai-1, and 

TruthCode(p(Hfi), flo) E Hp, 

then for some y -< cai that is coded below ai + we have 

TruthCode((p(Hy),/3o) E H& . 

PROOF. Since C is pc(ac, al)-large, by Lemma 3.7 we can find sets A and H, such 
that 

A = {ao,a,,...,ak} 

is oa-large and spread out, and A F Zt,- (H). As a result, we only need to construct 
the sequences of cai and A3s satisfying the conclusion of the lemma. 

Setting aco = 0 and /?o = coa'], we will carry out the construction in k steps, 
where at each stage i > 0 we construct cai and /li so that 

(21) As - ci + c a] 

and 

(22) a i a- 

and clauses (1) and (2) of the lemma are satisfied. 
Suppose we've constructed ao, aIl, . . . , ai and flo, fli, . . ., fi. At stage i + 1, there 

are two possibilities: either 

a[ao,a,,...,ai] =6 + I 

for some 5 or 

al[ao, al, . .* ail i 

where A is a limit. 
In the first case we have 

pi = ai + jco( 

For each j < ai + 3, define 

qj ao + co. j, 

so that 

ali = 10qo 91 qj *qaj+3 i 

and for each j < ai + 2 we have 

11j+1 ='ij + (L 
- a/ j + (c~a[ao,aj,-.-,aj+j] 

Since there are as + 1 many values /j, for j > 0, the pigeonhole principle implies 
that we can find an 1 > 0 so that 

1 : ,uj < ai + 2 (TruthCode(Vp(H,1j+ )', fio) E Hpo) 

for any of the at most ai formulas fp coded below aj. Set 

aii + def Ill 
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and 

fli+l =def ql+1- 

Then if 

TruthCode(_ p(Hp, )',I o) E H#0 
for some p coded below a1, we have that 

TruthCode(7(p(H17j)', fo) E H& 
for some j < 1. Using Lemmas 2.8 and 2.7 and the induction hypothesis one can 
verify that the codes of ai+l and /hi+l are less than 2a+. So clauses (1) and (2) 
of the lemma are satisfied, and the induction hypotheses (21) and (22) are also 
maintained. 

The case where ac[ao, al, . . . {, as A is almost identical; in this case, take 

1j =def o?j + A[ai+l]j 

and proceed as before. - 

The following definition is slightly awkward since it defines a property of a set A 
by giving conditions on A - {min(A)}. This concession pays off later on, in that 
it simplifies that statement of Lemma 5.7. The definition should not be taken to 
imply that the conditions of Lemma 5.3, expressible in the language of first-order 
arithmetic, provide the only way of ensuring that S will be an co-model of El -AC in 
any limit I of a nonstandard A. What is important is that they provide one way of 
doing so, as is evidenced by the lemmas that follow. Notice that we use the usual 
coding trick of [3] to guarantee that only certain sets are "seen" by the limit I. 

DEFINITION 5.4. Let A = {ao, al,..., ak} and S be finite sets. Say that S approx- 
imates an co-model of El -AC in A if there are a set H and sequences (cai) and (/i) 
satisfying the conclusion of Lemma 5.3 with A replaced by A - {min(A)}; and, 
letting 

T(ayd) =Hy d] 

we have that 

S ? T(ay.d) 

ai CA y -<~a .d<ak 

The idea behind this definition is as follows. Suppose S approximates an co-model 
of El -AC in A = {ao, a,,..., ak}, and let I be any limit of A. Then I determines a 
limit of the sequence 

ao5 al ... * , lk , 

namely the set of ai corresponding to some as in I. If we let K denote the set of 
ordinal notations in I below some such oa, then K denotes a set of notations in I 
with no greatest element, and in fact, an initial segment with the favorable properties 
discussed in the opening paragraphs of this section. The set SI then codes the sets 
that are definable in some level of H corresponding to a notation in K. 

The next two lemmas show that Definition 5.4 has the desired properties. The 
first was inspired by [6]. 
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LEMMA 5.5. Suppose (X, {H}) is a model of IAo + exp, such that X I= Xp(H). 
Let K be an initial segment of the notations less than /3 in X such that K has no 
greatest element, and define 

S =def { H[d] I y E K, d E XV}. 

Suppose further that whenever (p (X) is an arithmetic formula with set parameters 
from S and (p(H,5) holds for every ( above K, then it holds for some (5 in K as well. 
Then 

=def (af S) 

is a model of (ACA) and (' -AC). 

PROOF. That (ACA) holds is implied by the fact that K has no greatest element, 
as follows. Let (p (x, P) be a 17 formula with set parameters J in S. Each parameter 
P is of the form H[d] for some y E K, so we can pick y' to be the largest of these. 
Since K has no greatest element, it is closed under successor, so 

(5 =def Y + 1 

is also in K. By Lemma 3.8 we have that 

X i= Vx (p(x) < - TruthCode(7(p(x)7, () E Ha). 

But then 

At I= Vx (9p(x) +- x E 

and this latter set is an element of C. 
To see that % is a model of (E1 -AC), suppose that 

(23) S i#Vx 3Y(x, Y) 

for some arithmetic formula (p with parameters in S. The fact that (23) holds 
implies that for every x there is a y in K such that 

XA 1 3y (p(x,HMy]). 

Since every level of the hierarchy codes all the ones that come before it, we have that 

(24) X V= Vx 3y (p (x, H y1) 

for any b above K. By the hypothesis of the lemma there is some (5 in K satisfying 
(24) as well. But the set Ha is an element of S. Now, using arithmetic comprehension 
in X, define Y so that for every x 

Y = H[fx] 

where fx is the least natural number such that (p(x, Hrf']) holds. Then we have 

Vx p(x, YX), 

witnessing the conclusion of (El -AC). ] 

LEMMA 5.6. Suppose S and A are sets in 4X such that 

X I= S approximates an co-model of 1 -AC in A. 

If I is any limit of A, then 

I - S, is an -model of l -AC. 
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PROOF. Suppose S, A, and I are in the statement of the lemma. Since I is a limit 
of A it is a limit of A - {min(A)}, so there are a set H and sequences (cai) and (pi) 
satisfying the conclusion of Lemma 5.3. Define 

{Si i E I1. 

and let 

K =def { Y EI j 3i (ai E I A y -< a)}. 

It is not difficult to verify that 

= (H [dj)I I y E K,d E I}. 

so we only need to verify that I, HI, and K satisfy the hypotheses of Lemma 5.5. 
The fact that K has no greatest element in I follows from the fact that if y E K, 

then for some i such that ai E I, we have that y -< aj. Since I is a limit, ai+l is in I 
as well, and hence ai c< aci+l is also in K. 

Suppose that (p(S) is an arithmetic formula with set parameters from S, and 
(p(Hb) holds in I for every (s above K. Note that as long as (s is sufficiently below 
flo, we will have that 

(25) TruthCode(79 (Hb) ', flo) E H&. 

Find ai so that in addition ro(X) is less than ai. Then we have that (25) holds for 
'5 = /hi+, and so clause (2) of Lemma 5.3 implies that it also holds for some (s E K 
as well. By Lemma 3.8 

I l= zp(H6) 

for this (5. - 

From Lemma 5.3 we now obtain the following 
LEMMA 5.7. Suppose C is (pQ(, 0)-large and A is coded below min(C). Then there 

are sets A and S, such that A is A-large and spread out, and S approximates an 
co-model of p'-AC in A. 

PROOF. Set 

ao= def min(C) 

Since C is p (R, 0)-large, C - {ao} is p (iA[ao], A[ao])-large, and one can use Lemma 2.8 
to show that '-cofla' is coded below 2a6. Apply Lemma 5.3 to obtain a A[ao]-large 
set A', a set H, and sequences (cai) and (fli). Set 

A =def A U {ao} 

and define S as in Definition 5.4. - 

Putting it all together yields the following 
THEOREM 5.8. Suppose a and b are nonstandard elements of Xf such that 

4X F [a, b] is p (e0, 0)-large. 

Then there are a cut a < I < b and afinite set S coded in 4X such that 

(I{S j I}) 

is a model of l -AC. 
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PROOF. By Lemma 5.7 there are an e0-large A C [a, b] and a set S such that 
S approximates an co-model of 1 -AC in A. As in the proof of Theorem 4.1 we 
can thin A down to an co-large set A' such that first-order induction relative to the 
parameter S holds in any limit I of A'. Lemmas 5.6 and 5.2 then yield a model of 
(1 -AC) and (A CA) in which full second-order induction holds. - 

?6. Approximating finite E} -AC hierarchies. Using our relativized version of the 
transfinite jump lemma, we can iterate the construction in the previous section, 
to obtain nested co-models of E -AC. This gives rise to the following sequence of 
definitions and lemmas. 

DEFINITION 6.1. Say S is an co-model of El -AC containing T if S is an co-model 
of l -AC and for some i, Si = T. 

DEFINITION 6.2. Say that S approximates an co-model of l -AC containing T in 
A if S is as in Definition 5.4, except that H approximates a jump hierarchy from T 
in A. 

Of course, if S approximates an co-model of l -AC containing T in A, where S, 
T, and A are all coded in some nonstandard model of true arithmetic, then SI is an 
co-model of l -AC containing T' in any limit I of A. The lemmas in the previous 
section can be relativized to yield the following 

LEMMA 6.3. Suppose C is an (p(R, 0)-large set, and T is any finite set in X . Then 
there are a set S and a A-large A C C such that S approximates an co-model of El -AC 
containing T in A. 

Analogous to the notion of a c-level jump hierarchy, we introduce the notion of 
a c-level hierarchy of nested models of l -AC. 

DEFINITION 6.4. Say H is a c-level nested E1 -A C hierarchy if for each i, 0 < i < c, 

Hi is an co-model of El -AC containing H<i. 

DEFINITION 6.5. Say H approximates a c-level nested } -AC hierarchy in A if for 
each i, 0 < i < c, Hi approximates an co-model of l -AC containing H<i in A. 

If Ho is some set T in Definition 6.4 (6.5), we will say that H is (approximates) 
a c-level nested E -AC hierarchyfrom T. Once again, it is not hard to show that 
if H approximates a c-level nested E -AC hierarchy from T in A, and mih(A) is 
nonstandard, then HI is a c-level nested } -AC hierarchy from T' in any limit I of 
A. 

As in the case of finite jump hierarchies, we can approximate finite nested E -AC 
hierarchies if we start from a suitably large interval. 

LEMMA 6.6. Suppose C is y' -large, and T is any finite set. Then there are an 
oa-large set A and a set H such that H approximates a c-level nested El -AC hierarchy 
from T in A. 

PROOF. Recall that y = O and Y =P(ya, 0). The proof is just a simple 
iteration of Lemma 5.7. - 

Finally, as in Section 3, we can extend these constructions to the transfinite. 
Though we only state the results for co iterations, we note that by an appropriate 
extension to our notation systems they can easily be generalized. 
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DEFINITION 6.7. Say H is an co-level nested El -AC hierarchy if for every i > 0, Hi 
is an co-model of 1 -AC containing H,1j. 

DEFINITION 6.8. Suppose A = {ao, a 1, . . ., ak}. Say H approximates an co-level 
nested E -AC hierarchy in A if, whenever 0 < i < aj-1, Hi approximates an 
co-model of E1-AC containing H<i in {aj+l, ai+2,. , ak}. 

LEMMA 6.9. Suppose C is F,-large. Then there are a set H and an &-large set 
A C C such that H approximates an co-level nested El -AC hierarchy in A. 

PROOF. The proof is analogous to that of Lemma 3.6. - 

?7. Constructing models of ID,,, ATRO, and ATR. As it turns out, nested 1 -AC 
hierarchies are useful in constructing models of the theories ID,,, A TRO, and A TR, 
which we now address. 

Let (p (x, Y) be an arithmetic formula, in which the sole set parameter Y occurs 
positively (that is, in the scope of an even number of negation symbols, assuming 
that (p is written using the connectives 3, V, A, V, and -1). We can think of such an 
arithmetic formula as a "positive arithmetic operator" since it defines the monotone 
function 

Fi: P(o) -> P(o) 

given by 

F,(A) = { x p(x, A) }. 

(The monotonicity means that for any sets A and B, A D B implies F, (A) D 
F,9 (B).) Classically such operators are known to have fixed-points: for example, 
defining 

. Fr =def 0 

. Fa+l=defF, (Fa) 
* FA =def F- r, for limit ordinals A, 

the monotonically increasing sequence Fc, must stabilize at some countable stage 
6. At this point, we will have F,(%) = F, so that 17% defines a fixed-point of 
Fr,, and, in fact, the least fixed-point (in the sense that it is contained in any other 
fixed-point). 

The theory ID, is a first-order theory in the language of Peano Arithmetic, with 
an additional predicate P,, for each positive arithmetic operator (p(x, X). ID1 then 
extends the axioms of PA with axioms 

Vx (P, W +- )0 9(X,P,)) 

that assert that each P,, is a fixed-point (though not necessarily least) of the oper- 
ator Fr. Similarly, each theory ID,,+1 adds new constants for positive arithmetic 
formulas in the language of ID,, and the corresponding fixed point axioms, and 

ID<, is the union of the ID,,'s. See [5, 2] more more information on ID<,,, and [1] 
for more information on inductive definitions in general. 

The connection between the theories ID,, and nested E1 AC hierarchies is given 
by the following two lemmas. 
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LEMMA 7.1. The theory ID1 can be interpreted in El-AC. 

SKETCH OF PROOF. Let p (x, Y) be any arithmetic (or even E) formula in which 
the set parameter Y occurs positively. Aczel has observed that by using a universal 
El truth predicate and diagonalizing as in the proof of Gddel's fixed-point theorem, 
there is a E formula V/ (z) that defines a fixed point of Ap. In particular, for this qi, 

E -AC proves 

Vx (V ,(x) +- f (x, f z I Vu/z)})) 

(The axiom schema (1 -AC) is required to bring set quantifiers to the front of 
appropriate formulas.) One can then interpret the fixed-point constants of ID1 
using such qi, so that induction in ID1 is reduced to second-order induction in 
(1 -AC). See [5] for more details. A 

LEMMA 7.2. The theory IDn can be interpreted in ACAo together with the extra 
axiom "there is an n-level nested l -AC hierarchy." 

SKETCH OF PROOF. One inductively shows that each fixed-point constant from the 
language of IDj can be interpreted by a set that is arithmetic in the ith level of the 
nested l -AC hierarchy. - 

Combined with Lemma 6.6 this yields 

THEOREM 7.3. Suppose a and b are nonstandard elements of /i such that 

X I= [a, b] is yn-large. 

Then there are a cut a < I < b and afinite set T coded in X such that 

(I,...,Tr-, .) 

is a model of IDn, where the sets Tr,,, interpret the fixed-point constants. 

PROOF. Recall that yl =def y1. By Lemma 6.6 we can find a set S' and an e0-large 
set A' such that S' approximates an n-level nested 1 -AC hierarchy in A'. As in 
the proof of Theorem 4.1 we can thin A' down to an co-large set A, and obtain a 
set S which will code the universe of a model of (ACA) containing S'. We can 
read off interpretations in S for the fixed-point constants of IDn from the proof of 
Lemma 7.2. - 

If [a, b] is Fo-large then [a + 1, b] is ya -large, and we can use the same construction 
to obtain an a-level nested I' -AC hierarchy. If a is nonstandard, we can interpret 
all the "standard" fixed-point constants of ID<O,. This yields 

THEOREM 7.4. Suppose a and b are nonstandard elements of /l such that 

X l= [a, b] is Fo-large. 

Then there are a cut a < I < b and afinite set T coded in X such that 

(I. ) Tr-, . ) 

is a model of ID,. 
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The theories ATRo and ATR extend ACAO and ACA respectively, by adding a 
schema (ATR) which allows definitions by arithmetic transfinite recursion along 
any well ordering: 

(ATR) WO w) 3 BY Vib, x (x E yb +- O(pX, Kib)) 

where (p ranges over arithmetic formulas, possibly involving set parameters. Here 
WO(-<) represents the FIJ assertion that the set -< codes a well-ordering, that is, 
every set X contains a -<-least element. Intuitively, (ATR) asserts that given any 
well-ordering, we can build a hierarchy Y such that each level b is obtained from 
an arithmetic comprehension over all the levels that have preceeded it. For more 
information about ATRO, see [11, 9, 10, 2]. 

The connection between arithmetic transfinite recursion and nested El -AC hier- 
archies is given by the following 

LEMMA 7.5. Over ACA0, the scheme (ATR) is equivalent to the assertion "for every 
X, there is an co-model of 11-AC containing X." 

PROOF. We sketch the right-to-left direction, which is the only direction we need 
below. From within ACAO, suppose every set X is contained in an co-model of 
E -AC and < is a well-ordering. Letting (p(x, Y) be any arithmetic formula, we 
need to show that there is a transfinite hierarchy defined by (p along -. By coding 
all the set parameters of p into a single set, we can find an co-model S of l -AC 
that contains these parameters. We claim that for every c there is a (unique) set W 
in S that codes the hierarchy up to c, i.e., W satisfies 

(26) Vb < c Vx (x E Wb + p (x, WJ'V<b)), 

and Wb 0 if b is not a predecessor of c. Notice that the claim is an arithmetic 
assertion in the parameter S. Suppose there is a c for which the claim is false, i.e., 
for this c there is no W in S satisfying (26). By (ACA) and the assumption that 
< is a well-ordering, we can find the least such c. Then for every d < c, there is a 
hierarchy up to d in S. But using (E -AC) in S we can combine all these hierarchies 
into a single set, and then using arithmetic comprehension in S we can turn this 
into a hierarchy up to c, contrary to our assumption. 

We've shown that for every c there is a hierarchy up to c in S. Again, using 
(El -AC) and (A CA) in S, we can find a hierarchy defined for all the elements of -<, 
completing the proof. 

The left-to-right direction of the lemma can be found in [11, 10]. ] 

Lemma 7.5, combined with Lemmas 6.6 and 6.9, yield the last two theorems in 
this paper. 

THEOREM 7.6. Suppose a and b are nonstandard elements of Xf such that 

X I= [a, b] is Io-large. 

Then there are a cut a < I < b and afinite set S coded in 4X such that 

(I,{SijE I}) 

is a model of ATRo. 
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PROOF. Since [a, b] is Fo-large, [a + 1, b] is ya+l-large. As in the proof of Theo- 
rem 7.3 we obtain an so-large set A' and a set T that approximates an (a + 1)-level 
nested 1 -AC hierarchy in A', and thin A' down to an co-large set A. Suppose I is 
any limit of A and J is any limit of the set {O, 1, . . ., a + 1}. Since each TfI+ is an 
co-model of }1 -AC containing Tf, it is not difficult to verify that 

% =def (I{(Tj)i i E , j E J}) 

will satisfy (A CA) as well as the assertion "for every X there is an co-model of 1 -AC 
containing X." Hence, by the preceeding lemma, X will be a model of ATRo. By 
the usual trick we can find a single set S such that 

({Si I i EI}) 

is of this form. ] 

THEOREM 7.7. Suppose a and b are nonstandard elements of /X such that 

X I= [a, b] is F70-large. 

Then there are a cut a < I < b and afinite set S coded in X such that 

(I,{S| II}) 

is a model of ATR. 

PROOF The proof bears the same relationship to the construction of a model of 
ACA in Theorem 4.1 as the previous proof bore to the construction of a model of 
A CAo. Which is to say, first we use Lemma 6.9 to construct a set S that approximates 
an co-level nested El AC-hierarchy in an so-large set A C [a, b]. Then we thin A 
down to an co-large set A' and guarantee that induction will hold relative to A in 
any limit. Taking I to be a limit of A and 

Xf =def ({, { S. I i E I}), 

X will satisfy full second-order induction as well as (A CA) and (ATR). -] 
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