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Abstract— Accomplishing simultaneous localization and
mapping (SLAM) in very large city environments is a great
challenge because of theoretical and practical issues on com-
putational complexity, dynamic environment, representation
and data association. In this paper, we describe practical
algorithms for dealing with the representation issues. Feature-
based, grid-based and direct methods are integrated into the
framework of the hierarchical object based representation.
The sampling and correlation based range image matching
algorithm is developed to tackle the problem arising from
uncertain, sparse and featureless data in outdoor environ-
ments. Experimental results of a 800 meter x 600 meter
neighborhood demonstrate the feasibility of city-sized SLAM.

I. I NTRODUCTION

Simultaneous localization and mapping (SLAM) simul-
taneously estimates locations of newly perceived land-
marks and the location of the robot itself while incremen-
tally building a map. Since Smith, Self and Cheeseman
first introduced the simultaneous localization and mapping
(SLAM) problem [1], the SLAM problem has attracted
immense attention in the mobile robotics literature and the
web site of the 2002 SLAM summer school [2] provides a
comprehensive coverage of the key topics and state of the
art in SLAM. This paper is concerned with the problem of
how a robot such as the Navlab11 vehicle (see Fig. 1) can
accomplish SLAM in very large urban environments.

For accomplishing this task, there are four key issues:
dynamic environment, computational complexity, represen-
tation and data association. Regarding thedynamic environ-
mentissue, in [3] and [4], we presented a solution, SLAM
with detection and tracking of moving objects (DATMO),
and demonstrated that it is feasible to solve SLAM with
DATMO from a ground vehicle at high speeds. Hence, in
this paper, we will not discuss this issue further and will
assume that measurements associated with moving objects
are filtered out of the SLAM process. With respect to the
computational complexityissue, it is a key bottleneck of
the SLAM problem because the Kalman filter solution
explicitly represents correlations of all pairs among the
robot and stationary objects. Both the computation time and
memory requirement scale quadratically with the number
of stationary objects in the map. This computational burden
restricts applications to those in which the map can have
no more than a few hundred stationary objects. Recently,

Fig. 1. The Navlab11 vehicle. From the top right to the bottom right:
SICK LMS221 laser scanner, SICK LMS291 laser scanner and the tri-
camera system.

this issue has been subject to intense research in the SLAM
literature. Approaches using approximate inference, using
exact inference on tractable approximations of the true
model, and using approximate inference on an approxi-
mate model have been proposed. See [5] for an excellent
comparison of these techniques. In this paper, we will take
advantage of these promising approaches and focus on the
representation problem.

Even with the advanced algorithms to deal with compu-
tational complexity, mostly the SLAM applications are still
limited to indoor environments or specific environments
and conditions because of significant issues in defining
environment representation and identifying an appropriate
methodology for fusing data in this representation. For
instance, feature-based approaches have an elegant solution
by using the Kalman filter or the information filter, but
it is difficult to extract features robustly and correctly in
outdoor environments. Grid-based approaches do not need
to extract features. But they do not provide any direct
means to estimate and propagate uncertainty and they do
not scale well in very large environments.

In this paper, we provide a comparison of the main
paradigms for representation in terms of uncertainty man-
agement, sensor characteristics, environment representabil-
ity, data compression and loop-closing mechanism. For
overcoming the limitations of these representation meth-
ods, we present the hierarchical object based approach to
integrate the direct methods, the grid-based methods and
the feature-based methods. When data is uncertain, sparse,
and featureless, the pose estimate form the direct methods



Fig. 2. Aerial photo of the CMU neighborhood. The line indicated the
trajectory of Navlab11.

such as the iterated closed point (ICP) algorithm [6] may
not be correct and the distribution of the pose estimate
may not be described properly. We describe the sampling
and correlation based range image matching (SCRIM)
algorithm to tackle these issues.

With respect to the data association issues, based on the
the hierarchical object based representation, we develop
practical algorithms for robustly detecting loops in very
large scale urban environments without access to indepen-
dent position information. Because this topic is beyond the
scope intended by this paper, see [8] for the details.

The described algorithms for solving the representation
issues are verified using data collected from the Navlab11
vehicle. The experimental results of a 800 meter x 600
meter neighborhood demonstrates the feasibility of city-
sized SLAM. Figure 2 shows an aerial photo of this
neighborhood in which the dark (blue) line indicates the
Navlab11 trajectory.

The rest of paper is arranged as follows: Section II
provides a comparison of the main representation methods
and describes the framework of the hierarchical object
based representation. Section III illustrates the difficul-
ties of processing outdoor data. Section IV describes the
SCRIM algorithm in detail. Section V and Section VI de-
scribe the algorithms for localization and mapping locally
and globally and show experimental results. Finally, the
conclusion is in Section VII.

II. REPRESENTATION

Research on mobile robot navigation has produced four
major paradigms for environment representation: feature-
based approaches [9], grid-based approaches [10], direct
approaches [11], and topological approaches [12]. Because
topological maps are usually generated on top of grid-based
or feature-based maps by partitioning grid-based or feature-
based maps into coherent regions, we will only focus on
feature-based approaches, grid-based approaches and direct
approaches. In this section, we discuss the advantages and
disadvantages of these approaches.

A. Feature-based methods

Feature (landmark) based approaches compress raw data
into predefined features. They provide an elegant way such
as the EKF-based approaches to manage uncertainty of
localization and mapping. The loop closing mechanism is
seamlessly embedded by maintaining the covariance matrix
given correct data association.

For most indoor applications, lines, circles, corners and
other simple geometrical features are rich and easy to
detect. But for outdoor applications, extracting features
robustly and correctly is extremely difficult because out-
door environments contain many different kinds of objects
such as bushes, trees, or curvy objects whose shapes are
hard to define. In these kinds of environments, whenever
a feature is extracted an error from feature extraction will
be produced because of wrong predefined features.

B. Grid-based methods

Grid-based methods use a cellular representation called
Occupancy Gridsor Evidence Grids. Mapping is accom-
plished by using a Bayesian scheme, and localization can
be accomplished using correlation of a sensor scan with
the grid map [14].

In terms ofsensor characteristicsandenvironment rep-
resentability, grid-based approaches are more advanced
than feature-based approaches. Grid-maps can represent
any kinds of environments and the quality of the map can
be adjusted by adapting the resolution of grids. Grid-based
approaches are specially suitable for noisy sensors such as
stereo camera, sonar and radar in which features are hard to
define and extract from highly uncertain and uninformative
measurements.

Nevertheless, grid-based approaches do not provide a
mechanism forloop closing. Recall that correlation be-
tween the robot and landmarks is explicitly managed by
the covariance matrix or the information matrix in the
feature-based approaches. Correlation between the robot
and landmarks is implicitly embedded in Occupancy Grids.
How to retrieve correlation from Occupancy Grids is an
open question. Given that a loop is correctly detected,
loop closing can not be done with the existing grids.
Additional computation power is needed to run consistent
pose estimation algorithms such as [15] and the previous
raw scans have to be used to generate a new global
consistent map.

C. Direct methods

Direct methods represent the physical environment using
raw data points without extracting predefined features.

Localization can be done by using range image reg-
istration algorithms from the computer vision literature.
For instance, the ICP algorithm is a widely used direct
method; many variants have been proposed based on the
basic ICP concept [16]. However, a good initial prediction
of the transformation between scans is required because of
its heuristic assumption for data association.

The map is represented as alist of raw scans. Because
there is overlap between scans, memory requirement for



TABLE I

COMPARISON OF REPRESENTATION METHODS.

Representations Feature Grid Direct
Uncertainty management ? ? 4
Loop closing mechanism ? 4 4
Sensor characteristics 4 ? ?
Environment representability 4 ? ?
Data Compression ? 4 4

? indicates that the method is elegant and appropriate and4 indicates
that extra work is needed or the method is inapplicable.

storing the map can be reduced by the integration (merg-
ing) process such as [17]. Just as with the grid-based
approaches, when loops are detected, additional compu-
tation power is needed to run consistent pose estimation
algorithms and the previous raw scans are used to generate
a global consistent map.

In terms of uncertainty managementand sensor char-
acteristics, very little work addresses how to quantify the
uncertainty of the transformation estimate from registration
process. Uncertainty arises mainly from outliers, wrong
correspondences, and measurement noises. Without tak-
ing measurement noise into account, several methods to
estimate the covariance matrix of the pose estimate were
proposed such as [18] and [19].

Compared to indoor applications, the distances between
objects and sensors in outdoor environments are usually
much longer, which make measurements more uncertain
and sparse. By assuming measurement noise is Gaussian,
Pennec and Thirion used the extended Kalman filter to
estimate both the rigid transformation and its covariance
matrix in [20]. But their approach is very sensitive to cor-
respondence errors and the assumption that the uncertainty
of the pose estimate from registration processes can be
modelled by Gaussian distributions is not always valid.

D. Comparison

To summarize, we show the comparison of different
representations in Table I. With regard to uncertainty
management and loop closing mechanism, feature-based
approaches have an elegant means. Regarding sensor char-
acteristics, grid-based approaches are the easiest to imple-
ment and the most suitable for imprecise sensors such as
sonar and radar. Respecting environment representability,
feature-based approaches are limited to indoor or structured
environments in which features are easy to define and
extract.

E. Hierarchical Object Based Representation

Because none of these three main paradigms is sufficient
for large, outdoor environments, we present a hierarchical
object based representation to integrate these paradigms
and to overcome their disadvantages.

In outdoor or urban environments, features are extremely
difficult to define and extract because both stationary and
moving objects do not have specific sizes and shapes.
Therefore, instead of using an ad hoc approach to define

features in specific environments or for specific objects,
free-form objectsare used.

At the preprocessing stage, scans are grouped into
segmentsusing a simple distance criterion. The segments
over different time frames are integrated intoobjectsafter
localization and mapping processes. Registration of scan
segments over different time frames is done by using
the direct method, namely the ICP algorithm. Because
range images are sparser and more uncertain in outdoor
applications than indoor applications, the pose estimation
and the corresponding distribution from the ICP algorithm
are not reliable. For dealing with the sparse data issues,
a sampling-based approach is used to estimate the uncer-
tainty from correspondence errors. For dealing with the
uncertain data issues, a correlation-based approach is used
with the grid-basedmethod for estimating the uncertainty
from measurement noise along with the sampling-based
approach. For loop closing in large environments, the
origins of the object coordinate system are used as features
with the mechanism of thefeature-basedapproaches.

Our approach is hierarchical since these three main rep-
resentation paradigms are used on different levels. In this
rest sections, we will demonstrate that city-sized SLAM is
feasible by using the hierarchical object based approach
where SLAM is accomplishedlocally using direct and
grid-based approaches andglobally using feature-based
approaches.

III. O UTDOOR DATA

This section describes the difficulties of processing out-
door data.

A. Sparse and Featureless Data

Compared to indoor applications, the distances between
objects and sensors in outdoor environments are usually
much longer, which make measurements more uncertain
and not as dense. Sparse data causes problems ofcorre-
spondence finding, which directly affect the accuracy of
direct methods. In the computer vision and indoor SLAM
literature, the assumption that corresponding points present
the same physical point is valid because data is dense. If
a point-point metric is used in the ICP algorithm, one-
to-one correspondence will not be guaranteed with sparse
data, which will result in decreasing the accuracy of trans-
formation estimation and slower convergence. Research
on the ICP algorithms suggests that minimizing distances
between points and tangent planes can converge faster. But
because of sparse data and irregular surfaces in outdoor
environments, the secondary information derived from raw
data such as surface normal can be unreliable and too
sensitive.

The other issue is featureless data, which causes cor-
respondence ambiguity as well. We illustrate this corre-
spondence ambiguity issue with an example. Fig. 3 shows
two scans,A and B, from a static environment and the
segmentation results. In this example, we assume that
motion measurement is unavailable and the initial guess
of the relative transformation is zero. Fig. 4 shows the
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(b) ScanB

Fig. 3. The solid box denotes the robot (2mx5m). Segmentation results
are shown with segment numbers.
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Fig. 4. Result of segment 1 registration. Left: registration using only
segment 1 of scanA and segment 1 of scanB. Right: registration using
the whole scans ofA andB.

registration results using the ICP algorithm in which range
imagesA andB are aligned using the same initial relative
transformation guess but using different scan segments: one
is matching with only segment 1 of scanA and segment 1
of scanB; the other is matching with the whole scans ofA
andB. Figure 4 shows the registration results. It seems that
the ICP algorithm provides satisfactory results in both cases
and it is hard to quantify which result is better. However, by
comparing the results with the whole scans in Figure 5, it
is easy to justify that registration using only scan segment
1 of A and B provides a local minimum solution instead
of the global one because of featureless data.

B. Uncertain Data

It is well known that several important physical phe-
nomena such as the material properties of an object, the
sensor incidence angle, and environmental conditions affect
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Fig. 5. Registration results of Fig. 4 are shown with the whole scans.
Left: registration using segment 1 of scanA and segment 1 of scanB.
Right: registration using the whole scans ofA andB.

Fig. 6. Footprints of the measurement from SICK LMS 291
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(a) The whole scan. The black
solid box denotes the robot.
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(b) the enlargement of the blocked
region on the left.

Fig. 7. SICK LMS 211/221/291 Noise Model. The distributions of the
measurement points are shown by 2σ ellipses (95% confidence).

the accuracy of laser scanner measurements. Although
laser rangefinders such as SICK laser scanners provide
more accurate measurements than sonar, radar and stereo
cameras, neglecting measurement noise in the localization
and mapping processes may be over optimistic in situations
using data collected from a platform at high speeds in
outdoor environments.

According to the manual of SICK laser scanners, the
spot spacing of SICK LMS 211/221/291 is smaller than the
spot diameter for an angular resolution of 0.5 degree. This
means that footprints of consecutive measurements overlap
each other. The photo in Fig. 6 taken from an infrared
camera shows this phenomenon. A red rectangle indicates
a footprint of one measurement point.

With regard to range measurement error, we conserva-
tively assume the error as 1% of the range measurement
because of outdoor physical phenomena. The uncertainty of
each measurement pointzi

k in the polar coordinate system
is described as:

Σzi
k

=
[

σ2
ri 0
0 σ2

θi

]
(1)

The uncertainty can be described in the Cartesian coor-
dinate system. Fig. 7 shows the SICK LMS 211/221/291
noise model.

In most indoor applications, it is assumed that a horizon-
tal range scan is a collection of range measurements taken
from a single robot position. When the robot is moving at
high speeds, this assumption is invalid. We use the rotating
rate of the scanning device and the velocity of the robot to
correct the errors from this assumption.

IV. T HE SAMPLING AND CORRELATION BASEDRANGE

IMAGE MATCHING ALGORITHM

In this section, we present the sampling and correlation
based range image matching (SCRIM) algorithm for taking
correspondence errors and measurement noise into account.
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Fig. 8. Sampling-based Uncertainty Estimation. Left: the randomly gen-
erated initial transformation samples. Right: the transformation estimates
after applying the registration algorithm.
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Fig. 9. The corresponding sample means and covariances using different
numbers of samples. Covariances are shown by 2σ ellipses (95% confi-
dence). Square is the pose estimate using the whole scans, which can be
treated as the ground truth. The meas estimates from 10, 100 and 1000
samples are labelled as a pentagram, a circle and a star respectively.

A. The Sampling-based Approach

Because ofsparseand featurelessdata issues, precisely
estimating the relative transformation and its correspond-
ing distribution is difficult and the ambiguity is hard to
avoid in practice. However, as long as the ambiguity is
modelled correctly, this ambiguity can be reduced properly
when more information or constraints are available. If the
distribution does not describe the situation properly, data
fusion can not be done correctly even if the incoming
measurements contain rich information or constraints to
disambiguate the estimates. Therefore, although more com-
putational power is needed, a sampling-based approach is
applied to deal with the issues of correspondence finding
ambiguity.

Instead of using only one initial relative transformation
guess, the registration process is runN times with ran-
domly generated initial relative transformations. Figure 8
shows the sampling-based registration of scan segment 1
in the previous example. 100 randomly generated initial
relative transformation samples are shown in the left figure
and the corresponding registration results are shown in the
right figure. Figure 8 shows that one axis of translation
is more uncertain than the other translation axis and the
rotation axis. Figure 9 shows the corresponding sample
means and covariances using different numbers of sam-
ples. The covariance estimates from the sampling-based
approach describe the distribution correctly.
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(a) Segment 1 of ScanA
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Fig. 10. Occupancy Grids.
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Fig. 11. The normalized correlations of the samples. Left: 3D view. Right
2D view. The 2σ ellipse denotes theunweightedsample covariance. The
samples, which have correlation higher than the correlation median, are
labelled by◦. The other samples are labelled by×.

B. The Correlation-based Approach

Because the sampling-based approach does not handle
the measurement noise issues, the grid-based method [10]
and the correlation-based method [14] are applied and
integrated with the sampling-based approach for taking
measurement noise into account.

First, measurement points and their corresponding dis-
tributions are transformed into occupancy grids using the
SICK noise model. Letga be an object-grid built using
the measurementA and gxy

a be the occupancy of a grid
cell at 〈x, y〉. The grid-based approach decomposes the
problem of estimating the posterior probabilityp(g | A)
into a collection of one-dimensional estimation problems,
p(gxy | A). A common approach is to represent the
posterior probability using log-odds ratios:

lxy
a = log

p(gxy
a | A)

1− p(gxy
a | A)

(2)

Figure 10(a) and Figure 10(b) show the corresponding
occupancy grids of the segment 1 of scanA and scanB.

After the grid mapsla and lb are built, correlation of
la are lb is used to evaluate how strong the grid-maps are
related. The correlation is computed as:

∑
xy

p(Axy)p(Bxy) (3)

Because the posterior probability is represented using
log-odds ratios, multiplication of probabilities can be done
using additions. In the previous section, the sampling-based
approach treats the samples equally. Now the samples
are weighted with their normalized correlation responses.
Figure 11 shows the normalized correlation responses.
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Fig. 12. The generated grid maps along the trajecotry.The boxes indicate
the boundaries of the grid maps.

V. L OCAL MAPPING USINGGRID-BASED APPROACHES

Since feature extraction is difficult and problematic in
outdoor environments, we apply grid-based approaches for
building the map. However, the grid-based approaches need
extra computation for loop-closing and all raw scans have
to be used to generate a new global consistent map, which
is not practical for online city-sized mapping. Therefore,
the grid-map is only built locally.

After localizing the robot using the sampling and cor-
relation based range image matching algorithm, the new
measurement is integrated into the grid map.

Practically, there are two requirements for selecting the
size and resolution of grid maps: one is that a grid map
should not contain loops, and the other is that the quality of
the grid map should be maintained at a reasonable level.
For solving the example in Fig. 2, the width and length
of the grid map are set as 160 meters and 200 meters
respectively, and the resolution of the grid map is set at
0.2 meter. When the robot arrives within 40 meter of the
boundary of the grid map, a new grid map is initialized.
The global pose of the map and the corresponding distribu-
tion is computed according to the robot’s global pose and
the distribution. Figure 12 shows the boundaries of the grid
maps generated along the trajectory using the described
parameters. Figure 13 shows the details of the grid maps,
which contain information from both stationary objects and
moving objects. The details of dealing with moving objects
are addressed in [4].

VI. GLOBAL MAPPING USINGFEATURE-BASED

APPROACHES

The first step to solve the loop-closing problem is to
robustlydetectloops orrecognizethe pre-visited areas. It is
called therevisitingproblem [21]. Figure 14 shows that the
robot entered the explored area. Because of accumulated
pose errors (see Fig. 15(a), temporary stationary objects,
occlusion, and unmodelled uncertainty, the current grid
map is not consistent with the pre-built map. In this section
we assume that loops are correctly detected. The issues and
solutions of the revisiting problem is addressed in [8].

For closing loops in real time, feature-based approaches
are applied. Because the occupancy grid approach is used

(a) Grid Map 1 (b) Grid Map2

Fig. 13. Grid Map details.Gray denotes areas which are not occupied
by both moving objects and stationary objects,whiter than graydenotes
the areas which are likely to be occupied by moving objects, anddarker
than graydenotes the areas which are likely to be occupied by stationary
objects.
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Fig. 14. The revisiting problem.

for local mapping, we have to develop a method to trans-
form or decompose the occupancy grid map into stable
regions (features) and a covariance matrix containing the
correlation among the robot and the regions. Unfortunately,
this is still an open question. Therefore, instead of de-
composing the grid maps, we treat each grid map as a
three degree-of-freedom feature directly. Fig. 15(b) shows
the raw scans fram the SICK LMS221 scanner in which
there are about 36,500 scans. Fig. 16 shows the result
using the feature-based EKF algorithm for loop-closing
where information from moving objects is filtered out .
The covariance matrix for closing this loop only contains
14 three degree-of-freedom features.

Since we set the whole grid maps as features in the
feature-based approaches for loop-closing, the uncertainty
inside the grid maps is not updated with the constraints
from detected loops. Although Figure 16 shows a satisfying
result, the coherence of the overlay between grid maps
is not guaranteed. Practically, the inconsistency between
the grid-maps will not effect the robot’s ability to perform
tasks. Local navigation can be done with the current built
grid map which contains the most recent information about
the surrounding environment. Global path planning can be
done with the global consistent map from feature-based
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Fig. 15. The data set collected from the Navlab11 vehicle. (a): the
pose estimates from the onboard inertial measurement system. (b): the
measurements form the SICK LMS221 laser scanner.

Fig. 16. A built global consistent map of the CMU neighborhood.

approaches in a topological sense. In addition, the quality
of the global map can be improved by using smaller grid
maps to smooth out the inconsistency between grid maps.
At the same time, the grid-maps should be big enough to
have high object saliency scores in order to reliably solve
the revisiting problem.

VII. C ONCLUSION

In this paper, we compared different representations and
presented the hierarchical object based representation that
integrates direct, grid-based and feature-based approaches.
The sampling and correlation based range image matching
algorithm is used for dealing with the problems arising
from uncertain, sparse and featureless data in outdoor en-
vironments. The experimental results using data collected
from the Navlab11 vehicle demonstrated the feasibility of
city-sized SLAM with the use of the described algorithms.
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