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Abstract— Accomplishing simultaneous localization and
mapping (SLAM) in very large city environments is a great
challenge because of theoretical and practical issues on com-
putational complexity, dynamic environment, representation
and data association. In this paper, we describe practical
algorithms for dealing with the representation issues. Feature-
based, grid-based and direct methods are integrated into the
framework of the hierarchical object based representation.
The sampling and correlation based range image matching
algorithm is developed to tackle the problem arising from
uncertain, sparse and featureless data in outdoor environ-
ments. Experimental results of a 800 meter x 600 meter rig 1. The Navlab11 vehicle. From the top right to the bottom right:
neighborhood demonstrate the feasibility of city-sized SLAM.  s|CK LMS221 laser scanner, SICK LMS291 laser scanner and the tri-

camera system.

. INTRODUCTION

Simultaneous localization and mapping (SLAM) simul-this issue has been subject to intense research in the SLAM
taneously estimates locations of newly perceived landiterature. Approaches using approximate inference, using
marks and the location of the robot itself while incremenexact inference on tractable approximations of the true
tally building a map. Since Smith, Self and Cheesemamodel, and using approximate inference on an approxi-
first introduced the simultaneous localization and mappingiate model have been proposed. See [5] for an excellent
(SLAM) problem [1], the SLAM problem has attracted comparison of these techniques. In this paper, we will take
immense attention in the mobile robotics literature and thedvantage of these promising approaches and focus on the
web site of the 2002 SLAM summer school [2] provides aepresentation problem.
comprehensive coverage of the key topics and state of the Even with the advanced algorithms to deal with compu-
art in SLAM. This paper is concerned with the problem oftational complexity, mostly the SLAM applications are still
how a robot such as the Navlab11 vehicle (see Fig. 1) cdimited to indoor environments or specific environments
accomplish SLAM in very large urban environments. and conditions because of significant issues in defining

For accomplishing this task, there are four key issuesnvironment representation and identifying an appropriate
dynamic environment, computational complexity, represermethodology for fusing data in this representation. For
tation and data association. Regardingdigzeamic environ- instance, feature-based approaches have an elegant solution
mentissue, in [3] and [4], we presented a solution, SLAMby using the Kalman filter or the information filter, but
with detection and tracking of moving objects (DATMO), it is difficult to extract features robustly and correctly in
and demonstrated that it is feasible to solve SLAM withoutdoor environments. Grid-based approaches do not need
DATMO from a ground vehicle at high speeds. Hence, ifo extract features. But they do not provide any direct
this paper, we will not discuss this issue further and willmeans to estimate and propagate uncertainty and they do
assume that measurements associated with moving objeogt scale well in very large environments.
are filtered out of the SLAM process. With respect to the In this paper, we provide a comparison of the main
computational complexityssue, it is a key bottleneck of paradigms for representation in terms of uncertainty man-
the SLAM problem because the Kalman filter solutionagement, sensor characteristics, environment representabil-
explicitly represents correlations of all pairs among thety, data compression and loop-closing mechanism. For
robot and stationary objects. Both the computation time andvercoming the limitations of these representation meth-
memory requirement scale quadratically with the numbeods, we present the hierarchical object based approach to
of stationary objects in the map. This computational burdemtegrate the direct methods, the grid-based methods and
restricts applications to those in which the map can havthe feature-based methods. When data is uncertain, sparse,
no more than a few hundred stationary objects. Recentlgnd featureless, the pose estimate form the direct methods



A. Feature-based methods

Feature (landmark) based approaches compress raw data
into predefined features. They provide an elegant way such
as the EKF-based approaches to manage uncertainty of
localization and mapping. The loop closing mechanism is
seamlessly embedded by maintaining the covariance matrix
given correct data association.

For most indoor applications, lines, circles, corners and
other simple geometrical features are rich and easy to
detect. But for outdoor applications, extracting features
robustly and correctly is extremely difficult because out-
door environments contain many different kinds of objects
Fig. 2. Aerial photo of the CMU neighborhood. The line indicated theSUCh as bushes, trees, or curvy objects whose shapes are
trajectory of Navlab11. hard to define. In these kinds of environments, whenever
a feature is extracted an error from feature extraction will
be produced because of wrong predefined features.

such as the iterated closed point (ICP) algorithm [6] may; rid-based methods
not be correct and the distribution of the pose estimate
may not be described properly. We describe the sampl:\r;g

Grid-based methods use a cellular representation called
ccupancy Gridsor Evidence Grids Mapping is accom-
lished by using a Bayesian scheme, and localization can
accomplished using correlation of a sensor scan with
grid map [14].

and correlation based range image matching (SCRI
algorithm to tackle these issues.

. L e
With respect to the data association issues, based on tﬁ%
the hierarchical object based representation, we developIn terms ofsensor characteristicand environment rep-

practical algorithms fpr robustly Qetecting loops i_n Veryresentability grid-based approaches are more advanced
large scale urban environments without access to mdepe{p]—an feature-based approaches. Grid-maps can represent
dent position information. Because this topic is beyond th

X . . gny kinds of environments and the quality of the map can
scope intended by this paper, see [8] for the details. be adjusted by adapting the resolution of grids. Grid-based

The described algorithms for solving the representatiogynroaches are specially suitable for noisy sensors such as
issues are verified using data collected from the Navlabldiereo camera, sonar and radar in which features are hard to
vehicle. The experimental results of a 800 meter x 60@efine and extract from highly uncertain and uninformative
meter neighborhood demonstrates the feasibility of Cityreasurements.
sized SLAM. Figure 2 shows an aerial photo of this Neyertheless, grid-based approaches do not provide a
neighborhood in which the dark (blue) line indicates thenechanism forloop closing Recall that correlation be-
Navlab11 trajectory. tween the robot and landmarks is explicity managed by

The rest of paper is arranged as follows: Section Ithe covariance matrix or the information matrix in the
provides a comparison of the main representation methogsature-based approaches. Correlation between the robot
and describes the framework of the hierarchical objecind landmarks is implicitly embedded in Occupancy Grids.
based representation. Section llI illustrates the difficulHow to retrieve correlation from Occupancy Grids is an
ties of processing outdoor data. Section IV describes thgpen question. Given that a loop is correctly detected,
SCRIM algorithm in detail. Section V and Section VI de-|oop closing can not be done with the existing grids.
scribe the algorithms for localization and mapping locallyadditional computation power is needed to run consistent
and globally and show experimental results. Finally, thgose estimation algorithms such as [15] and the previous
conclusion is in Section VII. raw scans have to be used to generate a new global

consistent map.

Il. REPRESENTATION C. Direct methods

Direct methods represent the physical environment using
Research on mobile robot navigation has produced fouaw data points without extracting predefined features.

major paradigms for environment representation: feature- Localization can be done by using range image reg-
based approaches [9], grid-based approaches [10], dirgstration algorithms from the computer vision literature.
approaches [11], and topological approaches [12]. Becau®r instance, the ICP algorithm is a widely used direct
topological maps are usually generated on top of grid-basedethod; many variants have been proposed based on the
or feature-based maps by partitioning grid-based or featur&asic ICP concept [16]. However, a good initial prediction
based maps into coherent regions, we will only focus owf the transformation between scans is required because of
feature-based approaches, grid-based approaches and difecheuristic assumption for data association.
approaches. In this section, we discuss the advantages and’he map is represented adist of raw scans. Because
disadvantages of these approaches. there is overlap between scans, memory requirement for



TABLE |

features in specific environments or for specific objects,
COMPARISON OF REPRESENTATION METHODS

free-form objectsare used.
At the preprocessing stage, scans are grouped into

Representations Feature| Grid | Direct . . . L
Uncertainty management " " A segmentsising a simple dlstan.ce criterion. T.he segments
Loop closing mechanism * A A over different time frames are integrated imtbjectsafter
Sensor characteristics N * * localization and mapping processes. Registration of scan
Environment representability A * * . . . .
Data Compression N A A segments over different time frames is done by using
. _ _ N the direct method, namely the ICP algorithm. Because
* indicates that the method is elegant and appropriate Zanddicates . N
that extra work is needed or the method is inapplicable. range images are sparser and more uncertain in outdoor

applications than indoor applications, the pose estimation
and the corresponding distribution from the ICP algorithm

Storing the map can be reduced by the integration (mer@.re not reliable. For dealing with the Sparse data iSSUES,
ing) process such as [17]. Just as with the grid-based sampling-based approach is used to estimate the uncer-
approaches, when loops are detected, additional compt@inty from correspondence errors. For dealing with the
tation power is needed to run consistent pose estimatigficertain data issues, a correlation-based approach is used
algorithms and the previous raw scans are used to genertih the grid-basedmethod for estimating the uncertainty
a global consistent map. from measurement noise along with the sampling-based
In terms of uncertainty managemerand sensor char- approach. For loop closing in large environments, the
acteristics very little work addresses how to quantify theor.igins of the objt_act coordinate system are used as features
uncertainty of the transformation estimate from registratiofVith the mechanism of théeature-basedapproaches.
process. Uncertainty arises mainly from outliers, wrong Our approach is hierarchical since these three main rep-
correspondences, and measurement noises. Without tdRSentation paradigms are used on different levels. In this
ing measurement noise into account, several methods 8St sections, we will demonstrate that city-sized SLAM is
estimate the covariance matrix of the pose estimate wefgasible by using the hierarchical object based approach
proposed such as [18] and [19]. where SLAM is accomplishedocally 'using direct and
Compared to indoor applications, the distances betwedHid-based approaches amlobally using feature-based
objects and sensors in outdoor environments are usuafPProaches.
much longer, which make measurements more uncertain
and sparse. By assuming measurement noise is Gaussian,
Pennec and Thirion used the extended Kalman filter to This section describes the difficulties of processing out-
estimate both the rigid transformation and its covarianc80Or data.
matrix in [20]. But their approach is very sensitive to cor-
respondence errors and the assumption that the uncertainty ] o )
of the pose estimate from registration processes can peCompared to indoor applications, the distances between

modelled by Gaussian distributions is not always valid. OPJ€cts and sensors in outdoor environments are usually
much longer, which make measurements more uncertain

D. Comparison and not as Qen_se. Sparsg data causes problerosrief
, , ) spondence findingwhich directly affect the accuracy of
To summarize, we show the comparison of differengjirect methods. In the computer vision and indoor SLAM

representations in Table 1. With regard to ur‘Certairmfiterature, the assumption that corresponding points present

management and loop closing mechamsm,_ feature-basgeh some physical point is valid because data is dense. If
approaches have an elegant means. Regarding sensor chalsoint noint metric is used in the ICP algorithm, one-

acteristics, grid-based approaches are the easiest t0 imp{§-one correspondence will not be guaranteed with sparse

IIl. OUTDOOR DATA

Sparse and Featureless Data

environments in which features are easy to define angeyeen points and tangent planes can converge faster. But

extract. because of sparse data and irregular surfaces in outdoor
environments, the secondary information derived from raw
data such as surface normal can be unreliable and too
Because none of these three main paradigms is sufficies¢nsitive.
for large, outdoor environments, we present a hierarchical The other issue is featureless data, which causes cor-
object based representation to integrate these paradigmspondence ambiguity as well. We illustrate this corre-
and to overcome their disadvantages. spondence ambiguity issue with an example. Fig. 3 shows
In outdoor or urban environments, features are extremelyvo scans,A and B, from a static environment and the
difficult to define and extract because both stationary ansegmentation results. In this example, we assume that
moving objects do not have specific sizes and shapesotion measurement is unavailable and the initial guess
Therefore, instead of using an ad hoc approach to defire the relative transformation is zero. Fig. 4 shows the

E. Hierarchical Object Based Representation
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Fig. 7. SICK LMS 211/221/291 Noise Model. The distributions of the
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the accuracy of laser scanner measurements. Although
Fig. 4. Result of segment 1 registration. Left: registration using onI)Jaser rangeflnders such as SICK laser scanners prowde
segment 1 of scaA and segment 1 of scaB. Right: registration using more accurate measurements than sonar, radar and stereo
the whole scans oA andB. cameras, neglecting measurement noise in the localization
and mapping processes may be over optimistic in situations

registration results using the ICP algorithm in which rangéf‘Slng data pollected from a platform at high speeds in
outdoor environments.

imagesA andB are aligned using the same initial relative A dina to th | of SICK | th
transformation guess but using different scan segments: one ceording fo the manual o aser scanners, e
is matching with only segment 1 of scanand segment 1 spot spacing of SICK LMS 211/221/291 is smaller than the

of scanB; the other is matching with the whole scansfof spot diameter for an angular resolution of 0.5 degree. This

andB. Figure 4 shows the registration results. It seems that'€ans that footprints of consecutive measurements overlap

the ICP algorithm provides satisfactory results in both caseesaCh other. The photo in Fig. 6 taken fram an infrared

and it is hard to quantify which result is better. However, bycamera.shows this phenomenon. A red rectangle indicates

comparing the results with the whole scans in Figure 5, it foqtprlnt of one measurement point.

is easy to justify that registration using only scan segment With regard to range mea?)urement error, we consefva-

1 of A andB provides a local minimum solution instead tively assume the error as 1% of the range measurt_ament

of the global one because of featureless data. because of outdoor physpc_al phenomena. Th_e uncertainty of
each measurement poigj in the polar coordinate system

is described as:
af,- 0
- % 2] @

The uncertainty can be described in the Cartesian coor-
dinate system. Fig. 7 shows the SICK LMS 211/221/291
noise model.

B. Uncertain Data

It is well known that several important physical phe-
. . : ¥
nomena such as the material properties of an object, the k
sensor incidence angle, and environmental conditions affect

In most indoor applications, it is assumed that a horizon-
tal range scan is a collection of range measurements taken
from a single robot position. When the robot is moving at
high speeds, this assumption is invalid. We use the rotating
rate of the scanning device and the velocity of the robot to
correct the errors from this assumption.

9598 i 10

IV. THE SAMPLING AND CORRELATION BASEDRANGE
IMAGE MATCHING ALGORITHM
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Fig. 5. Registration results of Fig. 4 are shown with the whole scans. In this section, we present the sampling and correlation

Left: registration using segment 1 of scAnand segment 1 of scad.  based range image matching (SCRIM) algorithm for taking
Right: registration using the whole scans/fandB. correspondence errors and measurement noise into account.
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Fig. 8. Sampling-based Uncertainty Estimation. Left: the randomly gen-
erated initial transformation samples. Right: the transformation estimates
after applying the registration algorithm.

Fig. 10. Occupancy Grids.

25 s — 10 samples
/ M 100 samples
| \ — - 1000 samples

15 | \ )
2

0.5 | !

0
Y: meter
(b)
-15 !

& RV Fig. 11. The normalized correlations of the samples. Left: 3D view. Right
2 vy 0 1 2 3 2D view. The 2 ellipse denotes thanweightedsample covariance. The
samples, which have correlation higher than the correlation median, are

Fig. 9. The corresponding sample means and covariances using differdapelled byo. The other samples are labelled ky
numbers of samples. Covariances are shown dyellipses (95% confi-

dence). Square is the pose estimate using the whole scans, which can be

treated as the ground truth. The meas estimates from 10, 100 and 10%0 The Correlation-based Approach

samples are labelled as a pentagram, a circle and a star respectively.

Because the sampling-based approach does not handle
the measurement noise issues, the grid-based method [10]
and the correlation-based method [14] are applied and
integrated with the sampling-based approach for taking

) ) measurement noise into account.
Because obparseand featurelesslata issues, precisely  Fjrst, measurement points and their corresponding dis-

estimating the relative transformation and its correspondyiputions are transformed into occupancy grids using the
ing distribution is difficult and the ambiguity is hard t0 gick noise model. Ley, be an object-grid built using
avoid in practice. However, as long as the ambiguity i$he measuremem and g% be the occupancy of a grid

modelled correctly, this ambiguity can be reduced properlyq| at (z,y). The grid-based approach decomposes the
when more information or constraints are available. If th%roblem of estimating the posterior probabilipgg | A)

distribution does not describe the situation properly, datgo 5 collection of one-dimensional estimation problems,

fusion can not be done correctly even if the incomingp(gxy | A). A common approach is to represent the
measurements contain rich information or constraints tBosterior probability using log-odds ratios:

disambiguate the estimates. Therefore, although more com- .
putational power is needed, a sampling-based approach is " = log p(gaygj A) 2
applied to deal with the issues of correspondence finding ¢ 1—p(ga” | A)

ambiguity. Figure 10(a) and Figure 10(b) show the corresponding
Instead of using only one initial relative transformationoccupancy grids of the segment 1 of sdarand scarB.

guess, the registration process is ri¥ntimes with ran- After the grid mapsl, and !, are built, correlation of

domly generated initial relative transformations. Figure 8, arel, is used to evaluate how strong the grid-maps are

shows the sampling-based registration of scan segmentrdlated. The correlation is computed as:

in the previous example. 100 randomly generated initial o oy

relative transformation samples are shown in the left figure ZP(A )p(B™) @)

and the corresponding registration results are shown in the Y

right figure. Figure 8 shows that one axis of translation Because the posterior probability is represented using

is more uncertain than the other translation axis and theg-odds ratios, multiplication of probabilities can be done

rotation axis. Figure 9 shows the corresponding samplesing additions. In the previous section, the sampling-based

means and covariances using different numbers of sampproach treats the samples equally. Now the samples

ples. The covariance estimates from the sampling-basede weighted with their normalized correlation responses.

approach describe the distribution correctly. Figure 11 shows the normalized correlation responses.

-0.5 [

-1 \

A. The Sampling-based Approach
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Fig. 12. The generated grid maps along the trajecotry.The boxes indicate

the boundaries of the grid maps. Fig. 13. Grid Map detailsGray denotes areas which are not occupied
by both moving objects and stationary objeatditer than graydenotes

the areas which are likely to be occupied by moving objects,danller
than graydenotes the areas which are likely to be occupied by stationary
objects.

V. LOCAL MAPPING USINGGRID-BASED APPROACHES

Since feature extraction is difficult and problematic in
outdoor environments, we apply grid-based approaches for 600
building the map. However, the grid-based approaches need 500!
extra computation for loop-closing and all raw scans have
to be used to generate a new global consistent map, which
is not practical for online city-sized mapping. Therefore,
the grid-map is only built locally.

After localizing the robot using the sampling and cor-

400

300

2001

meter

100

relation based range image matching algorithm, the new or
measurement is integrated into the grid map. -100{

Practically, there are two requirements for selecting the -200{
size and resolution of grid maps: one is that a grid map -300 ‘ ‘ ‘ ‘ ‘
should not contain loops, and the other is that the quality of Ti0 o000 O
the grid map should be maintained at a reasonable level.
For solving the example in Fig. 2, the width and length Fig. 14. The revisiting problem.

of the grid map are set as 160 meters and 200 meters

respectively, and the resolution of the grid map is set at

0.2 meter. When the robot arrives within 40 meter of thdor local mapping, we have to develop a method to trans-

boundary of the grid map, a new grid map is initialized.form or decompose the occupancy grid map into stable
The global pose of the map and the corresponding distribiiegions (features) and a covariance matrix containing the
tion is computed according to the robot's global pose angorrelation among the robot and the regions. Unfortunately,

the distribution. Figure 12 shows the boundaries of the gri¢his is still an open question. Therefore, instead of de-

maps generated along the trajectory using the describé@mposing the grid maps, we treat each grid map as a
parameters. Figure 13 shows the details of the grid maptiree degree-of-freedom feature directly. Fig. 15(b) shows
which contain information from both stationary objects andhe raw scans fram the SICK LMS221 scanner in which

moving objects. The details of dealing with moving objectghere are about 36,500 scans. Fig. 16 shows the result

are addressed in [4]. using the feature-based EKF algorithm for loop-closing

where information from moving objects is filtered out .

VI. GLOBAL MAPPING USINGFEATURE-BASED The covariance matrix for closing this loop only contains
APPROACHES 14 three degree-of-freedom features.

The first step to solve the loop-closing problem is to Since we set the whole grid maps as features in the
robustlydetectioops orrecognizethe pre-visited areas. Itis feature-based approaches for loop-closing, the uncertainty
called therevisiting problem [21]. Figure 14 shows that the inside the grid maps is not updated with the constraints
robot entered the explored area. Because of accumulateédm detected loops. Although Figure 16 shows a satisfying
pose errors (see Fig. 15(a), temporary stationary objectesult, the coherence of the overlay between grid maps
occlusion, and unmodelled uncertainty, the current grils not guaranteed. Practically, the inconsistency between
map is not consistent with the pre-built map. In this sectiorthe grid-maps will not effect the robot’s ability to perform
we assume that loops are correctly detected. The issues aagks. Local navigation can be done with the current built
solutions of the revisiting problem is addressed in [8]. grid map which contains the most recent information about

For closing loops in real time, feature-based approachake surrounding environment. Global path planning can be
are applied. Because the occupancy grid approach is usddne with the global consistent map from feature-based



meter

(2]
(3]

400
300
200

(4]

100

-100

-1100-1000 -900 -800 -700 -600

(@ (b)

Fig. 15. The data set collected from the Navlabll vehicle. (a): the
pose estimates from the onboard inertial measurement system. (b): thgs]
measurements form the SICK LMS221 laser scanner.
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Fig. 16. A built global consistent map of the CMU neighborhood.

[13]

approaches in a topological sense. In addition, the quality
of the global map can be improved by using smaller grid
maps to smooth out the inconsistency between grid mapgy,
At the same time, the grid-maps should be big enough to
have high object saliency scores in order to reliably solve
the revisiting problem. [15

VII. CONCLUSION

In this paper, we compared different representations amlj
presented the hierarchical object based representation tlllaei]

integrates direct, grid-based and feature-based approaches.

The sampling and correlation based range image matchiry]
algorithm is used for dealing with the problems arising
from uncertain, sparse and featureless data in outdoor ens]
vironments. The experimental results using data collected
from the Navlabll1 vehicle demonstrated the feasibility of
city-sized SLAM with the use of the described algorithmsJ[19]
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