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ABSTRACT
The detection and characterization of filamentary structures in the cosmic web allows cosmol-
ogists to constrain parameters that dictate the evolution of the Universe. While many filament
estimators have been proposed, they generally lack estimates of uncertainty, reducing their
inferential power. In this paper, we demonstrate how one may apply the subspace constrained
mean shift (SCMS) algorithm (Ozertem & Erdogmus 2011; Genovese et al. 2014) to uncover
filamentary structure in galaxy data. The SCMS algorithm is a gradient ascent method that
models filaments as density ridges, one-dimensional smooth curves that trace high-density
regions within the point cloud. We also demonstrate how augmenting the SCMS algorithm
with bootstrap-based methods of uncertainty estimation allows one to place uncertainty bands
around putative filaments. We apply the SCMS first to the data set generated from the Voronoi
model. The density ridges show strong agreement with the filaments from Voronoi method. We
then apply the SCMS method data sets sampled from a P3M N-body simulation, with galaxy
number densities consistent with SDSS and WFIRST-AFTA, and to LOWZ and CMASS data
from the Baryon Oscillation Spectroscopic Survey (BOSS). To further assess the efficacy
of SCMS, we compare the relative locations of BOSS filaments with galaxy clusters in the
redMaPPer catalogue, and find that redMaPPer clusters are significantly closer (with p-values
<10−9) to SCMS-detected filaments than to randomly selected galaxies.

Key words: methods: data analysis – methods: statistical – cosmology: observations – large-
scale structure of Universe.

1 IN T RO D U C T I O N

Observations of the local universe made over the last four decades
show that on megaparsec scales, matter is distributed in web-like
structures – clusters, filaments, sheets, and voids – that arise natu-
rally from the non-linear evolution of initially small density fluc-
tuations (Peebles 1980; Bond, Kofman & Pogosyan 1996; Jenkins
et al. 1998; Colberg, Krughoff & Connolly 2005; Springel et al.
2005; Dolag et al. 2006). Of particular interest to us are the fila-
ments, one-dimensional structures that connect galaxy clusters and
form at the boundaries of empty voids. Filaments are of interest for
several reasons. The detection and characterization of filaments at
a range of redshifts provides a means by which cosmologists can
constrain theories of the universe’s evolution (Bond et al. 1996;
Zhang et al. 2009, 2013). Filaments also influence the shape, angu-
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lar momentum, and peculiar velocities of dark matter haloes (Hahn
et al. 2007b,a; Paz, Stasyszyn & Padilla 2008; Hahn et al. 2009;
Zhang et al. 2009; Jones, van de Weygaert & Aragón-Calvo 2010;
Zhang et al. 2013; Forero-Romero, Contreras & Padilla 2014), as
well as the intrinsic alignments and luminosities of nearby galaxies
(Clampitt et al. 2014; Codis et al. 2014; Guo, Tempel & Libeskind
2015).

As the review of Cautun et al. (2014) amply demonstrates,
the detection of filamentary structure is a non-trivial problem for
which many solutions have been proposed. These solutions in-
clude methods that examine the Hessian matrix of the galaxy
density field, such as the multiscale morphology filter (MMF;
Aragón-Calvo et al. 2007; Aragón-Calvo, van de Weygaert &
Jones 2010a) and NEXUS and NEXUS+ (Cautun, van de Wey-
gaert & Jones 2013), as well as segmentation-based methods,
such as the Candy model (Stoica et al. 2005; Stoica, Martinez &
Saar 2007), the skeleton (Novikov, Colombi & Doré 2006), the
Spine method (Aragón-Calvo et al. 2010b), and DisPerSE mod-
els (Sousbie 2011), and the path density method (Genovese et al.
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Cosmic web reconstruction 1141

Figure 1. Examples of ridges (blue curves) in a smooth function.

2009). While all of these methods provide estimates of filamentary
structure, none provide an assessment of estimator uncertainty.
The fact that filament estimates are random sets presents a sig-
nificant challenge to the construction of valid uncertainty measures
(Molchanov 2005).

In this paper, we introduce a new method for filament detection
based on the Subspace Constrained Mean Shift (SCMS) algorithm
of Ozertem & Erdogmus (2011). The statistical properties of SCMS
were studied in Genovese et al. (2014). The mathematical proper-
ties of density ridges and the statistical consistency of SCMS are
discussed in Eberly (1996); Genovese et al. (2014), and Chen, Gen-
ovese & Wasserman (2015a), respectively, while Chen et al. (2015a)
introduce an uncertainty measure to the ridge formalism that allows
one to quantitatively assess, in the context of the current paper,
putative cosmic filaments.

In Section 2, we describe the SCMS algorithm and the meth-
ods we use to assess the uncertainty of its filament estimates. In
Section 3, we apply SCMS, first to a P3M N-body simulation
output (Trac, Cen & Mansfield 2015), and then to low-redshift
(0.235 ≤ z ≤ 0.240) and high-redshift (0.530 ≤ z ≤ 0.535) data
collected by the Baryon Oscillation Spectroscopic Survey (BOSS),
which was released as part of SDSS Data Release 11. We also
demonstrate the consistency between filaments detected by SCMS
and galaxy clusters listed in the redMaPPer catalogue. In Section 4,
we summarize our results and offer possible avenues for future
methodological development. In Appendix A, we provide further
detail on how to optimally select values for the tuning parameters
of the SCMS algorithm, while in Appendix B, we apply the algo-
rithm to labelled simulated data generated via the Voronoi model
of van de Weygaert (1994) to show that it preferentially detects
structures labelled as filaments. In a second paper, we will provide
a full catalogue of filaments detected in SDSS data.

2 SC M S : A L G O R I T H M

2.1 Density ridge formalism

Assume that we observe n galaxies with locations X1, . . . , Xn that
are d-dimension points; for data from typical astronomical surveys,
d = 2 (if the galaxies are constrained to a redshift shell) or d = 3. We

model X1, . . . , Xn as random variables sampled from an unknown
density function p.

Formally, a density ridge (Eberly 1996; Ozertem & Erdogmus
2011; Chen, Genovese & Wasserman 2014; Chen et al. 2015a;
Genovese et al. 2014) of p is defined as follows. Let g(x) = ∇p(x)
and H(x) be the gradient and Hessian, respectively, of p(x) and let
v1(x), . . . , vd(x) be the eigenvectors of the Hessian matrix, with
associated eigenvalues λ1(x) ≥ λ2(x) ≥ . . . ≥ λd(x). We define V(x)
to be the matrix of all eigenvectors orthogonal to the first, [v2(x),
. . . , vd(x)], and the ridge set R as

R ≡ Ridge(p) = {x : G(x) = 0, λ2(x) < 0} , (1)

where

G(x) = V (x)V (x)T g(x) (2)

is the projected gradient. The fact that ridges have projected a
gradient of 0 (and second eigenvalues being negative) means that
ridges are local maximums in the subspace spanned by eigenvectors
v2(x), . . . , vd(x). When p is smooth and the eigengap

β(x) = λ1(x) − λ2(x) (3)

is positive, the ridges have the properties of filaments, i.e. smooth
curve-like structures with high density (see Fig. 1). Note that R
will include modes of the density p which, in the context of cosmic
filament detection, means that R contains both filaments and galaxy
clusters. Also note that density ridges are more general objects than
the skeleton models proposed in Novikov et al. (2006); Sousbie
et al. (2008) and the Spine method (Aragón-Calvo et al. 2010b).
Essentially, when d = 2, 3, density ridges are the same as skeletons.

Compared with other models, density ridges adapt information
from both gradient and Hessian matrix of density. In contrast,
MMF (Aragón-Calvo et al. 2007, 2010a), NEXUS, and NEXUS+
(Cautun et al. 2013) only use the information of second deriva-
tives (they define filaments as the regions with λ2(x) < 0 and
λ1(x) ≈ λ2(x) > λ3(x)). DisPerSE models (Sousbie 2011) define
filaments as those gradient flows that start from saddle points and
end up at local maximums, which utilize only the first derivatives.

An attractive feature for the density ridge model is that the sta-
tistical theory for consistently estimating the density ridge has been
well established (Chen et al. 2014, 2015a; Genovese et al. 2014).

MNRAS 454, 1140–1156 (2015)

 at C
arnegie M

ellon U
niversity on M

arch 2, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


1142 Y.-C. Chen et al.

Figure 2. Pictorial overview of the SCMS algorithm (Step 4 in Algorithm 1). Each point in an initially uniform mesh (the blue dots in the top-left panel) is
moved to the closest density ridge (bottom right). The top-middle, top-right, bottom-left, bottom-middle, and bottom-right panels indicate the locations of the
mesh points after 1, 2, 4, 8, and 16 iterations of the algorithm, respectively.

We also use N-body simulation to verify the convergence of den-
sity ridges when we subsample different number of galaxies (see
Section 3.2).

2.2 SCMS: filament detection

The algorithm consists of three steps described below and listed in
Algorithm 1. The first is to estimate the underlying density function
p(x) given X1, . . . , Xn, the observed locations of galaxies. We use
the standard kernel density estimator (see e.g. Wasserman 2006):

p̂(x) = 1

nhd

n∑
i=1

K

( ‖x − Xi‖
h

)
, (4)

where K(·) is the smoothing kernel (e.g. a Gaussian), ‖x − Xi‖ is the
Euclidean distance between the point x, and the ith galaxy location
Xi, and h is the smoothing bandwidth (the selection of which is
discussed in Appendix A).

In the second step, we denoise by applying a threshold to the
estimated density function p̂(x) to eliminate the effect that galaxies
in low-probability density regions, i.e. where p̂(x) < τ , would have
on filament estimation. How one selects τ is also discussed in
Appendix A. The denoising step is not part of the original SCMS
algorithm but is important to increase its statistical power in low-
density regions (see Fig. 3). We note that a thresholding step is
included in several filament-detection algorithms, including those
of e.g. Novikov et al. (2006) and Sousbie (2011).

For the final step, given a set of galaxies in high-density regions,
we apply the original version of the SCMS (Ozertem & Erdogmus

2011) to detect filamentary structures. Given a point x on a defined,
uniform mesh, SCMS moves it according to an ‘estimated projected
gradient’ given by

Ĝ(x) = V̂ (x)V̂ (x)Tĝ(x) , (5)

where V̂ (x), ĝ(x) are estimates of the quantities V(x), g(x) that
we define above in Section 2.1. One may view this procedure as
estimating a ridge set R by applying the Ridge operator to p̂:

R̂ = Ridge(p̂). (6)

Essentially, R̂ is very similar to the filaments defined in Sousbie
et al. (2008), Bond, Strauss & Cen (2010), and Choi et al. (2010).
Note that a putative filament is, in the context of this algorithm, a
set of points and not a one-dimensional curve. In step 4 of Algo-
rithm 1, We further describe how we apply SCMS. In Fig. 2, we
illustrate the application of SCMS to uniform mesh of points, and
in Fig. 3 we demonstrate the importance of the thresholding step:
the left and right panels show putative filaments detected without
and with thresholding, respectively. We observe that thresholding
greatly decreases the rate of false filament detection. Fig. 4 presents
an example for applying algorithm 1.

2.3 SCMS: filament uncertainty estimation

We quantify the uncertainty in the filament estimates produced by
SCMS using the concept of local uncertainty (Chen et al. 2015a).
The local uncertainty in an estimated filament R̂ at a point x on the
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Cosmic web reconstruction 1143

Figure 3. An example of the comparison of SCMS with and without noise removal. This is a simple simulated data set with clutter noise. As can be seen
easily, thresholding the density removes problems of clutter noise.

Figure 4. An example of the application of SCMS. (a) The original data. (b) Contour plot showing the kernel density estimate of the density p. (c) The ridge
estimate (blue curve). Note that in (b), we remove points where the estimated density is less than a threshold τ .

Algorithm 1 SCMS (Subspace Constrained Mean Shift)
Input: Data {X1, . . . , Xn}. Smoothing bandwidth h. Threshold τ .

Step 1. Compute the density estimator p̂(x) via equation (4).
Step 2. Select a mesh M of points. By default, we can take M = {X1, . . . , Xn}.
Step 3. Thresholding: remove m ∈ M if p̂(m) < τ . Let the remaining mesh points be denoted M′.
Step 4. For each x ∈ M′, perform the following subspace constrained mean shift until convergence:
Step 4-1. For i = 1, . . . , n, compute

μi = x − Xi

h2
, ci = K

(
x − Xi

h

)
Step 4-2. Compute the Hessian matrix

H (x) = 1

n

n∑
i=1

ci

(
μiμ

T
i − 1

h2
I
)

. (7)

Step 4-3. Perform spectral decomposition on H (x) and compute V (x) = (v2(x), . . . , vd (x)), the eigenvectors corresponding
to the smallest d − 1 eigenvalues.

Step 4-4. Update x ←− V (x)V (x)T m(x) + x until convergence, where

m(x) =
∑n

i=1 ciXi∑n
i=1 ci

− x (8)

is called the mean shift vector.

Output: The collection of all remaining points.

true filament R is the expected distance between x and the closest
point to x on R̂. This is denoted by ρ(x) and is given by

ρ(x) =
⎧⎨
⎩

√
E

[
d2

R̂
(x)

]
if x ∈ R

0 otherwise
, (9)

where dR̂(x) = min{‖x − y‖ : y ∈ R̂} and the notation E[·] de-
notes the expected value operator. ρ(x) is the radius of a local
confidence ball that surrounds the point x: the more uncertain
the true location of the estimated filament, the larger the value
of ρ(x). We estimate ρ(x), which is defined as a function of the un-
known density field p and the unknown filament set R, by utilizing
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1144 Y.-C. Chen et al.

Figure 5. An illustration of the uncertainty measure for SCMS. In (a), we display the uncertainty measures with different colour (red: highly uncertain). The
unit to the colour is the same as x and Y axis. In (b), we show the uncertainty measures by a grey region around the filament (blue). Note that this shows that
the SCMS has more uncertainty measures around the highly curved regions and the end points.

Algorithm 2 Uncertainty Measure for SCMS
Input: Data {X1, . . . , Xn}. Smoothing bandwidth h. Threshold τ .

Step 1. Perform SCMS on {X1, . . . , Xn} to detect filaments; denote the estimated filaments by R̂.. . .
Step 2. Generate B bootstrap samples: X

∗(b)
1 , . . . , X∗(b)

n for b = 1, . . . , B.
Step 3. For each bootstrap sample, apply SCMS which yields R̂∗(b) for b = 1, . . . , B.
Step 4. For each x ∈ R̂, calculate ρ2

(b)(x) = d2(x, R̂∗(b)), b = 1, . . . , B.

Step 5. Compute ρ̂(x) = [
mean{ρ2

1 (x), . . . , ρ2
B (x)}]1/2

.
Output: ρ̂(x).

bootstrap resampling. Fig 5 presents an example for uncertainty
measures.

In this paper, we consider both the original version of bootstrap
(Efron 1979) and the smooth bootstrap (SB). The SB (see e.g. Sil-
verman & Young 1987) is a variant of the bootstrap that is useful
in functional estimation problems in which the bootstrap sample
is drawn from the estimated density p̂ instead of the original data.
When the smoothing kernel is a bivariate Gaussian, we generate the
SB sample via the following two steps.

1. Generate the bootstrap sample.
2. Add independent and identically distributed Gaussian noise

with variance h2.

Unlike the bootstrap, the SB takes into account both the vari-
ance and the bias of filament estimation, but with less precision in
variance estimation with respect to the bootstrap.

Assume we generate B bootstrap samples, and each of them
is denoted as {X∗(b)

1 , . . . , X∗(b)
n }, b = 1, . . . , B. For each bootstrap

sample, say X
∗(b)
1 , . . . , X∗(b)

n , we compute the density estimate p̂∗(b),
the ridge estimate R̂∗(b) = Ridge(p̂∗(b)), and the confidence ball
radii ρ(b)(x) for all x ∈ R̂. We estimate ρ(x) by adding the B radius
estimates in quadrature:

ρ̂(x) =
√√√√ 1

B

B∑
b=1

ρ2
(b)(x) , (10)

In Algorithm 2, we outline the computational steps that one must
follow to derive ρ̂(x).

Note that calculating the uncertainty measure is not part to the
SCMS algorithm – we can detect filaments without using the uncer-
tainty measure. However, this uncertainty measure is a feature that

SCMS filaments have. This measure has a geometric interpretation
and can be consistently estimated. See Chen et al. (2015a) for more
involved discussion. Note that other filament finders do have such
a statistically consistent error measurement.

2.4 SCMS: boundary bias

When computed with a kernel density estimator as in equation (4),
SCMS filament estimates suffer from boundary bias within approx-
imately two bandwidths of the edge of the observation region. This
is a systematic deviation from the true filament caused by the density
estimator averaging over a region where no data can be observed,
and it can degrade the confidence band coverage probabilities near
the boundary. One remedy for boundary bias is to include additional
data immediately outside of the region of interest. Including galaxies
within 2h of the boundaries eliminates most of the boundary bias,
since very little of the volume under a bivariate Gaussian kernel
lies beyond that point. If one cannot include additional data points
outside the boundaries (for instance, due to overall survey limits),
then one must be careful when interpreting filaments detected near
the boundaries.

2.5 Filament coverage

Here, we introduce some useful geometric concepts about coverage.
Given two sets A and B. The coverage of B by A is defined as

CovB (A) = Number of points in (A ∩ B)

Number of points in B
. (11)

Note that when A and B are curves, they will contain infinite number
of points. In this case, we will replace ‘number of points in’ by ‘the
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Cosmic web reconstruction 1145

length of’. Similarly, we can define the coverage of A by B as
CovA(B).

Given two collections of filaments R1 and R2, since R1 and R2 are
curves so that they may not intersect each other in general so that the
coverage is 0. Thus, instead of directly compute their coverage, we
consider a flatten version of R1 (and R2, respectively). We define

R1⊕r = {x : d(x, R1) ≤ r} (12)

as the r-flatten set of R1. Then we define the coverage of R2 by R1

as a function of r as

CovR2 (r; R1) = Number of points in (R2 ∩ (R1⊕r))

Number of points in R2
. (13)

Similarly, we can define CovR1 (r; R2). The two functions
CovR1 (r; R2) and CovR2 (r; R1) contain information about the sim-
ilarity between R1 and R2.

In simulation, we are able to define true filaments, say Rtrue,
and we will have an estimate filament, denoted as R̂n. Then we
call the quantity CovRtrue (r; R̂n) the true positive coverage (ratio of
true filaments being covered by estimated filaments) and we call
1 − CovR̂n

(r; Rtrue) the false positive coverage (CovR̂n
(r; Rtrue) is

the ratio of estimated filament being covered by truth so that 1 minus
this ratio is the ratio of false positive).

Combining the uncertainty measures and the coverage, we can
study the properties of the uncertainty band.. An uncertainty band
for a detected filament is simply the union of the confidence balls
computed for each point on the filament, i.e.

Û (k) = R̂⊕kρ̂ ≡
⋃
x∈R̂

B(x, kρ̂(x)) , (14)

where B(x, r) = {y: ‖x − y‖ ≤ r} represents the set of points within
a ball centred at x and with radius r. Denote the region within the
uncertainty band as A. The coverage for A is then

FCov(A) = CovRtrue (A)

= Number of points in (A ∩ Rtrue)

Number of points in Rtrue
. (15)

One can think of FCov(A) as the true positive coverage using a set A.
For instance, if FCov(A) = 0.8, then on average, 80 per cent of the
points on any given true filament lie within its associated uncertainty
band, and 20 per cent lie outside the band. This interpretation of
coverage differs from the standard interpretation of confidence band
coverage, thus motivating our use of the term ‘uncertainty band’
instead of ‘confidence band’.

3 SCMS: APPLICATIONS

3.1 Voronoi data set

To show the effectiveness of capturing filaments, we compare the
SCMS filaments (density ridges) to the filaments in the Voronoi
model. The Voronoi model (van de Weygaert 1994) applies Voronoi
tessellation to compute a density estimate for galaxies as well as the
curvature of that estimate. Given a curvature estimate, the Voronoi
method assigns a class label to each galaxy, indicating the type of
large-scale structure to which to associate the galaxy. There are four
possible classes: cluster, filament, wall, and void.

We use the SCMS algorithm to analyse a simulated data set (2563

galaxies, each with a class label, that span a 100 × 100 × 100 Mpc3

box) generated with the Voronoi model (M. A. Aragón-Calvo, pri-
vate communication). Fig. 6 shows a comparison between our den-
sity ridges (blue curves) and galaxies with different class labels

(brown: cluster; red: filament; green: wall; pink: void).
The two methods generate remarkably similar results: Voronoi clus-
ters (i.e. galaxies labelledcluster) occur at the intersection points
of density ridges; Voronoi filaments surround the density ridges; and
Voronoi walls span surfaces on which the density ridges lay.

To further quantify the association between density ridges and
each Voronoi model class, we study their projection distances on
to each other. Note that the distribution of projection distances is
related to filament coverage; further discussion of this may be found
in Chen et al. (2015b). Fig. 7 displays the distributions of projection
distances. In both the panels, we see that the distribution for ridges
versus the Voronoi filaments peaks at distances � 1 h−1 Mpc. This
indicates that the density ridges and the Voronoi filaments are very
similar. On the other hand, the projection distances from the den-
sity ridges increases as we consider clusters, walls, and voids; the
distributions exhibit increasing positive skewness.

3.2 P3M N-body simulation

To further demonstrate the efficacy of SCMS, we apply it to P3M
N-body simulations from Trac et al. (2015), which assume a �CDM
cosmology with �m = 0.3, �l = 0.7, �b = 0.045, h = 0.7, σ 8 = 0.8
and ns = 0.96. Each side of the simulation box is of length 1 Gpc h−1,
and each contains 20483 particles.

In Fig. 8, we demonstrate that, as sample size increases, SCMS
outputs filament estimates that are closer to the true filaments (de-
fined by the true density function); the uncertainty measures capture
SCMS errors due to the sampling variability. We take a slice of the
full simulation data (x, y ∈ [125, 375] Mpc h−1 and z ∈ [100, 105]
Mpc h−1) and smooth the data with smoothing bandwidth h = 5
(recommended by the selection rule in Appendix A with A0 = 0.4)
to get the density function and the filaments (cyan curves). Fig. 8(a)
shows a contour plot for the density function. The original sliced
data contains 88 406 points (grey dots). We downsample to get three
different subsamples; each contains 250 / 2500/10 000 particles.
For each subsample (black dots), we apply SCMS to detect filaments
(blue curves). Note that the convergence phenomena of Fig. 8 are
further quantified by the true positive and false positive coverage
plot in Fig. 9.

Note that the sparsest subsample n = 250 has a galaxy num-
ber density 5.56 × 10−4 Mpc−3 which is similar to the number
density observed in SDSS CMASS data (∼4 × 10−4 Mpc−3). The
future survey Wide-Field Infrared Survey Telescope (WFIRST),1 a
NASA mission with science objectives in exoplanet exploration,
dark energy research, and galactic and extragalactic surveys, will
observe a number density similar to the n = 2500 subsample
(∼5.56 × 10−3 Mpc−3).

We show the uncertainty measures and filament coverage for
n = 2500 in Fig. 10. We plot filament coverage for confidence
regions Û (k) for k ∈ (0, 3) in Fig. 10(a), where n = 250 and 2500,
and where ρ̂ is estimated by both the bootstrap (BT) and the SB.
This range contains sample sizes that are in line with both CMASS
(n ≈ 250) and WFIRST (n ≈ 2500) data. We observe that filament
coverage is, as noted above, sensitive to the sample size n and that
the SB provides considerably more conservative confidence bands,
particularly for k � 2. The grey regions displayed in Fig. 10(b)
are the SB confidence regions Û (1), which we estimate contain
85 per cent of the true filaments (cyan curves).

1 http://wfirst.gsfc.nasa.gov/
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1146 Y.-C. Chen et al.

Figure 6. A comparison between density ridges and Voronoi model. In each panel, the blue curves are density ridges using all galaxies. Panels (b)–(e) display
the comparison of density ridges to the Voronoi clusters, filaments, walls and voids. In the panel (c), we see a remarkable similarity between density ridges and
the Voronoi filaments.

��

�

�

�

�

�

�
�

� � � � � � � � � � � �

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4

Distance (Mpc/h)

D
is

tr
ib

ut
io

n

�

�

�

�

�

�
� � � � � � � � � � � � � �

�

�

�

�

�

�

�

�

�

�
� � � � � � � � � �� � � �

�
�

�
�

�
�

�
� � � � � �

� �
�

Clusters (Voronoi) cover Ridges
Filaments (Voronoi) cover Ridges
Walls (Voronoi) cover Ridges 
Voids (Voronoi) cover Ridges

�

�

�

�

�

�
� �

�

�

�

�

�

�

�

�

�

�

�

�

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

Distance (Mpc/h)

D
is

tr
ib

ut
io

n

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�
�

� � � �

�

�

�

�
�

�

�
�

�

�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� � �

� � � � � � � � � �

Ridges cover Clusters (Voronoi)
Ridges cover Filaments (Voronoi)
Ridges cover Walls (Voronoi)
Ridges cover Voids (Voronoi)

Figure 7. The distributions for projection distances from Voronoi-model-derived structures on to density ridges (left-hand panel) and vice-versa (right-hand
panel). Both panels indicate that density ridges trace structures most similar to Voronoi filaments.

Fig. 11 illustrates the effect of boundary bias in the n = 2500 sub-
sample by comparing the estimates and uncertainties with padded
and unpadded data near the boundary. Panels (a) and (b) show the
boundary bias. Note that the red curves are filaments estimated
by using only points within the boundary (given by the orange
rectangle). The blue curves are filaments detected by SCMS with
boundary points (i.e. points outside the orange rectangle). As can
be seen, the estimation of filaments without boundary data (red

curves) becomes more inaccurate as we approach the boundary.
The boundary bias occurs for filaments with distances less than
10 Mpc h−1 (2 times smoothing parameter h) to the boundaries.
The uncertainty measures also show the influence of boundary bias.
Fig. 11(c) and (d) exhibit the uncertainty measures for filaments
estimated with and without boundary points. As expected, the un-
certainty measures in the panel (d) increase as we move close to the
boundary.

MNRAS 454, 1140–1156 (2015)

 at C
arnegie M

ellon U
niversity on M

arch 2, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


Cosmic web reconstruction 1147

Figure 8. A simulated example to show the consistency of SCMS. This data is a slice of an N-body simulation in a box; the unit of X and Y axes is Mpc h−1.
We take a slice with width 5 Mpc h−1. The original sample contains 88 406 particles. The colour contour is the galaxy density field from the original sample
with smoothing parameter h = 5 and the true filaments (cyan) are density ridges of this density field. We subsample under various sizes. The blue curves are
estimated filaments based on the subsample (black dots). One can see a clear pattern; as sample size (for the subsample) increases, the estimated filaments are
closer to the true filaments. See Section 3.2 for more details.

Figure 9. True positive and false positive coverage. As can be seen, for all distances, the true positive coverage increases with sample size, whereas the false
positive coverage decreases.
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1148 Y.-C. Chen et al.

Figure 10. Filament coverage based on the uncertainty measure. (a) The filament coverage FCov(Û (k)) as a function of k (x-axis). We also provide the
coverage for Gaussian distribution (probability being within kσ to the centre of Gaussian) as a reference. (b) Visualizing the uncertainty by colour and a
confidence set for the subsample with n = 2500 with the uncertainty measure estimated via the SB. The cyan curves are the true filaments. Note that the grey
regions are Û (k), k = 1, equivalent to the error bar for 1σ , based on the SB estimate. From panel (a), we know that the grey regions contain about 85 percent
true filaments (cyan curves). The unit to the colour in uncertainty band is Mpc, the same as X and Y axes.

3.3 Sloan digital sky survey

3.3.1 Data

We further demonstrate the efficacy of SCMS by applying it to data
from Data Release 12 (Alam et al. 2015) of the Sloan Digital Sky
Survey (SDSS; York et al. 2000). Together, SDSS I, II (Abazajian
et al. 2009), and III (Eisenstein et al. 2011) used a drift-scanning
mosaic CCD camera (Gunn et al. 1998) to image over one third
of the sky (14 555 deg2) in five photometric bandpasses (Fukugita
et al. 1996; Smith et al. 2002; Doi et al. 2010) to a limiting magni-
tude of r � 22.5, using the dedicated 2.5-m Sloan Telescope (Gunn
et al. 2006) located at Apache Point Observatory in New Mex-
ico. The imaging data were processed through a series of pipelines
that perform astrometric calibration (Pier et al. 2003), photometric
reduction (Lupton et al. 2001), and photometric calibration (Pad-
manabhan et al. 2008). All of the imaging was reprocessed as part
of SDSS Data Release 8 (Aihara et al. 2011).

The Baryon Oscillation Spectroscopic Survey (BOSS) has ob-
tained spectra and redshifts for 1.35 million galaxies over a footprint
covering 10 000 deg2. These galaxies are selected from the SDSS
(Aihara et al. 2011) imaging and are being observed together with
160 000 quasars and approximately 100 000 ancillary targets. The
targets are assigned to tiles of diameter 3◦ using a Blanton et al.
(2003) algorithm that is adaptive to the density of targets on the sky
(Blanton et al. 2003). Spectra are obtained using the double-armed
BOSS spectrographs (Smee et al. 2013). Each observation is per-
formed in a series of 900-s exposures, integrating until a minimum
signal-to-noise ratio is achieved for the faint galaxy targets. This
ensures a homogeneous data set with a high-redshift completeness
of more than 97 per cent over the full survey footprint. Redshifts are
extracted from the spectra using the methods described in Bolton
et al. (2012). A summary of the survey design appears in Eisenstein
et al. (2011), and a full description is provided in Dawson et al.
(2013).

BOSS selects two classes of galaxies to be targeted for spec-
troscopy using SDSS (Aihara et al. 2011) imaging: ‘LOWZ’ and
‘CMASS’ (we refer the reader to Anderson et al. 2014 for further

description of these classes). For the LOWZ sample, the effective
redshift is zeff = 0.32, slightly lower than that of the SDSS-II lumi-
nous red galaxies (LRGs) as we place a redshift cut z < 0.43. The
CMASS selection yields a sample with a median redshift z = 0.57
and a stellar mass that peaks at log10(M/M�) = 11.3 (Maraston
et al. 2013). Most CMASS targets are central galaxies residing in
dark matter haloes of mass ∼1013 h−1 M�.

We test SCMS using two slices of data: at low and high redshift.
The low-z data set comprises 1158 galaxies in the volume

135◦ ≤ RA ≤ 175◦,5◦ ≤ δ ≤ 45◦,0.235 ≤ z ≤ 0.240

while the high-z data set lies in the volume

135◦ ≤ RA ≤ 175◦,5◦ ≤ δ ≤ 45◦,0.530 ≤ z ≤ 0.535

and contains 4678 galaxies. Both samples have a very thin redshift
range �z = 0.005 (the corresponding comoving distance is around
14–21 Mpc) so that their constituent galaxies may be viewed as
lying on a two-dimensional surface with coordinates (RA,δ).

There are two principal reasons for our choice to perform a two-
dimensional analysis of the SDSS data. The first is that there is
too large a change in the number density of detected galaxies over
the SDSS redshift range. The SCMS algorithm incorporates kernel
density estimation to locate density ridges, and KDE requires a fixed
smoothing parameter h. However, in low-density regions, h should
be large to obtain reliable results, while in high-density regions,
h has to be small so as to not oversmooth the point cloud. The
second reason is that when z > 0.2, the number density is very low,
and performing a three-dimensional analysis will produce results
with large statistical errors due to the small sample size. Lower
dimensional analyses result in decreased statistical error; see e.g.
Wasserman 2006.

3.3.2 Results

We apply SCMS to the low-z data with smoothing bandwidth
h = 2.◦50 (41.8 Mpc) and threshold level τ = 1.02 × 10−3; we
display our results in Fig. 12. For the high-z data, h and τ are 2.◦03
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Cosmic web reconstruction 1149

Figure 11. Simulated example with sample size 2500 that demonstrates the boundary bias of SCMS. To demonstrate this bias, we remove points outside the
orange rectangle (the so-called boundary points). (a) and (b): comparisons between SCMS with boundary points (blue) and SCMS without boundary points
(red). As can be seen, the bias (between red and blue curves) is large for filaments whose distance to the boundary are less than 10 Mpc h−1 (2 × smoothing
bandwidth h). (c) and (d): uncertainty measure for the filaments with and without boundary points. Notice that in (d), filaments near the boundary tend to have
much higher uncertainty. The unit to the colour in uncertainty band is Mpc, the same as X and Y axes.

Figure 12. Application of SCMS to low-z data (z = 0.235–0.240). The blue curves are filaments detected by SCMS.
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1150 Y.-C. Chen et al.

Figure 13. Application of SCMS to high-z data (z = 0.530–0.535). The blue curves are filaments detected by SCMS.

Figure 14. Local uncertainty estimates for our low-z SDSS data set (z = 0.235–0.240). We display the amount of uncertainty via colour (red: high) and a
confidence band in (a), (b) using both ordinary bootstrap and the SB. The filament points surrounded by yellow colours are those with high uncertainty and are
declared as ‘unstable’. Based on the simulation result in Fig. 10, we expect that the grey regions in plot (a) contain about 50 percent true filaments and in (b)
contain 85 percent true filaments. The unit to the colour in uncertainty band is degree.

(71.1 Mpc) and τ = 7.52 × 10−4, respectively; we display our
results in Fig. 13. Note that we have included additional galaxies
within 5◦ of our selected window to mitigate boundary bias.

As can be seen in Figs 12 and 13, SCMS filament estimates cap-
ture high density regions and they exhibit one-dimensional, nearly
connected structures. In addition, SCMS yields smooth filaments;
most filament estimators do not output such smooth structures (cf.
Stoica et al. 2005, 2007; Sousbie 2011; Aanjaneya et al. 2012; Lecci,
Rinaldo & Wasserman 2013). We note that the filaments detected by
SCMS will not actually connect with each other; points on merging
filaments have eigengap β (equation 3) that asymptote towards 0,
making the density ridge ill-defined since the first and second eigen-
values become equal. We note that in both figures there are possibly
spurious filaments; for instance, in Fig. 12, at (RA,δ)=(165◦, 40◦)
and (165◦, 20◦), we see filaments that are associated with a rela-
tively small number of galaxies. As we demonstrate below, these
putative filaments have higher estimates of uncertainty.

We derive the uncertainties for the filament estimators as de-
scribed in Section 2.3 from the two test data sets; the results for
low-z and high-z samples are given in Figs 14 and 15, respectively.
We visualize local uncertainty using colour, where red indicates

locations where the filamentary structure is highly uncertain. We
also display uncertainty regions as bands of varying width (shown
in grey) centred on the filaments. Our simulation study in Sec-
tion 3.2 indicates that the filament coverage FCov for the regions
in Figs 14(a) and 15(a) is ≈45 percent, while that in Figs 14(b)
and 15(b), is ≈60 percent. We find that the overall structure for fil-
aments in the high-z data set is more stable than for the low-z data,
due to the significantly larger size of the high-z data set; as shown
in Fig. 8, sample size plays a crucial role in determining the size of
the uncertainty regions associated with SCMS filament estimates.

As can be inferred from Figs 14 and 15, our measures of local
uncertainty provide useful information to determine the quality of
filament detections. We declare a point x ∈ R̂ to be ‘unstable’ if

ρ̂(x) ≥ ρ̄ + 1.69σρ, (16)

where ρ̄ is the mean of uncertainty over all filament points and σρ is
the root mean square of uncertainty. Namely, if the local uncertainty
at x is too large, this point is not stable. The constant 1.69 comes
from the width of 90 percent confidence interval for a Gaussian
distribution. For instance the two filaments at (RA,δ) = (165◦, 40◦)
and (165◦, 20◦) in Fig. 12 appear by eye to be spurious, given the
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Cosmic web reconstruction 1151

Figure 15. Local uncertainty estimates for our high-z SDSS data set (z = 0.530–0.535). We display the amount of uncertainty via colour (red: high) and a
confidence band in (a), (b) using both ordinary bootstrap and the SB. The filament points surrounded by yellow colours are those with high uncertainty and are
declared as ‘unstable’. Based on the simulation result in Fig. 10, we expect that the grey regions in plot (a) contain about 50 percent true filaments and in (b)
contain 85 percent true filaments. The unit to the colour in uncertainty band is degree.

Figure 16. Comparison of SCMS filaments to redMaPPer galaxy clusters, for z = 0.145–0.150. Shown are SDSS galaxies (black), putative filaments (blue),
and redMaPPer galaxy clusters (red). As shown in Table 1, the redMaPPer clusters lie significantly closer to filaments than randomly selected points in the
analysis window.

relative lack of galaxies in their vicinity. Based on the uncertainty
measures and our stability test (equation 16), these filaments are
declared as unstable (yellow colour in Fig. 14).

3.3.3 Test Data: comparison to redMaPPer clusters

As one last demonstration of the efficacy of SCMS, we examine the
consistency between our filament maps and the galaxy clusters in
the redMaPPer catalogue (Rozo & Rykoff 2014; Rykoff et al. 2014;
Rozo et al. 2015). We make this comparison within the window

100◦ ≤ RA ≤ 270◦, − 10◦ ≤ δ ≤ 70◦

and within annuli of width �z = 0.005 from zlo = 0.100 to
zhi = 0.500 (a range that includes 10 602 galaxy clusters with spec-

troscopically determined redshifts, or 93.1 percent of the redMaPPer
sample). Note that we also include SDSS DR7 main sample galaxy
from NYU VAGC (Blanton et al. 2005; Adelman-McCarthy et al.
2008; Padmanabhan et al. 2008) to detect filaments for low-redshift
regions (z < 0.25). We slice the data primarily for computational
efficiency, since SCMS is an O(n2) algorithm, but slicing has the
ancillary benefit of simplifying visualization. In total, we exam-
ine 80 slices, each of which contains ≈100 galaxy clusters. Within
each slice, we determine optimal values of h and τ using the criteria
described in Appendix A.

In Fig. 16, we display SCMS-detected filaments along with
redMaPPer clusters (in red). As can be seen, nearly all galaxy
clusters are associated with detected filaments. Qualitatively sim-
ilar results hold for all other slices. To quantify the association of
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1152 Y.-C. Chen et al.

Figure 17. The cumulative distribution of the distance statistics from galaxies to filaments (blue) versus galaxy clusters to filaments (red) at different redshifts.
We also display the distribution for random points (black) as a reference. The galaxy clusters are from redMaPPer catalogue. The unit of distance is ‘degree’.
We only display the first (z = 0.100–0.150) and the last sub-region (z = 0.450–0.500) since other regions have a similar result. The p-value for each region is
given in Table 1.

Table 1. Significances generated from a one-sided, two-sample KS
test, for the null hypothesis that galaxy clusters lie at the same aver-
age distance from filaments as field galaxies. p-value is a statistical
quantity to measure the significance. Typically, the usual rejection
rule requires p < 0.05. The p-values show strong evidence that clus-
ters lie much closer to filaments than field galaxies.

Redshift p-value Redshift p-value

0.100–0.150 4.38 × 10−40 0.300–0.350 1.73 × 10−18

0.150–0.200 1.01 × 10−31 0.350–0.400 1.53 × 10−10

0.200–0.250 1.66 × 10−26 0.400–0.450 7.56 × 10−14

0.250–0.300 2.26 × 10−19 0.450–0.500 1.95 × 10−19

galaxy clusters and filaments, we compare the distance to filaments
for three types of objects: galaxy clusters, galaxies and randomly
generated points within the regions where galaxies are observed.
We divide the whole redshift range z = 0.100–0.500 evenly into
eight sub-regions (each sub-region contains 10 slices); within each
sub-region we compute distance statistics. Ideally, galaxy clusters
should be systematically closer to filaments than galaxies are, and
both galaxies and galaxy clusters should be far closer to filaments
than randomly generated points. Fig. 17 and Table 1 confirm this
hypothesis. Fig. 17 shows the cumulative distribution for these dis-
tance statistics. For a collection of values x1, . . . , xn, the cumulative
distribution function (CDF) is a non-decreasing function ranging
from 0 to 1 defined as

F (x) = 1

n

n∑
i=1

I (xi ≤ x). (17)

Both galaxies (blue curves) and galaxy clusters (red curves) tend to
be much closer to the filaments than random points; this suggests
that galaxies and galaxy clusters are indeed concentrated around
the detected filaments. When we compare galaxies and clusters,
we observe that galaxy clusters are much more right skewed in
the CDF plot for every redshift sub-region. That is, galaxy clusters
tend to distribute around low-distance-to-filament regions compared
to a random galaxy. We conduct the two-sample, one-sided KS
test (Stephens 1974), which compares the distributions of distance
statistics for galaxy clusters and randomly generated points, for all
eight sub-regions. Table 1 shows the p-values, a statistical quantity

measuring the significance of observations, for the eight KS tests
that we carry out. A smaller p-value indicates stronger evidence
for clusters being closer to a filament than galaxies. Typically, we
declare significance as p-value being less than 0.05. We observe
an increasing trend in p-value as the redshift increases, due to the
decrease in the number density of galaxies along the line of sight.
The sharp reversal in this trend at the last sub-region (z = 0.450–
0.500) is due to the large size of the CMASS sample at z > 0.430:
the number density of galaxies in our sample actually increases
from z = 0.430–0.500.

Note that in Fig. 16, many clusters appear to be located near the
intersections of filaments. However, we do not construct a statistics
to summarize this phenomenon since defining the intersections of
filaments detected by SCMS is a non-trivial problem. The main
difficulty is due to the ‘gap’ between filaments; the SCMS filaments
will not intersect each other but with a small gap. This gap can be
explained by the model of density ridges. In the density ridges
model, we require the eigengap β > 0 (recall equation 3) to ensure
the properties of filaments. Therefore, when one ridge merges with
another, the eigengap vanishes at some point (i.e. β = 0). This
leaves a small gap between one ridge and another.

4 SU M M A RY A N D D I S C U S S I O N

In this paper, we demonstrate how one may apply the SCMS
algorithm of Ozertem & Erdogmus (2011) to uncover filamentary
structure in galaxy point cloud data. The density ridge model behind
the SCMS algorithm ensures that galaxies will concentrate around
detected filaments. In addition, we introduce an uncertainty mea-
sure for detected filaments that is based on the bootstrap, allowing
us to study the significance of these filaments.

In Section 3, we first show that the SCMS filaments are very
similar to the Voronoi filaments. Then, we demonstrate the efficacy
of our SCMS-based filament-finding algorithm by applying it both
to P3M N-body simulation output and to SDSS DR 12 data (in-
cluding the NYU main sample galaxy, LOWZ and CMASS data
sets). By applying SCMS to simulated data, we are able to estimate
the coverage of our bootstrap-generated uncertainty bands, i.e. the
fraction of any one true filament that lies within its associated band
(see Fig. 10). We find that the coverage depends sensitively on the
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Cosmic web reconstruction 1153

number of galaxies in an analysed sample, with the SB algorithm
generating more conservative uncertainty bands with 1σ coverage
≈0.6–0.8 (cf. 0.683 for a 1σ confidence band) for galaxy number
densities ≈5 × 10−4–5 × 10−3 (densities observed/to be observed
by SDSS CMASS and WFIRST, respectively).

In Figs 12–15, we show the results of applying the SCMS algo-
rithm to SDSS spectroscopically observed galaxies in the redshift
slices 0.235 ≤ z ≤ 0.240 and 0.530 ≤ z ≤ 0.535, respectively. To test
the hypothesis that our estimated filaments are associated with real
filamentary structures, we compare the distances between filaments
and redMaPPer galaxy clusters, random field galaxies, and ran-
dom points in the galaxy field. By using the one-sided, two-sample
KS test, we find that we can safely reject the null hypothesis that
galaxy clusters and field galaxies reside at similar distances from
filaments; the p-values are � 10−9 (cf. the usual rejection criterion
that p < 0.05; see Table 1).

The SCMS algorithm models filaments as one-dimensional ridges
that trace high-density regions within the point cloud; as such,
SCMS may be grouped with other filament-modelling algorithms
that use the eigenvalues and eigenvectors of the Hessian matrix
associated with the point cloud density function, such as MMF
(Aragón-Calvo et al. 2007, 2010a) and NEXUS/NEXUS+ (Cau-
tun et al. 2013). However, in contrast to these methods, which
output filament estimates as two-dimensional regions, SCMS fila-
ment estimates are smooth, one-dimensional curves; the filament
orientations are well-defined. Also in contrast to these methods, we
offer measures of uncertainty by augmenting the SCMS algorithm
with bootstrap-based uncertainty estimation algorithms that allow
one to e.g. place bands around putative filaments, whose relative
sizes indicate uncertainty in filament location (as in e.g. Fig. 5).
We note that the segmentation-based DisPerSE algorithm of Sous-
bie (2011) uses the persistence ratio, a metric encapsulating the
evolution of topological structure in the galaxy field, to define the
significance of putative filaments, but not their spatial uncertainty.
Finally, we compare SCMS filaments to those generated by the
Spine (Aragón-Calvo et al. 2010b; Aragon-Calvo & Yang 2014)
and Skeleton (Novikov et al. 2006) algorithms. Both the Skeleton
and Spine models look for ridges within a density field. However,
the Skeleton model does not provide a means by which to compute
density ridges. In contrast, the SCMS algorithm allows us to effi-
ciently compute ridges of the field’s kernel density estimate. The
Spine method outputs ridges as points on grids, so that resolution is
an issue. On the other hand, the SCMS algorithm yields points that
are on continuous curves (ridges), so there is no resolution issue to
address.

We conclude by stating that one may extend the use of the SCMS
algorithm beyond the analysis of galaxy point cloud data. For in-
stance, Chen et al. (2014) discuss how to apply the algorithm to
pixelized image data; in particular, they modify the algorithm (call-
ing it the weighted SCMS algorithm) to find intensity ridges caused
by e.g. tidal tails. In addition, the authors also discuss how one
would incorporate the mass of a galaxy to achieve a better estimate
of the local density as well as of corresponding ridges.
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R. H., Ivezić Ž., 2003, AJ, 125, 1559
Rozo E., Rykoff E. S., 2014, ApJ, 783, 80
Rozo E., Rykoff E. S., Bartlett J. G., Melin J.-B., 2015, MNRAS, 450, 592
Rykoff E. S. et al., 2014, ApJ, 785, 104
Sheather S. J., 2004, Stat. Sci., 19, 588
Silverman B. W., 1986, Density Estimation for Statistics and Data Analysis.

Chapman & Hall, UK
Silverman B. W., Young G. A., 1987, Biometrika, 74, 469
Smee S. A. et al., 2013, AJ, 146, 32
Smith J. A. et al., 2002, AJ, 123, 2121
Sousbie T., 2011, MNRAS, 414, 350
Sousbie T., Pichon C., Colombi S., Novikov D., Pogosyan D., 2008,

MNRAS, 383, 1655
Springel V. et al., 2005, Nature, 435, 629
Stephens M. A., 1974, J. Am. Stat. Assoc., 69, 730
Stoica R. S., Martı́nez V. J., Mateu J., Saar E., 2005, A&A, 434, 423
Stoica R. S., Martinez V. J., Saar E., 2007, J. R. Stat. Soc. C, 56, 459
Trac H., Cen R., Mansfield P., 2015, preprint (arXiv:1507.02685)
van de Weygaert R., 1994, A&A, 283, 361
Wasserman L., 2006, All of Nonparametric Statistics. Springer-Verlag,

Berlin
York D. G. et al., 2000, AJ, 120, 1579
Zhang Y., Yang X., Faltenbacher A., Springel V., Lin W., Wang H., 2009,

ApJ, 706, 747
Zhang Y., Yang X., Wang H., Wang L., Mo H. J., van den Bosch F. C., 2013,

ApJ, 779, 160

A P P E N D I X A : PA R A M E T E R S E L E C T I O N

Our version of SCMS has two key parameters, the smoothing band-
width h and the threshold level τ . In this section, we show how we
select optimal values for each.

The smoothing bandwidth h represents the amount by which we
smooth the observed point cloud of galaxies when estimating p.
One can choose h by applying prior knowledge or by letting h adapt
to the sample. There is a large body of literature on the choice of
bandwidth, e.g. Sheather et al. (2004) and Chacón, Duong & Wand
(2011), Chacón et al. (2013). Among all methods, we recommend
choosing h via

h = A0 ×
(

1

d + 2

) 1
d+4

n
−1
d+4 σmin, (A1)

where A0 is a constant that we discuss below, n is the sample size,
d is the dimension (in our case d = 2), and σ min is the minimal
value for the standard deviation along each coordinate. Note that
the reference rule (equation A1) will choose smaller h values as the
sample size increases.

If A0 is 1, (equation A1) corresponds to Silverman’s rule (Sil-
verman 1986). Silverman’s rule selects h via minimizing the mean
integrated error

E

(∫
|p̂(x) − p(x)|2dx

)
(A2)

when p is a Gaussian. When the data include filaments, p is no
longer Gaussian and A0 must be optimized as a free parameter.
A smaller A0 yields more filaments in a given data set but more
spurious filaments as well. There is no general rule for selecting
A0 since the optimality criterion involves the unknown density p.
Fig. A1 shows how varying A0 affects the estimation of filamen-
tary structures. Our results indicate that the optimal A0 lies in the
range [0.4, 0.8]. This is further confirmed by true positive and false
positive coverage of N-body simulation (described in Section 3.2)
as shown in Fig. A2. In N-body simulation, A0 = 0.4 corresponds
to h = 5 Mpc (actual value is 4.82) while A0 = 0.8 corresponds
to h = 10 Mpc (actual value is 9.65). Both values are better than
h being too large or too small (compared with h = 2 Mpc and
h = 15 Mpc cases). In our analyses of SDSS data, we adopt the value
A0 = 0.4.

Thresholding stabilizes the ridge-finding process since random
noise may cause small bumps in the estimated density field.
However, if the threshold is set too high, we will remove useful
information about the field. We recommend selecting the threshold-
ing level according to the root mean square (RMS) in the density
fluctuation:

τ = σ (p̂) ≡
(∫

K

(p̂(x) − p̄(K))2dx

)1/2

∼p̂ − p̄, (A3)

where K is the region we are interested in and p̄(K) is the av-
erage density in K. Note that thresholding is also utilized by the
MMF (Aragón-Calvo et al. 2010a) and NEXUS (Cautun et al. 2013)
filament- (and galaxy cluster-) detection algorithms.
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Cosmic web reconstruction 1155

Figure A1. The bandwidth selection for equation (A1) for various A0. The data are galaxies observed spectroscopically by SDSS in the redshift range
z = 0.045–0.050. The grey dots are galaxies with density under τ = σ (p̂). The black dots are galaxies with density above τ . In panels (a)–(c), blue curves are
filaments detected by SCMS. In the panel (d), we compare the filaments from (a)–(c).
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Figure A2. The true positive (top row) and false positive (bottom row) coverage for different sample sizes. As can be seen, h = 5 or h = 10 (corresponds to
the reference rule (equation A1) using A0 = 0.4 and 0.8) are good choices for both true and false positive coverage. Note that the reason h = 2 has good true
positive coverage is because h = 2 undersmooths the data, leading to numerous small filaments. Thus, it is more likely that there are some estimated filaments
around true filaments, which increases the true positive coverage but also increases the false positive coverage (as true filaments may not appear around some
estimated filaments).
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