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Determining the Phase of a Strong Scattering Amplitude from Its Momentum Dependence to
Better Than 1'. The Example of Kaon Regeneration
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We quantitatively study dispersion relations giving the phase of a strong scattering amplitude from its
momentum dependence. We consider C-odd contributions to neutral kaon scattering (regeneration)
where accurate measurements of both amplitudes and phases are available. We find, somewhat
surprisingly, that, even including many possibly corrupting effects, the uncertainty is well below 1 .
This allows an accurate determination of the phase @+ in kaon decay to test CPT; conversely,
assuming CPT symmetry, new phenomena can be limited.

PACS numbers: 14.40.Aq, 11.30.Er, 11.55.Fv, 12.40.Nn

Dispersion integrals relate the phase of a strong scatter-
ing amplitude at one energy to its magnitude at all energies.
It is of interest to determine the accuracy with which the
phase can be deduced from the momentum dependence of
the magnitude. To this end, we consider primarily the scat-
tering of neutral kaons off nuclear targets. The individual
K and K strong amplitudes have several contributions,
but the C-odd piece which we treat, with opposite sign be-
tween K and K, is simply behaved. The weak interaction
mixes K and K, so the scattering of the antisymmetric
KL to the symmetric K~ gives the C-odd contribution free
of systematic uncertainty; this is kaon regeneration. The
K& is identified by its common decay to ~~. Furthermore,
because the Kt also decays to sr ~ (violating CP), there is
interference between regenerated K~ and transmitted KL.
The latter amplitude (iI+ ) has been measured, allowing
the determination of the phase of p, the C-odd scattering
amplitude. Kaons also regenerate from the electric charge
so that strong, weak, electromagnetic, and CP-violating in-
teractions all come into play. That both the magnitude and
phase of the scattering amplitude can be measured makes
this system ideal for quantitative studies of dispersion
relations.

Since dispersion integrals probe energies much higher
than available, careful measurements can give sensitivity
to new phenomena. For example, unexpected high-energy
behavior in the difference between particle and antiparticle
cross sections would show up at present energies in the
phase of the difference amplitude. Or, neglecting such
exotic possibilities, if one can determine P~ from its
momentum dependence, one can turn the argument around
to accurately extract arg(ri= ) = @+ . We use new
measurements [1] with a regenerator made of scintillator
(CH, ,) to ask how well one can determine the phase of an
amplitude (in this case, the regeneration amplitude) from
its local momentum dependence. To our knowledge, this
is the first time this question has been comprehensively
addressed.

The regeneration amplitude is a combination of scat-
tering amplitudes and a geometrical term. One finds [2]
Pz = @ + @s, + n/2, where P = arg(f —f) is the

phase of the difference of nuclear scattering amplitudes
for K and K, and Ps„ is known.

At high energy, regeneration is dominated by the ex-
change of the to Regge trajectory [3]. This by itself gives
a pure power law ~(f —f)/k~ = p

' (as a function of
the laboratory kaon momentum, p = Bk) Analyt. icity of
the scattering amplitudes gives the corresponding phase as

P = —(ir/2)(1 + n). Thus the momentum dependence
of the modulus gives @. This "phase-power" relation
(PPR) follows via standard dispersion relations indepen-
dent of Regge theory. Measurements [4] of high-energy
regeneration show essentially perfect power laws imply-
ing only small corrections to the deduced phase.

If the modulus only approximates a power law, the
corresponding phase is nearly constant and is given, on
average, by the PPR. This behavior of analytic functions
is well known in electrical network engineering [5]. The
key ingredient is the requirement of analyticity.

One straightforward way to analyze regeneration data
involves fitting the momentum dependence of ~(f
f)/k~ to a single power law; the PPR then gives the phase.
This procedure has been used [6] and is accurate. We now
explicitly consider alterations in the relationship due to
multiple elements in the regenerator, multiple trajectories
exchanged, possible daughter trajectories, electromagnetic
regeneration, nuclear screening (elastic and inelastic),
low-energy structure, and the hypothetical Odderon. The
error in the extracted phase refIects uncertainties in the
magnitudes of the established effects.

We first consider hydrogen, where regeneration is due
to cu and p exchange. The full expression for the am-
plitude is (f —f)/Ic = p e'&" p ' —p e'@~It
We take [7] n (n„) = 0.44 (0.575) and P„
(Pz) = 11.5 (1.67). The phases Pz = —141.8' and
@„=—129.6 come from the PPR for each term. Over
the range 20—160 Gev/c, the full expression follows a
single power to within 1%, the phase varies from —123.7
to —120.3 . A single-power fit gives a phase of —122.3 .

The single-power fit yields the average phase to better
that 1 even though it differs from that of either the cu

or p alone, by more than 7 . This surprising behavior
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formally arises (for sufficiently well-behaved functions)
from a so-called derivative analyticity relation between
the phase and the local power law [8,9] @ = —vr-
tan( z d/d lnp) ln!(f —f)/k!, with the first term holding
asymptotically [10]. Threshold effects, which we limit
below, can spoil this relationship [10].

Consider next CH] ] and assume for now regeneration
off (isoscalar) C comes only from tu exchange. The
deviation induced by the p from a pure cu will be an order
of magnitude smaller than for hydrogen. Uncertainties in
the hydrogen parametrization have negligible effect.

Nuclear screening in carbon modifies the above assump-
tion. Studies of KL scattering on C and Pb performed at
both high and low momenta are useful [1,4, 11—13]. Data
with heavier nuclei (e.g. , Pb), where screening effects are
dominant, help validate our procedures. We treat the real
part and momentum dependence of the physical Pomeron
amplitude by doing a full Glauber-Franco modeling [14]
of nuclear screening. With this consistent procedure we
study the accuracy of the PPR. The dominant effect is
multiple elastic interactions in the nucleus. Our treatment
of elastic screening closely follows [15]; a full descrip-

tion, including a treatment of p, dependences consistent
with dispersion relations, is given elsewhere [16]. The in-

put consists of KN cross sections and nuclear densities for
the target nuclei. The cross sections are fit to theoretically
motivated forms; this smooths the data and uses analyticity
for real parts which agree with measurements. The exact
functional forms are not important.

The four KN amplitudes are written as a sum of Regge
terms F; (i = P, f, cu, p, and Az) with the relative
signs determined by charge parity and isospin. The
Pomeron is parametrized as Fp = a/p + b7r logp +
i(c + b log p). (The a/p term adjusts the low-energy
real parts. Its magnitude is not important to our conclu-
sions. ) An equally good fit uses Fp = a/p + b7r/2 +
i(c + b logp). Our conclusions are not sensitive to the
choice of Fp parametrizations. Such parametrizations
provide excellent fits to both the magnitude and phase of
p p and p p scattering up to much higher energies [17].

We now display the formula for elastic screening in a
revealing form [18]. Writing F = (4'/k)f and F~~ =
(F~„+ F~„)/2, etc. , the first few terms of the Glauber

!

series for the forward carbon amplitudes are

F~c ~ F~c = 12(F~~ ~ F~~)[1 + (t/24)I2(F~~ ~ FI-,~)/(Flr~ ~ Fg ~). . .].

The coefficients I„are proportional to the probability the
kaon scatters n times within the nucleus; they depend
on the nuclear density for which we use the harmonic-
oscillator form [19].

The first term is a sum over nucleons. For the
total cross section, the second term is dominated by
an additional Pomeron exchange: (Flag + Fg c)/2 =
12Fp[1 + i(I2/24)Fp]. For regeneration, F~c —F~c =
24F [1 + i(I2/12)Fp]; the screening effect is twice as
large. A purely imaginary, momentum-independent
Pomeron would rescale the magnitudes of F ~ F, leaving
the PPR exact. A physical Pomeron has more complicated
effects. In Table I we compare the data for carbon and
lead to our full calculations, with and without elastic
screening. The bulk of the observed screening is due to
this easily calculated elastic effect; effects are also much
larger in lead than in carbon.

To fully treat nuclear effects, we must include inelas-
tic screening (IS) [20,21]: The incoming K is scattered
into inelastic intermediate states K', which reform into a
K at a subsequent scatter. At high energies, the effect
is significant, and total cross-section data [13,22] provide
clear evidence. Thresholds to reach high-mass interme-
diate states make IS unimportant at low energies. We
use the treatment of Ref. [15]where C-even contributions
are extracted by fitting total cross-section data [4]; these
also impact regeneration, whereas the C-odd terms essen-
tially affect only regeneration. The latter we vary, us-

ing the new measurement of carbon regeneration [1] as
a guide, and the lead data [13] rescaled to the modern
value of g+ . The approximations used are more accurate
for carbon where the multiple scattering series converges
faster.

TABLE I. Predictions and data for total cross sections and regeneration. The data are interpolations from Refs. [1,4, 11—13]. Our
models are based on Ref. [15] (see text) and do not make use of any regeneration data. Ao.,„, and 5@ are the changes in the total
cross-section and regeneration phase for the noted energy ranges. The inelastic calculations give the range as the C-odd inelastic
term is varied from the maximum considered (from factorization) to zero; only regeneration is sensitive to these terms.

Element

C
C
C
C
Pb
Pb
Pb
Pb

Model

No screening
Elastic screening

Inelastic screening
Data

No screening
Elastic screening

Inelastic screening
Data

(6„, (mb)
70 GeV/c

232
194
182

190(2)
4024
2249
2042

2047(8)

AP, „, (mb)
30—150 GeV/c

12
9
3

3(10)
203
64

—45
—106(44)

( f —f)/& (mb).
70 GeV/c

1.70
1.17

1.08 ~ 1.21
1.21(l)

32.3
9.3

9.3 ~ 11.2
9.5(l)

hP (deg)
5 —70 GeV/c

—0.3
2.5

5.7 ~ 1.4
1.5(0.8)

—0.3
8.3

10.8 ~ 2.6
8.5(3.8)
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FIG. 1. The ca1cu1ated magnitude of (f —f)/k for carbon.
The inset shows the fractional deviations relative to a single
power p o57 . The solid curves are elastic screening only; the
dotted curves include the C-even inelastics, fixed by the total
cross-section data. The dashed curves show the effect of the
maximum value of the C-odd inelastics considered. The data
are from Ref. [15] and from a fit to the data of Ref. [5] (the
errors are correlated due to common fit parameters).
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Any momentum dependence of the measured difference
is due to @. Our calculations are compared to

the data in Table I. It is seen that the C-even inelastic
screening term alone reproduces well the carbon phase
change from 5 to 70 GeV/c and that inclusion of the
C-odd term (using factorization —see Ref. [23]) leads to
several o disagreements. Examining the magnitude of
carbon regeneration leads to the same conclusion: Only a
small amount of the C-odd term is required. However,
the lead data are better described with more C-odd
contributions.

Using elastic screening, and adding on C-even and C-
odd inelastic screening, in turn, gives three functional
forms for the full amplitude. With these terms, there
is a 1 to 3 change in phase across the high-energy
range while ~(f —f)/k deviates by ~0.3% from a single
power. We do three fits to the high-energy carbon data
[1] using these functional forms, with the amplitude
and power of the cu varying. (The hydrogen is easily
corrected for. ) To gauge the systematic error, we examine
how each fit extrapolates through the low-energy data
and compare the amplitude and power to extractions
independent of nuclear screening.

Figure 1 shows the results of the fits; for our nominal
fit we use only elastic screening, which adequately reflects
the data over the full energy range. The co intercept
is 0.437(7), in excellent agreement with a determination
from scattering [0.43(1) [24]] and with a linear Chew-
Frautschi plot 0.436. The amplitude from this fit agrees
well with data. The fit with the C-odd term clearly
disagrees with the low-energy data; in addition, the ~

intercept of 0.468(7) contradicts the other determinations.
As the phase of the screening correction varies, so does its
energy dependence; on average, these cancel via the PPR.
The residual movement of P with respect to our nominal
fit is 0.17' (—0.24 ) for the C-even (C-odd) fit. We take
~0.25 as the systematic from nuclear screening.

In the Regge picture, subleading (daughter) trajectories
may occur. We consider a sub-leading trajectory with
o. = n„—2 as well as n = o. —1; in the latter case,
the terms differ in phase by 90 . We fit the data of Refs.
[1] and [12] simultaneously. The residual shifts in the
predicted phase are ~0.1 with the second trajectory's
amplitude statistically insignificant. Other fits give no
significant evidence for a second trajectory of any o. value.

We estimate the effects due to the detailed structure of
the low-energy amplitude on the phase at our energies.
The low-energy phase data [12] and the structure of the
dispersion relation easily limit this to 0.2 .

For completeness, our calculations include electromag-
netic regeneration which adds a constant real term (which
will actually dominate regeneration, at sufficiently high
energies). This gives a (—0.10 ~ 0.05) phase change;
the error comes from uncertainty in the kaon mean-square
charge radius [25].

The total error on the regeneration phase is then a
combination in quadrature of effects summarized in the
last four paragraphs: ~0.35 . The total shift in
between a naive single-power fit and our nominal fit with
the above effects was —0.04 .

We finally consider an Odderon contribution [26].
This amplitude Fo = d + e(lnp —i~/2) + f(lnp-
i 7r/2)2 is C-odd and contributes directly to F —F.
It can be limited by existing pp and pp data. Such
analyses find no evidence for the Odderon, and typically
limit ~Fo/Fp( —1 X 10 in the 100 GeV/c range [17].
Taking the Odderon parameters from the best fit of these
authors, we find a shift of —(0.2 ~ 0.6)' in the measured
phase. Future regeneration data (assuming CPT symme-
try) can better limit the Odderon contribution.

While this analysis was underway, we learned of a
claim [27] now published [28] that the techniques for
extracting the regeneration phase at high energy in [6]
have large uncertainties. The authors utilize a phase-
magnitude dispersion relation; the input parametrized
by p ' behavior for ~(f —f)/k~ in three momentum
ranges. At high energy, and low energy when available,
cx is taken from published data. Above 150 GeV, the
authors introduce a large, unphysical change (kink) in
the power law, the dominant source of the claimed
uncertainty. The notion appears to be that, since changes
in the power occurred from low to high energy, the
regeneration process must not be simple and such changes
may occur again. The kinks are placed just above the
momentum range of the experiment, having the greatest
impact on the local phase. In addition, the errors for the
three regions are set fully correlated, producing the largest
discrepancy. Furthermore, the error on n for the energy
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range covered by the experiment is taken as systematic
when it is already counted in the statistical error. In
response, we point out the following. Regeneration
was extensively studied in the low 1 —10 GeV range
[11,12,29,30] with a variety of nuclei. Regeneration for
copper and lead (not carbon) was found to be steeper
when the Fermilab data were reported 15 years ago [3,4].
But this effect and its A dependence were well understood,
and theoretical work further clarified the issue [15,18,23]:
The power law at lo~ energies for heavy nuclei is, in
fact, distorted. The distortion comes from changes in
elastic screening from the very rapid drop in the EN
cross sections over the 1 —10 GeV range. For pp, we
now know that this decade shows an order of magnitude
greater change than that for any of the next five higher
decades. Even without comparable measurements with
kaons, this gives high confidence that screening leads
to no further breaks in the power —even with heavy
nuclei —at any energy below -10 GeV, let alone at
150 GeV as hypothesized in [28].

To summarize, we have considered the accuracy of ex-
tracting P from the momentum dependence of the magni-
tude of regeneration using dispersion relations. We find
that the deviations from the phase-power relation in the
20—160 GeV energy region are small and quantifiable, es-
pecially for low-Z nuclei. From this study of regeneration,
a systematic error of 0.35 can be safely assigned. The
major application of this technique relates to the determi-
nation of @+ as reported in a previous Letter. However,
the technique is more general in that there is now the pos-
sibility that a departure from the phase-power relation of
even less than a degree can point to new phenomena at
much higher-energy scales, e.g. , the Odderon.
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