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By quantizing the semiclassical motion of excitons, we show that the Berry curvature can cause
an energy splitting between exciton states with opposite angular momentum. This splitting is
determined by the Berry curvature flux through the k-space area spanned by the relative motion
of the electron-hole pair in the exciton wave function. Using the gapped two-dimensional Dirac
equation as a model, we show that this splitting can be understood as an effective spin-orbit coupling
effect. In addition, there is also an energy shift caused by other “relativistic” terms. Our result
reveals the limitation of the venerable hydrogenic model of excitons, and highlights the importance
of the Berry curvature in the effective mass approximation.

The effective mass approximation provides a simple yet
extremely useful tool to understand a wide variety of elec-
tronic properties of semiconductors [1]. Within this ap-
proximation, electrons behave almost like free particles in
response to external fields, provided that one replaces the
bare electron mass with an effective mass derived from
the band dispersion. Much of our intuition on electron
transport is based on this semiclassical picture. However,
it has been shown that such a picture is actually incom-
plete, and one must include the Berry curvature of the
Bloch states [2]. Essentially, the Berry curvature modi-
fies the electron dynamics through an anomalous term in
the group velocity of the Bloch electrons [3, 4], i.e.,

ṙ =
1

h̄

∂εn(k)

∂k
+ ∇V (r)×Ωn(k) , (1)

where εn(k) is the band energy, V (r) is the external po-
tential, and Ωn(k) = i〈∇kunk| × |∇kunk〉 is the Berry
curvature defined in terms of the periodic part unk(r) of
the Bloch function. The importance of the Berry curva-
ture has been well established in a number of transport
phenomena such as the anomalous Hall effect [5–7] and
the spin Hall effect [8–10].

In this Letter we consider another type of problems for
which the effective mass approximation must be modi-
fied to include the Berry curvature, namely, the bound
state problem of Bloch electrons. To be specific, we will
consider the energy spectrum of an exciton, even though
our result should be equally applicable to other problems
such as shallow impurity states. Our motivation is two
fold. First, giant exciton binding energies (about a few
hundred meV) have recently been observed in monolayers
of transition metal dichalcogenides [11–20], in which the
low-energy carriers behave like massive Dirac fermions
with nonzero Berry curvature [21]. Thus, the detailed ex-
perimental study of excitons in the presence of the Berry
curvature appears to be feasible. Secondly, there have
been a few calculations of the exciton energy spectrum in
these materials [18, 22–27], but the role of the Berry cur-
vature is not explicitly discussed. We will show that, at
the level of the effective mass approximation, the Berry
curvature is essential to understand the exciton energy

spectrum.

Our main results are summarized below. We show
that, quite generally, the Berry curvature modifies the
effective Hamiltonian for excitons, and causes an energy
splitting between exciton states with opposite angular
momentum. This splitting is determined by the Berry
curvature flux through the k-space area spanned by the
relative motion of the electron-hole pair in the exciton
wave function. We confirm this result by a detailed study
of the massive Dirac fermion model in two dimensions,
and show that the energy splitting can be understood
as an effective spin-orbit coupling effect. In addition,
we also find a shift of the energy levels due to other
“relativistic” terms. Finally, the effective Hamiltonian
approach is compared with a k-space Hatree-Fock calcu-
lation, where the gauge-dependence of the angular mo-
mentum number is discussed. Our study provides a clear
explanation of the previously calculated exciton energy
splitting [18, 26, 27]. It reveals the importance of the
Berry phase in exciton physics, and calls for a thorough
investigation of its effect on interacting phenomena.

An exciton is a bound state of a conduction band elec-
tron and a valence band hole attracted to each other
via the Coulomb interaction. Within the effective mass
approximation, the motion of an exciton can be decom-
posed into a center-of-mass motion and a relative motion.
The latter is governed by the following effective Hamil-
tonian [29, 30]

H =
p̂2

2µ
+ V (r̂) . (2)

where µ−1 = m−1
e +m−1

h is the reduced mass, r = re−rh
is the relative coordinate, p is the canonical momentum
of r, and V (r) is the screened Coulomb interaction. For
two-dimensional (2D) systems with a central potential
V (r), the eigenstates (n,m) can be labeled by the radial
quantum number n and the angular momentum m. For
definitiveness, in the following we set V (r) = −κ/r, then
the Hamiltonian describes a 2D hydrogen problem. Our
result, however, is independent of the detailed from of
V (r). The exciton binding energy of the 2D hydrogen
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FIG. 1. With finite Berry curvature (Ωe and Ωh), the electron
and the hole acquire an anomalous velocity ∇V × Ω in a
central potential V (r), resulting in a lift of the degeneracy
between the left- and the right-rotating states.

model is given by

En,m = − R
(n+ |m|+ 1/2)2

,

n = 0, 1, 2, . . . , m = 0,±1,±2, . . .

(3)

where R = µκ2/2h̄2 is the Rydberg energy. We can see
that the states (n,±m) with opposite angular momentum
are degenerate, a general consequence of time-reversal
symmetry.

The above picture is modified in the presence of the
Berry curvature. According to the semiclassical equation
of motion (1), the electron and the hole will acquire an
anomalous velocity perpendicular to the radial direction
in a central potential (Fig. 1). Obviously, this anoma-
lous term breaks time-reversal symmetry and should lead
to an energy difference between the left- and the right-
rotating states.

To obtain a quantitative theory of the energy spec-
trum, we need to quantize the semiclassical motion of
the exciton. This can be done using the canonical quan-
tization procedure [2, 31]. It has been shown that in the
presence of the Berry curvature, the position operators
become non-commutative and satisfy [5, 8, 32],

[r̂α, r̂β ] = iεαβγΩγ . (4)

For the relative motion of the electron-hole pair, Ω =
Ωe + Ωh should be understood as the sum of the Berry
curvatures of the electron and the hole [33]. In general, Ω
is a function of k. However, if the exciton wave function is
sharply localized in the k-space, then we can approximate
Ω with its value at the band edge. To derive the effective
Hamiltonian, we introduce the canonical coordinates [31]

R̂ = r̂ − 1

2h̄
Ω× p̂ . (5)

Equation (5) can be viewed as the k-space counterpart
of the Peierls substitution. One can verify that, to first
order, [R̂α, R̂β ] = 0. Inserting Eq. (5) back into Eq. (2)
and expanding to the first order in Ω, we obtain the

effective Hamiltonian casted in the canonical variables,

H =
p̂2

2µ
+ V (R̂) +

1

2h̄
Ω · (∇V × p̂) . (6)

Clearly, the extra term proportional to the Berry curva-
ture will split the exciton states with opposite angular
momentum.

Equation (6) is the main result of our paper. To gain
some physical intuition, we apply our theory to the 2D
hydrogen model. The energy splitting between the exci-
ton states (0,±1) is found to be

∆E =
64

81

Ω

a2
0

R , (7)

where a0 = h̄2/κµ is the Bohr radius of the exciton en-
velop function. Since a−2

0 is roughly the k-space spread
of the envelop function, one can interpret the energy
splitting (7) as proportional to the k-space Berry phase
flux penetrating the area occupied by the exciton. In
2D systems the screened Coulomb interaction V (r) has
a rather complicated r-dependence, which leads to a
non-hydrogenic Rydberg series of exciton states [17, 18].
Nonetheless, the energy splitting, and its interpretation
in terms of the Berry phase flux, are independent of the
detailed form of V (r).

To further demonstrate the above physics, in the fol-
lowing we turn to a concrete model, i.e., the gapped 2D
Dirac equation,

H0 = αk · σ + ∆σz , (8)

where k = (kx, ky) is the 2D wave vector, and 2∆ is the
band gap. This Hamiltonian describes the low-energy
carriers in a number of materials, including topological
surface states [34, 35] where σ refers to the electron spin,
and gapped graphene [36] and semiconducting dichalco-
genides [21] where σ refers to the orbital index. The en-
ergy dispersion is given by εc,v = ±εk = ±

√
∆2 + α2k2

with the corresponding eigenstates

|ck〉 =

(
cos θk2

eiφk sin θk
2

)
, |vk〉 =

(
e−iφk sin θk

2

− cos θk2

)
, (9)

where the subscript c and v label the conduction and
valance bands, respectively, and the angular variables
θk and φk are defined as θk = cos−1(∆/εk) and φk =
tan−1(ky/kx). The Berry curvature is given by [21, 36]

Ωe = Ωh = − α2∆

2(∆2 + α2k2)3/2
. (10)

Note that the Berry curvature of holes should be opposite
to that of the valence band electrons. The fact that Ωe =
Ωh is a specific feature of the two-band model. In general
Ωe and Ωh are different. In the following we are going to
approximate the Berry curvature with its k = 0 value,
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and define the joint Berry curvature Ω = Ωe(0)+Ωh(0) =
−α2/∆2 (assuming ∆ > 0).

We now estimate the energy splitting of excitons in
transition metal dichalcogenides. The band structure pa-
rameters α and ∆ have been calculated in Ref. [21]. For
all four compounds MX2 (M = Mo, W, and X = S,
Se), Ω is about 15 Å2. The Bohr radius of the s-state
exciton is a0 ∼ 20 Å [18]. Hence the energy splitting ∆E
between the two p-states is roughly 4% of the exciton
binding energy, or a few tens of meV. This is consistent
with previous calculations based on solving the Bethe-
Salpeter equation [18, 26]. In dichalcogenides, the band
structure consists of two valleys located at the two in-
equivalent corners of the hexagonal Brillouin zone with
opposite Berry curvature. Therefore, the energy split-
ting in the two valleys are opposite, restoring the overall
time-reversal symmetry of the system.

Since the 2D Dirac equation (8) also describes rela-
tivistic spin- 1

2 particles, it is interesting to explore the
connection between our result and relativistic quantum
mechanics. In the latter case, the effective Hamiltonian,
also known as the Schrödinger-Pauli equation, is usu-
ally obtained using the Foldy-Wouthuysen transforma-
tion [28]. The application to the 2D Dirac equation par-
allels exactly to its 3D counterpart. After adopting the
center-of-mass and the relative coordinates [37], We find
the effective Hamiltonian for the positive energy branch
is

Heff =
p̂2

2µ
+ V (R) +

1

2h̄
Ω · (∇V × p̂) +

1

4
Ω∇2V , (11)

where µ = h̄2∆/2α2 is the reduced mass, and Ω = Ωêz.
It is now clear that the Berry-curvature caused split-
ting stems from an effective spin-orbit coupling term (the
third term). We also note that there is an extra term
proportional to ∇2V , known as the Darwin term [38].
This term does not appear in the semiclassical quan-
tization scheme because the semiclassical formalism is
only accurate to the first order of ∇V [31]. The Dar-
win term will lead to an energy shift depending on the
radial quantum number n [39]. However, given the cen-
tral symmetry of V (r), the energy shift of states (n,±m)
are the same. Therefore the energy splitting between
these two states are entirely due to the Berry curvature
effect discussed above. One can also carry out the Foldy-
Wouthuysen transformation to higher orders, which only
leads to quantitative changes.

It is useful to compare the effective Hamiltonian ap-
proach to the k-space formalism based on the Bethe-
Salpeter equation. An exciton at rest can be written
as |Φex〉 =

∑
k f(k)a†ckavk|Φ0〉, where |Φ0〉 is the ground

state in which all valence bands are filled and all con-
duction bands are empty, and ack and avk are the anni-
hilation operators for the conduction and valence band
electrons, respectively. Following the standard proce-
dure [26, 34], the exciton Hamiltonian for the envelop

function f(k) is given by

(2εk + Σk)f(k)−
∑
k′

U(k,k′)f(k′) = Ef(k) , (12)

where Σk is the self energy, which we shall absorb into
the definition of the optical gap and will not be written
explicitly hereafter, and U(k,k′) is the Coulomb interac-
tion between the electron and the hole,

U(k,k′) = V (k − k′)〈ck|ck′〉〈vk′|vk〉 , (13)

with V (k − k′) the Fourier transform of the Coulomb
interaction V (r). We note that 〈ck|ck′〉 can be written
as |〈ck|ck′〉|ei∆φ, where ∆φ = Im log〈ck|ck′〉 is the dis-
cretized Berry phase [40]. It is through this term that
the Berry curvature enters the picture.

For the isotropic system considered here, we can de-
compose the envelop function into different angular mo-

mentum channels, i.e., fm(k) =
∫ 2π

0
dφ
2π f(k)eimφk . The

corresponding equation is

2εkfm(k)−
∫ ∞

0

k′dk′

2π
Um(k, k′)fm(k′) = Efm(k) , (14)

where the Coulomb interaction for the m-th channel is
given by Um(k, k′) =

∫ 2π

0
dφ
2π e

imφU(k− k′), φ = φk − φk′
is the relative angle between k and k′.

Before moving on, we comment on the physical mean-
ing of m. Note that the matrix element U(k − k′) is
actually gauge dependent. Different choices of the basic
function |ck〉 and |vk〉 will not change the energy spec-
trum, but will lead to an integer shift of m. Specifically,
if we perform a gauge transform |λk〉 → eiφλ(k)|λk〉, then
the Coulomb interaction becomes

U(k,k′)→ ei[φc(k
′)−φc(k)]e−i[φv(k′)−φv(k)]U(k,k′) .

(15)
Consequently, the Coulomb interaction in the m-th chan-
nel will be shifted to the (m+n)-th channel in the trans-
formed basis, where n is the winding number of φλ(k).
Therefore one should be careful when labeling the exciton
states using m. There seems to be some confusion over
this fact in the literature [41]. We have chosen the ba-
sis function (9) such that in the limit of vanishing Berry
curvature, the labeling of m returns to that of the 2D
hydrogen model.

We can now expand the Coulomb interaction to the
leading order of α/∆ and obtain

Um(k,k′) ≈ Vm(k − k′) +
α2kk′

2∆2
Vm+1(k − k′) . (16)

Clearly, Um and U−m differ by a term proportional to
α2/∆2, which is nothing but the joint Berry curvature
Ω. We also note that the energy shift of ±m states is
asymmetric. This is caused by an overall shift of both
±m states as mentioned earlier.
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FIG. 2. (Color online) (a) Exciton energy spectrum as a
function of the inter-band coupling strength x. The insert
shows all four states (0, 0), (1, 0), and (0,±1). (b) Exciton
wave function at x = 1.

Finally, to demonstrate the essential role of the Berry
curvature, we consider a modified Hamiltonian

H̃ = xαk · σ + (∆ + βxk
2)σz , (17)

where βx = (1 − x2)α2/2∆. Here the parameter x can
be regarded as a measure of the inter-band coupling
strength. One can verify that as x changes from 0 to
1, the effective mass stays the same, m∗ = h̄2∆2/α2,
whereas the Berry curvature gradually increases from 0
to its value given in Eq. (10).

We numerical solve Eq. (14) with V (r) = −κ/r using
the modified Gauss-Legendre quadrature method with a
constant scaling [34, 42]. Figure 2(a) shows the calcu-
lated exciton energy spectrum as a function of x. At
x = 0, the Berry curvature is zero, and the three states
(0,±1) and (1, 0) are degenerate as indicated by Eq. (3).
As x increases, the energy difference between (0,±1)
starts increasing and reaches its maximum at x = 1,
when the Berry curvature is also maximal. The asym-
metric splitting is obvious. Figure 2(b) shows the k-space
exciton wave functions, which clearly display the charac-
teristic shape for s- and p-states, respectively. This con-

firms our choice of the basis function. We can see that
there is a slight difference between (0,±1) states as a re-
sult of the Berry curvature. The nonmonotonic behavior
of the m = 0 states is due to the competition between
the Darwin term and a higher order term proportional
to p̂4 in the Foldy-Wouthuysen transformation [28].

In summary, we have demonstrated that in the pres-
ence of the Berry curvature, the effective mass approxi-
mation must be modified through a k-space Peierls sub-
stitution. This results in a Berry-curvature induced en-
ergy splitting of exciton states with opposite angular mo-
mentum, which can be understood as an effective spin-
obit coupling effect. The method outlined in this paper
is quite general, and can be easily transferred to other
bound-state problems such as shallow impurity states.

We acknowledge useful discussions with Ming-Che
Chang, Shun Lien Chuang, Ion Garate, Tony Heinz,
Qian Niu, Junren Shi, and Xiaodong Xu. This work
is supported by DOE Basic Energy Sciences No. DE-
SC0012509 (D.X. and W.S.) and by AFOSR No. FA9550-
14-1-0277 (J.Z.)

Note added.—Upon the completion of this work, we
become aware of Ref. [43], in which the relation between
exciton energy splitting and the Berry phase is discussed
using the k-space formulation.
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http://dx.doi.org/ 10.1038/ncomms2498
http://dx.doi.org/ 10.1038/nmat4061
http://dx.doi.org/10.1103/physrevlett.113.026803
http://dx.doi.org/ 10.1103/physrevlett.113.076802
http://dx.doi.org/10.1038/nature13734
http://dx.doi.org/ 10.1021/nl501133c
http://dx.doi.org/ 10.1103/physrevlett.114.097403
http://dx.doi.org/ 10.1103/physrevlett.114.097403
http://dx.doi.org/ 10.1103/physrevlett.108.196802
http://dx.doi.org/ 10.1103/physrevlett.108.196802
http://dx.doi.org/10.1103/physrevb.85.205302
http://dx.doi.org/10.1103/physrevb.85.205302
http://dx.doi.org/10.1103/physrevb.86.115409
http://dx.doi.org/10.1103/physrevlett.111.216805
http://dx.doi.org/10.1103/physrevlett.111.216805
http://dx.doi.org/10.1103/physrevb.89.125309
http://dx.doi.org/10.1103/physrevb.89.125309
http://dx.doi.org/10.1103/physrevb.91.075310
http://dx.doi.org/10.1103/physrevb.91.075310
http://dx.doi.org/10.1103/physrevb.92.085413
http://dx.doi.org/10.1103/physrev.78.29
http://dx.doi.org/10.1103/physrev.78.29
http://dx.doi.org/10.1016/0022-3697(56)90004-x
http://dx.doi.org/10.1103/physrev.108.1384
http://dx.doi.org/10.1088/0953-8984/20/19/193202
http://dx.doi.org/10.1088/0953-8984/20/19/193202
http://dx.doi.org/ 10.1103/physrevlett.95.137204
http://dx.doi.org/ 10.1103/physrevlett.95.137204
http://dx.doi.org/10.1103/physrevlett.101.106401
http://dx.doi.org/10.1103/physrevb.84.045403
http://dx.doi.org/10.1103/physrevb.87.245416
http://dx.doi.org/10.1103/physrevb.87.245416
http://dx.doi.org/ 10.1103/physrevlett.99.236809
http://dx.doi.org/ 10.1103/physrevlett.99.236809
http://dx.doi.org/10.1088/0953-8984/12/9/201
http://arxiv.org/abs/1404.4238
http://dx.doi.org/10.1103/physrevb.43.6530
http://dx.doi.org/10.1103/physrevb.43.6530
http://arxiv.org/abs/1507.04040

	Berry phase modification to the energy spectrum of excitons
	Abstract
	 References


