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Abstract— Urban driving is a demanding task for au-
tonomous vehicles as it requires the development and in-
tegration of several challenging capabilities, including high-
level route planning, interaction with other vehicles, complex
maneuvers, and ultra-reliability. In this paper, we present a
reasoning framework for an autonomous vehicle navigating
through urban environments. Our approach combines route-
level planning, context-sensitive local decision making, and so-
phisticated motion planning to produce safe, intelligent actions
for the vehicle. We provide examples from an implementation
on an autonomous passenger vehicle that has driven over 3000
autonomous kilometers and competed in, and won, the Urban
Challenge.

I. INTRODUCTION
Autonomous passenger vehicles present an extremely

promising solution to traffic accidents caused by driver
error. However, developing systems that are sophisticated
enough and reliable enough to operate in everyday driving
scenarios is a huge challenge. As a result, up until very
recently, autonomous vehicle technology has been limited
to either off-road, unstructured environments where complex
interaction with other vehicles is non-existent [1], [2], [3],
[4], [5], [6], or very simple on-road maneuvers such as
highway-based lane following [7]. However, to live up to
their enormous potential, such systems have to make the
transition to unrestricted on-road driving.

In November 2007 the United States Defense Advanced
Research Projects Agency (DARPA) held a competition for
autonomous vehicles intended to accelerate this transition.
Dubbed ‘The Urban Challenge’, the competition consisted
of a series of navigation missions through an urban environ-
ment. Each vehicle had to navigate through single and multi-
lane roads, traffic circles and intersections, open areas and
unpaved sections, and cope with road blockages and complex
parking tasks. They had to do this for roughly 60 miles,
all in the presence of other human-driven and autonomous
vehicles, and all while abiding by speed limits and California
driving rules.

This challenge required significant advances over the state
of the art in autonomous vehicle technology. In this paper,
we describe the reasoning framework developed for Carnegie
Mellon University’s winning entry into the Urban Challenge,
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Fig. 1. “Boss”: Tartan Racing’s winning entry in the Urban Challenge.

“Boss”. This framework enabled Boss to plan fast routes
through the urban road network to complete its missions;
interact safely and intelligently with obstacles and other
vehicles on roads, at intersections, and in parking lots;
and perform sophisticated maneuvers to complete complex
parking tasks.

We first describe in more detail the Urban Challenge
and the required autonomous vehicle capabilities. We then
present Boss’ reasoning architecture and describe each of
the major components in this architecture. We conclude with
discussion and future extensions.

II. THE URBAN CHALLENGE

The DARPA Urban Challenge was an autonomous vehicle
race through roughly 60 miles of urban roads, intersections,
and parking lots. 11 vehicles were selected for the final event
on November 3, 2007, and 6 completed the course.

Twenty four hours before the race, DARPA provided each
vehicle with a rough road map of the environment, known
as a Route Network Definition File (RNDF), that provided
the location of intersections, parking lots (known as zones),
and the connectivity of the roads. The RNDF also provided
the positions of key locations known as checkpoints that
were used for specifying the set of ordered goal locations in
each navigation mission, and waypoints along each road that
provided some road shape information, all given in lat/long
coordinates. However, the density of these waypoints was
not enough to provide accurate road shape information for
blind waypoint following. DARPA also provided publicly-
available overhead imagery of the area that could be used for
improving the road map; however, they made no guarantees



Fig. 2. A sample Route Network Definition File (RNDF) provided by
DARPA. The yellow points represent the waypoints provided and the blue
line segments connect adjacent waypoints. The yellow circled numbers
represent checkpoints.

as to the accuracy of this imagery. Fig. 2 provides a sample
RNDF file and imagery provided by DARPA.

On race day, DARPA gave each vehicle a mission file
consisting of a set of ordered checkpoints from the RNDF
that had to be visited. The vehicle had five minutes to process
this file and begin its mission. After completing its mission,
the vehicle would be given a new mission file, and so on
until all the missions were complete.

III. SYSTEM ARCHITECTURE

The completion of the Urban Challenge required ex-
tremely reliable urban driving capability. In Boss, this capa-
bility was achieved through a software system architecture
that was decomposed into four major blocks (see Fig. 3).

Fig. 3. Boss’ Software System Architecture

A. Perception

The Perception component provides a composite picture of
the world to the rest of the system by interfacing to sensors,
processing the raw sensor data, and fusing the multiple
streams together into a collection of semantically-rich data
elements. The most important of these elements are:

• Vehicle State, globally-referenced position, attitude and
speed for Boss;

• Road World Model, globally-referenced geometric in-
formation about the roads, parking zones, and intersec-
tions in the world;

• Moving Obstacle Set, an estimation of other vehicles
in the vicinity of Boss;

• Static Obstacle Map, a grid representation of free,
dangerous, and lethal space in the world; and

• Road Blockages, an estimation of clearly impassable
road sections.

B. Mission Planning

The Mission Planning component computes the fastest
route through the road network to reach the next check-
point in the mission. The mission planner reasons about
the optimal path to a particular checkpoint much like a
human would plan a route from their current position to a
desired destination such as a grocery store or gas station.
Routes are evaluated based on knowledge of road blockages,
speed limits, and the nominal time required to make special
maneuvers such as lane changes or u-turns.

C. Behavioral Executive

The Behavioral Executive combines the strategic infor-
mation provided by Mission Planning with local traffic and
obstacle information provided by Perception and generates
a sequence of local pose goals for the Motion Planning
component. These local goals are grouped into three abstract
behavioral contexts, each of which requires the system to
behave according to a specific group of rules:

• Lane Driving, in which the system traverses a road
of one or more lanes while maintaining safe vehicle
separation and adhering to rules governing passing
maneuvers and stop-and-go traffic;

• Intersection Handling, requiring the determination of
precedence among stopped vehicles and safe merging
into or across moving traffic at an intersection; and

• Zone Maneuvering, in which the system maneuvers
through an unstructured obstacle or parking zone.

These contexts are primarily determined by the location of
the system and the current objectives set forth by the Mission
Planner and can be triggered by status from the Motion
Planner and by the overall health of the various vehicle and
software subsystems.

D. Motion Planning

The Motion Planning component takes the local pose goal
from the Behavioral Executive and generates a trajectory
that will safely drive Boss towards this goal. Two broad
contexts for motion planning exist: on-road driving and



unstructured driving. In each context, the motion planner
generates a set of candidate trajectories based on constraints
from the Behavioral Executive and selects the best collision-
free trajectory from this set to execute.

Together, the mission, behavioral, and motion planning
components perform the reasoning behind Boss’ every move.
Each of these components and their relationships to one
another are described further in the following sections.

IV. MISSION PLANNING

The mission planner is responsible for generating a cost-
to-goal value for every waypoint in the world. In our setting,
this value can be thought of as the minimum time required
to reach the goal. A path to the goal from any point in the
world can then easily be extracted by selecting, from any
given point, the waypoint in the vicinity that minimizes the
sum of this cost-to-goal value plus the time taken to reach
the waypoint, then repeating this process to step through
waypoints until the goal is reached.

To generate mission plans, the data provided in the RNDF
is used to create a graph that encodes the connectivity of the
environment. Each waypoint in the RNDF becomes a node
in this graph, and directional edges (representing lanes) are
inserted between a given waypoint and all other waypoints
that it can reach. These edges are also assigned time costs
based on a combination of several factors, including the
distance of the edge, the speed limit, and the complexity
of the corresponding area of the environment. This graph is
searched to compute cost-to-goal values for each position
in the graph given a desired goal position, such as the
first checkpoint in the mission. In addition to providing
the Behavioral Executive more information to reason about,
computing cost-to-goal values for every position is useful
because it allows the navigation system to behave correctly
should the vehicle be unable to perfectly execute the original
path (e.g. if a particular intersection is passed through by
mistake, we can immediately extract the best path from the
vehicle’s current position).

As the vehicle navigates through the environment, the
mission planner updates its graph to incorporate newly-
observed information, such as road blockages or previously-
unknown intersections or roads. Each time a change is
observed, the mission planner re-generates new cost-to-goal
values. Because the size of the graph is relatively small, this
replanning can be performed extremely quickly, allowing for
immediate response to environmental changes.

V. BEHAVIORAL EXECUTIVE

The Behavioral Executive is responsible for using the cost-
to-goal value function from the Mission Planner and local
perceptual information to generate local tasks for the Motion
Planner. It is also responsible for the system’s adherence
to various rules of the road, especially those concerning
structured interactions with other traffic and road blockages,
and for detection of and recovery from anomalous situations.
The local tasks take the form of simple, discrete motion goals
to be executed by the Motion Planner, such as driving along a

road to a specific point or maneuvering to a specific parking
spot. The issuance of these goals is predicated on safety and
traffic concerns such as precedence among vehicles stopped
at an intersection and windows-of-opportunity in yield sit-
uations such as at T-intersections. In the case of driving
along a road, periodic lane tracking and speed government
commands are used to implement behaviors such as safety
gap maintenance, passing maneuvers and queueing in stop-
and-go traffic.

The design of the Behavioral Executive is built upon the
identification of a set of driving contexts, each of which
requires the vehicle to focus on a specific collection of
environmental features. At the macroscopic level, the three
relevant contexts are on-road, at-intersection, and in-zone.
Their corresponding behaviors are respectively Lane Driving,
Intersection Handling, and Zone Maneuvering. The first two
are highly structured, both in geometry and road-rules, and
are thus strongly reflected in the Behavioral Executive’s
architecture. The third, Zone Maneuvering, occurs in un-
structured and largely unconstrained environments, including
parking lots, jammed intersections and recovery situations
where the only guiding rules are to avoid obstacles and
achieve a specified pose. Due to the reduced structure in
these areas, this driving context does not require complex
reasoning at the Behavioral Executive level. Fig. 4 shows the
primary functional elements within the Behavioral Executive,
grouped by functional context and highlighting the data flow
between them.

Fig. 4. Behavioral Executive software architecture, showing grouped
dominant elements and data paths.

The system elements shown in Figure 4 perform the
following functions:

Goal Selection
• StateEstimator combines the vehicle’s current po-

sition with the world model to produce a discrete and
semantically rich representation of the vehicle’s logical
position within the model.

• GoalSelector uses the current logical location as



Fig. 5. An example lane driving scenario.

reported by StateEstimator to generate the next series
of local goals for execution by the Motion Planner.

Lane Driving
• CurrentSceneReporter distills the list of known

vehicles and lane blockages into a few discrete data
elements, most notably the distance to and velocity of
the nearest vehicle in front of Boss in the current lane.

• LaneSelector uses the surrounding traffic condi-
tions to determine the optimal lane to be in at any instant
and requests a merge into that lane if necessary.

• MergePlanner determines the feasibility of a merge
into a lane proposed by LaneSelector and commands
merge speeds and the lane-change maneuver when
appropriate.

• DistanceKeeper uses the system’s current
speed and the lead vehicle information from
CurrentSceneReporter to determine the
necessary in-lane vehicle safety gaps and govern
the vehicle’s speed accordingly.

• VehicleDriver combines the outputs of
DistanceKeeper and MergePlanner with
its own internal rules to generate a periodic message
to the Motion Planner that governs road driving
parameters such as speed, acceleration and a desired
tracking lane.

Intersection Handling
• PrecedenceEstimator uses the list of known other

vehicles and their state information to determine prece-
dence at an intersection.

• PanheadPlanner aims panning long-range radar and
laser sensors to gain the most relevant information for
intersection precedence decisions.

• TransitionManager manages the discrete-goal in-
terface between the Behavioral Executive and the Mo-
tion Planner, using the goals from GoalSelector
and the results from PrecedenceEstimator to
determine when to transmit the next sequence of goals.

It is important to note that the final implementation in-
cludes many more functional elements and more convoluted
data paths than listed above, but that these generally belong
to auxiliary functionality such as diagnostic state reporting
or else are an artifact of the system’s rapid development

cycle. These elements and connections were omitted to allow
for a more clear and concise description of the system’s
functionality.

To illustrate the system’s operation, we highlight two
example scenarios in Sections V-A and V-B: lane driving
and intersection handling.

A. Lane Driving

Fig. 5 shows a standard driving scenario along a road with
two lanes in the same direction, separated by a dashed white
line. In this scenario, Boss is driving in the left lane along
with a collection of traffic vehicles and toward a goal in the
right lane some distance xG down the road. To satisfy this
scenario, the system must:

• Maintain the maximum speed possible along the seg-
ment (to minimize travel time),

• Maintain a safe forward separation to the lead vehicle,
“Veh F”,

• Reach the upcoming goal in the correct lane and at the
correct speed or else abort and select an alternate route
(if possible).

• Merge into the correct lane with sufficient spacing so
as to not violate spacing rules relative to the vehicles
in that lane, “Veh 1” and “Veh 2”.

The ultimate output of the Lane Driving System, produced
by the VehicleDriver element, is an instantaneously
desired speed and an instantaneously desired tracking lane.
The tracking lane is produced directly by the Merge Planning
element and is discussed below. The speed output is the
minimum of the road’s speed limit, an externally-imposed
speed limit and a subsumptive [8] selection between the
speeds necessary for Distance Keeping and Merge Planning,
where the Distance Keeping output speed is suppressed by
the Merge Planning output speed when the Merge Planner
is active to give the Merge Planner unfettered control of
the vehicle’s speed and room to bend the Distance Keep-
ing rules if necessary to continue forward. In this driving
context, the aforementioned system elements are all active
simultaneously, performing the following functions:

• The CurrentSceneReporter identifies “Veh F” as
the lead vehicle in the current lane and provides the
distance xL = (xF − lveh) and the velocity vL = vF to



Fig. 6. An Example Intersection Handling Scenario.

the rest of the system as the distance to the lead vehicle
and the lead vehicle’s speed respectively.

• The DistanceKeeper computes a velocity command
for tracking “Veh F” at a safe distance as vDK =
Kgap ∗ (xL−gapdesired), where Kgap is a configurable
proportional gain and gapdesired is computed as a
function of Boss’ current speed.

• The LaneSelector determines both that the current
goal is a distance xG away along the right-hand lane
and that progress in the current lane is being inhibited
by “Veh F” (if vDK is less than the speed limit). If the
goal is sufficiently far away and the Lane Selector is
attempting to pass “Veh 2”, it may continue to hold the
current tracking lane for a short time. Otherwise, it will
request an immediate merge into the right-hand lane.

• The MergePlanner, assuming that LaneSelector
has requested a merge, identifies three potential merge
slots in the right hand lane: before “Veh 2”, after “Veh
1”, and in-between the two. Each slot is evaluated
both for instantaneous and predicted feasibility, and the
MergePlanner may command a slow-down in the
current lane to let “Veh 2” pass , an immediate merge
between, or else to continue tracking “Veh F” in the
current lane to pass “Veh 1”, all depending on the
specifics of the scenario.

B. Intersection Handling
Fig. 6 shows Boss approaching a stop line in a four-way,

two-stop intersection with the intent to cross and continue
forward. Another vehicle, “Veh 2”, approaches the other
stop-line, and there is traffic flowing on the horizontal road
in both directions (“Veh 1” and “Veh 3”).

The intersection handling subsystem is active both
on approach to the intersection and when sitting at
the stop-line waiting for precedence. On approach, the
PrecedenceEstimator computes the set of relevant
stop-lines to monitor for precedence among static vehicles
and a set of yield polygons to monitor for clearance through
moving traffic. These two boolean states, precedence and
clearance, are forwarded to the TransitionManager to

control when to issue the command to proceed through
the intersection. The yield polygons are also used by the
PanheadPlanner to optimize sensor coverage of the areas
of the road where moving traffic is likely to be found.

Precedence is determined among stop-lines via a notion
of occupancy, and the stop-line Boss is approaching is
treated no differently than the others. When any vehicle
(i.e. Boss or “Veh 2”) is inside a pre-computed polygon
around the stop-line, that stop-line is considered to be
occupied and the stop-line with the earliest occupied time is
considered to have precedence. Precedence is signaled to the
TransitionManager when Boss is stopped at its stop-
line and that stop-line has precedence.

Clearance is computed by estimating a time-of-arrival
(ETA) for each vehicle in a Yield Polygon (i.e. “Veh 1” and
“Veh 3”) at the crash point for that polygon, which is where
the vehicle would first intersect Boss’ projected path through
the intersection. These ETAs are compared to a conservative
estimate of the time Boss would require to traverse the
intersection, and instantaneous clearance is granted when all
the ETAs in question exceed this estimate. To compensate
for errors in the estimation of other vehicles, instantaneous
clearance must be believed for at least one continous second
before clearance is granted to the TransitionManager
for goal propagation.

Once the system reaches the stop-line, the
TransitionManager receives a set of local goals to
proceed through the intersection from the GoalSelector.
It then waits for the PrecedenceEstimator to signal
that Boss has both precedence among stop-lines and
clearance through traffic before actually issuing those goals
to the motion planner. This has the benefit of isolating
the motion planner from rules regarding discrete traffic
interaction and allowing it to focus on lane following and
collision avoidance.

VI. MOTION PLANNING
The motion planning layer is responsible for executing

the current motion goal issued from the behaviors layer.
This goal may be a location within a road lane when



Fig. 7. Following a road lane. These images show a single timeframe from the Urban Challenge.

performing nominal on-road driving, a location within a
zone when traversing through a zone, or any location in the
environment when performing error recovery. The motion
planner constrains itself based on the context of the goal to
abide by the rules of the road.

In all cases, the motion planner creates a path towards
the desired goal, then tracks this path by generating a set of
candidate trajectories that follow the path to varying degrees
and selecting from this set the best trajectory according
to an evaluation function. This evaluation function differs
depending on the context but includes consideration of static
and dynamic obstacles, curbs, speed, curvature, and deviation
from the path.

A. Lane Driving

During on-road navigation, the motion goal from the
Behavioral Executive is a location within a road lane. The
motion planner then attempts to generate a trajectory that
moves the vehicle towards this goal location in the desired
lane. To do this, it first constructs a curve along the centerline
of the desired lane, representing the nominal path for the
vehicle. To robustly follow the desired lane and to avoid
static and dynamic obstacles, the motion planner generates
trajectories to a set of local goals derived from this centerline
path.

The goals are placed at a fixed longitudinal distance down
the centerline path, but vary in lateral offset to provide
several options for the planner. A model-based trajectory
generation algorithm is used to compute dynamically feasible
trajectories to these local goals [9]. The velocity profile used
for each of these trajectories is computed based on several
factors, including: the maximum velocity bound given from
the Behavioral Executive based on safe following distance to
the lead vehicle, the speed limit of the current road segment,
the maximum velocity feasible given the curvature of the
centerline path, and the desired velocity at the goal (e.g. if
it is a stop-line).

The resulting trajectories are then evaluated against their
proximity to static and dynamic obstacles in the environment,
as well as their distance from the centerline path, their
smoothness, and various other metrics. The best trajectory
according to these metrics is selected and executed by the
vehicle.

Fig. 7 provides an example of the local planner following
a road lane. The left-most image shows the view from the
vehicle overlaid on an overhead road and traversability map
(lane extents are shown as blue curves, obstacles shown in
red). The center image shows a set of trajectories generated
to follow the right lane (the centerline of the lane is shown
as a red curve), and the right image shows the trajectory
selected for execution (the convolution of the vehicle along
this trajectory is shown as a sequence of blue polygons).

B. Unstructured Driving

When driving in unstructured areas, the motion goal from
the Behavioral Executive is a desired pose for the vehicle
such as a parking spot. The motion planner attempts to
generate a trajectory that moves the vehicle towards this
goal pose. However, driving in unstructured environments,
such as zones, significantly differs from driving on roads. As
mentioned in the previous section, when traveling on roads
the desired lane implicitly provides a preferred path for the
vehicle (the centerline of the lane). In zones there are no
driving lanes and thus the movement of the vehicle is far
less constrained.

To efficiently plan a smooth path to a distant goal pose in
a zone, we use a lattice planner that searches over vehicle
position (x, y), orientation (θ), and velocity (v) to generate
a sequence of feasible maneuvers that are collision-free
with respect to the static and dynamic obstacles observed
in the environment. This path is also biased away from
undesirable areas within the environment such as curbs. To
efficiently generate complex plans over large, obstacle-laden
environments, the planner relies on the anytime, replanning
search algorithm Anytime D* [10].

The resulting plan is then tracked by the local planner
in a similar manner to the paths extracted from road lanes.
However, in contrast to when following lane paths, the
trajectories generated to follow the zone path all attempt to
terminate on the path, reducing the risk that the vehicle might
move away from the path and not easily be able to return to
it. Fig. 8 shows Boss tracking a lattice plan into a parking
spot.

This lattice planner is flexible enough to be used in a
large variety of cases that can occur during on-road and
zone navigation. In particular, it is used during error recovery



Fig. 8. Following a lattice plan to a parking spot. These images are from a qualification run at the Urban Challenge

when navigating congested intersections, to perform difficult
u-turns, and to get the vehicle back on track after emergency
defensive driving maneuvers. In these error recovery scenar-
ios the lattice planner is biased to avoid areas that could
result in unsafe behavior (such as oncoming lanes when on
roads).

VII. CONCLUSIONS

We have presented a reasoning framework for autonomous
urban driving. Performing this task safely and reliably re-
quires intelligent consideration of other vehicles, context-
aware decision making, and sophisticated motion planning.
Our framework provides these capabilities through a three-
tiered architecture that facilitates incremental addition of
competencies and has been proven in over 3000 kilometers of
autonomous driving, including winning the Urban Challenge.
The approach applies to general urban driving and can be
used in either fully autonomous systems or intelligent driver
assistance systems.
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