
Addressing Pose Uncertainty in Manipulation Planning Using
Task Space Regions

Dmitry Berenson† Siddhartha S. Srinivasa‡† James J. Kuffner†

†The Robotics Institute, Carnegie Mellon University ‡Intel Research Pittsburgh
5000 Forbes Ave., Pittsburgh, PA, 15213, USA Pittsburgh, PA, 15213, USA

[dberenso, kuffner]@cs.cmu.edu [siddhartha.srinivasa]@intel.com

Abstract—We present an efficient approach to generating paths
for a robotic manipulator that are collision-free and guaranteed
to meet task specifications despite pose uncertainty. We first
describe how to use Task Space Regions (TSRs) to specify
grasping and object placement tasks for a manipulator. We then
show how to modify a set of TSRs for a certain task to take into
account pose uncertainty. A key advantage of this approach is
that if the pose uncertainty is too great to accomplish a certain
task, we can quickly reject that task without invoking a planner.
If the task is not rejected we run the IKBiRRT planner, which
trades-off exploring the robot’s C-space with sampling from TSRs
to compute a path. Finally, we show several examples of a 7-DOF
WAM arm planning paths in a cluttered kitchen environment
where the poses of all objects are uncertain.

I. INTRODUCTION

A common assumption when planning for robotic manip-
ulation tasks is that the robot has perfect knowledge of the
geometry and pose of objects in the environment. For a robot
operating in a home environment it may be reasonable to
have geometric models of the objects the robot manipulates
frequently and/or the robot’s work area. However, these ob-
jects and the robot frequently move around the environment,
introducing uncertainty into the pose of the objects relative to
the robot. Laser-scanners, cameras, and sonar sensors can all
be used to help resolve the poses of objects in the environment,
but these sensors are never perfect and usually localize the
objects to be within some hypothetical probability distribution
of pose estimates. If this set of probable poses is large,
planning with the best hypothesis alone can be unsafe because
the robot could collide with a poorly-localized object (see
Figure 1).

In addition to being unsafe in terms of potential collisions,
planning without regard to uncertainty can violate task spec-
ifications. Suppose that a robot arm is to pick up an object
by placing its end-effector at a particular pose relative to the
object and closing the fingers. If there is any uncertainty in the
pose of the object, generally no guarantee can be made that
the end-effector will reach a specific point relative to the true
pose of object. Depending upon the task, this lack of precision
may range from being the source of critical failure to causing
only minor disturbances. Many practical manipulation tasks
afford a large amount of freedom in the choice of grasps and
goal locations. For example, when we pick up a coffee mug
and place it in the sink, we can choose from a wide range of
hand configurations to grasp the mug securely, as well as a

Fig. 1. Failures arising from planning with the best single hypothesis under uncertainty.
Top: An unexpected collision with the environment due to uncertain robot localization.
Bottom: A grasp fails due to uncertain object pose estimation. In both cases, planning
with only the best estimate of pose incorrectly predicts success (right).

wide range of goal locations in the sink to place the mug.
In this paper we employ the concept of Task Space Re-

gions (TSRs) [1] to meet task specifications in spite of pose
uncertainty. TSRs allow the specification of continuous regions
in SE(3), the six-dimensional space of poses, as goals for a
manipulator’s end-effector. A given task can entail any number
of TSRs, each of which encompasses a subspace of SE(3),
with dimension less than or equal to six. TSRs allow us to
plan for manipulation tasks in the presence of pose uncertainty
by ensuring that the given task requirements are satisfied for
all hypotheses of the object’s pose. TSRs also provide a way
to quickly reject tasks which cannot be guaranteed to be
accomplished given the current pose uncertainty estimates.

In the following sections we motivate and describe TSRs
and show how they can be incorporated into sampling-based
planning algorithms. We then show how to modify the TSRs
of a given task to account for pose uncertainty. We also
describe the Inverse Kinematics BiDirectional RRT algorithm
(IKBiRRT), which uses TSRs to plan paths for manipulation
tasks. Finally, we demonstrate our methods on the 7DOF
WAM arm performing manipulation tasks in a kitchen envi-
ronment.



II. BACKGROUND

The idea of motion planning in the presence of uncertainty
dates back to the seminal work of Lozano-Perez et. al. [2]
on preimage backchaining. The concept of a preimage — a
region of configuration space from which a motion command
is guaranteed to attain a given goal recognizably — was used
as a building block to compose an operational planner that
produced actions guaranteed to succeed under pose and action
uncertainty. However, it was shown [3], [4] that constructing
preimages incurred a prohibitive computational cost. We will
show in Section IV that, for the case of manipulation plan-
ning, TSRs provide an efficient representation for computing
the preimage of hand poses that are guaranteed to provide
an acceptable grasp or object placement under object pose
uncertainty.

Our planning algorithm, the IKBiRRT [1], is based on the
bidirectional variant of the RRT [5], [6]. This algorithm uses
a backward-searching tree that has multiple roots. However,
unlike previous work [7], [8], these roots are added to the tree
during the planning process and are guaranteed to meet task
specifications despite pose uncertainty.

Another area of related work is quality metrics that charac-
terize the robustness of grasps to pose uncertainty. Techniques
for computing such metrics have ranged from first and second-
order analysis of the perturbation of grasp contact points
[9], [10], [11], [12] to generating contact patches [12], [13],
[14]. These metrics can be used to construct robust TSRs for
grasping under uncertainty.

Our approach requires that we have a set of hypotheses
of pose for every object in the environment other than the
robot. These hypothesis sets can come from sensors that are
on-board the robot, sensors that are fixed in the environment,
or a mixture of both. In general, pose estimates can be
propagated through different frames using the methods of
Smith and Cheeseman[15]. Though Smith and Cheeseman
focus mainly on 2D poses, their methods have been extended
to six-dimensional poses in 3D. See Sallinen’s thesis[16] for
an overview.

III. TASK SPACE REGIONS

In general, a set of task space goals for a manipulator’s end-
effector can be defined as comprising any number of contin-
uous regions of SE(3) of arbitrary size and shape distributed
throughout the task space. However, such a broad representa-
tion lacks three fundamental properties that are important for
efficient sampling-based planning under uncertainty.

First, the set of goals must be relatively easy to specify
for the user. Consider the task of placing an object onto a
table. The set of all valid end-effector positions that achieve
the placement of the object produces a complex volume
which may be infeasible and/or computationally expensive to
discretize and input into a planner.

Second, sampling from the set of goals must be efficient
and ideally cover the entire goal set. If the set is discretized,
some interpolation scheme between points must be used for
sampling, which could involve greater computational cost.

Third, in the presence of pose uncertainty, it is practically
impossible to guarantee that a certain point relative to an object
will be reached by the end-effector. Thus there is no guarantee
that moving the end-effector to a point in the goal set will
result in meeting the task specification.

In previous work we introduced TSRs [1], which approach
the problem of specifying goal sets by describing implicit
volumes of SE(3). These volumes are particularly useful for
manipulation tasks such as reaching to grasp an object or
placing an object onto some 2D surface or into some 3D
volume. TSRs are also intuitive to specify, can be efficiently
sampled, and the TSRs of a given task can be modified to
take into account pose uncertainty. A set of TSRs can describe
any arbitrary set of goals by, in the extreme case, assigning
one TSR to every point, though this is clearly undesirable in
practice because the specification, sampling, and uncertainty
problems will re-emerge. However, for the types of grasping
and object placement problems we are interested in, we
typically need to use less than 20 TSRs to specify our task
space goals adequately.

TSRs specify goal poses of a robot’s end-effector but they
can equivalently specify the goal placements of an object that
the robot is holding. Thus we will consider these two tasks
equivalent in the rest of this paper.

A. TSR Definition

Throughout this paper, we will be using transformation
matrices of the form Tab ∈ SE(3), which specifies the pose of
b in the coordinates of frame a. Tab , written in homogeneous
coordinates, consists of a 3×3 rotation matrix Rab and a 3×1
translation vector tab .

Tab =
[

Rab tab
0 1

]
(1)

A TSR consists of three parts:
• T0

w: reference transform of the TSR in world coordinates
• Twe : end-effector offset transform in the coordinates of w
• Bw: 6× 2 matrix of bounds in the coordinates of w:

Bw =


xmin xmax
ymin ymax
zmin zmax
ψmin ψmax
θmin θmax
φmin φmax

 (2)

The first three rows of Bw bound the allowable translation
along the x, y, and z axes (in meters) and the last three bound
the allowable rotations about those axes (in radians), all in the
w frame. Note that this assumes the Roll-Pitch-Yaw (RPY)
Euler angle convention, which is used because it allows bounds
on rotation to be specified intuitively.

In practice, the w frame is usually centered at the origin of
an object held by the hand or at a location on an object that
is useful for grasping. We use an end-effector offset transform
Twe , because we do not assume that w directly encodes the



pose of the end-effector. Twe allows the user to specify an
offset from w to the origin of the end-effector e, which is
extremely useful when we wish to specify a TSR for an object
held by the hand or a grasping location which is offset from
e; for instance in between the fingers. For some example Twe
transforms, see Figure 5.

B. Sampling From Task Space Regions

In order to use TSRs in a bidirectional sampling-based
planner like the IKBiRRT, we must be able to sample from a
set of TSRs efficiently. The IKBiRRT uses these samples as
queries for an inverse-kinematics solver.

Sampling from a single TSR is done by first sampling a
random value between each of the bounds defined by Bw
with uniform probability. These values are then compiled in
a displacement dwsample = [x y z ψ θ φ] and converted
into the transformation Twsample. We can then convert this
sample into world coordinates after applying the end-effector
transformation.

T0
sample′ = T0

wTwsampleT
w
e (3)

We observe that while our method ensures a uniform
sampling in the bounds of Bw, it could likely produce a biased
sampling in the subspace of constrained spatial displacements
SE(3) that Bw parameterizes. We are currently investigating
how to generate an unbiased sampling, however this bias has
not had a significant impact on the runtime or success-rate of
our algorithm.

In the case of multiple TSRs define for a single task, we
must first decide which TSR to sample from. If all TSRs
enclose six-dimensional volumes, we can choose among TSRs
in proportion to their volume. However a volume-proportional
sampling will ignore TSRs that encompass volumes of less
than six dimensions because they have no volume in the
six-dimensional space. To address this issue we propose a
weighted sampling scheme that samples TSRs proportional to
the sum of the differences between their bounds.

ζi =
6∑
j=1

(
Bwi
j,2 − Bwi

j,1

)
(4)

where ζi and Bwi are the weight and bounds of the ith TSR,
respectively. Sampling proportional to ζi allows us to sample
from TSRs of any dimension except 0 while giving preference
to TSRs that encompass more volume. TSRs of dimension 0,
i.e. points, are given an ε probability of being sampled. In
general, any sampling scheme for selecting a TSR can be used
as long as there is a non-zero probability of selecting any TSR.

IV. ACCOUNTING FOR POSE UNCERTAINTY

Since we would like to compute a plan that is guaranteed to
meet task specifications for all hypotheses of object pose, we
must modify the TSRs assigned to a given task to account for
pose uncertainty and introduce new obstacles into the world
to avoid potential collisions.

Fig. 2. Process for splitting TSRs to take into account rotation. Only one dimension
of rotation is shown here. The three concentric circles correspond to a single TSR’s
bound in Roll that has been rotated by transforms T0

h0
, T0

h1
, and T0

h2
. Blue regions

correspond to allowable rotations and black ones to unallowable rotations. The circles
are cut at π = −π and overlaid on the right. The strips where all rotations are valid
(there are no black regions) are extracted as new separate bounds for this dimension. This
process is identical for Roll, Pitch, and Yaw. The cartesian product of the new bounds
for Roll, Pitch, and Yaw along with the original x, y, and z bounds produces a new set
of TSRs Tsplit.

Fig. 3. Intersection of five instances of a TSR. Left: x-y view. Right: y-z view. The
red points are sampled within the polytope of intersection using rejection sampling.

A. Uncertainty and TSRs

Let the set of pose hypotheses for a given object be a set of
transformation matrices H. Also, let the set of TSRs defined
for this object be T . The process for generating a new set of
TSRs Tnew that takes into account H is shown in Algorithm 1.

This algorithm first splits every TSR t ∈ T to take into
account the rotation uncertainty in H, generating a set Tsplit
for each t. See Figure 2 for an illustration of this process. It
then places a duplicate of each ts ∈ Tsplit at every location
defined by the transforms in H. Next, it computes the volume
of intersection of all duplicates for every ts (see Figure 3). This
is done by converting all faces of all duplicates into linear
constraints via the FacesToLinInequalities function and then
converting those linear constraints into vertices P of a 6D
polytope via the GetVerticesInequalities function. Since TSRs
are convex we know that the polytope of intersection must be
convex as well. If the uncertainty is too great (i.e. there is no
6D point where all duplicates intersect), P will be empty. If P
is not empty, we place an axis-aligned bounding box around



P , set this as the new bounds of ts, and add ts to Tnew. Note
that it is irrelevant which element of H is used as T0

h0
because

the results will always be the same in the world frame.
In order to guarantee that a sampled 6D point meets

the uncertainty specification of the problem, samples drawn
from ts must lie inside the polytope defined by P . Ideally,
we would like to generate uniformly random samples from
within P directly. Indeed, this is always possible because the
polytope defined by P is convex. Because the polytope is
convex, it can always be divided into simplices using Delaunay
Triangulation. To generate a uniformly random sample from a
collection of simplices, we first select a simplex proportional
to its area and then sample within that simplex by generating
a random linear combination of its vertices [17]. For simple
polytopes, this method is quite efficient, however as the
polytope defined by P grows more complex, the Delaunay
Triangulation becomes more costly, thus this method usually
does not scale well with the number of hypotheses in H.

Rejection sampling can also be used to sample from the
polytope defined by P . When using rejection sampling, we
sample a point x uniformly at random from the bounding-
box of P until we find an x which satisfies b − Ax ≥ 0.
This method is quite fast in practice and does not require
triangulating the polytope defined by P , thus it is more suitable
for use in an online planning scenario.

In order to accommodate rejection sampling with TSRs, we
add another element to our TSR definition:
• LI: Linear inequalities of the form b−Ax ≥ 0

If LI = ∅ (i.e. there is no uncertainty), any sample generated
within the bounding box is valid. If the Tnew returned by
ApplyUncertainty(T , H) is empty, then we know that it is
impossible to accomplish this task with the uncertainty in H.
We can thus reject this task without calling the planner, a key
advantage of our approach.

B. Avoiding Potential Collisions

The process for avoiding potential collisions is quite
straightforward. For every object, we have a set of hypothesis
poses H. To account for potential collisions with a given ob-
ject, we simply create a duplicate of that object for each pose
in H and place it at that pose in our simulation environment.
This is done independently of the TSR modification described
above.

Note that these duplications will slow down the planning
process because multiple collision checks must be performed
for a single object. If the hypotheses in H are drawn from a
convex set (say an ellipse), we may instead consider computing
the swept-volume of the object as it moves between different
hypotheses. However, swept-volume computations are known
to be quite expensive and we do not wish to restrict our
algorithm to only hypotheses from convex sets. This is be-
cause many pose estimation algorithms (e.g. particle filters)
can give non-convex or multi-modal estimates of pose. Thus
to preserve generality, we follow the duplication procedure
described above despite the added cost of collision-checking
with multiple instances of the same object.

Algorithm 1: ApplyUncertainty(T ,H)

T0
h0
← Any element of H;1

Tnew ← ∅;2

for t ∈ T do3

Tsplit ← SplitRotations(t, T0
h0

, H);4

for ts ∈ Tsplit do5

A← ∅; b← ∅;6

for T0
h ∈ H do7

V ← GetVertices(ts);8

Vxyz ← (T0
h0

)−1T0
hVxyz;9

F ← GetFaces(V );10

{Atemp, btemp} ← FacesToLinInequalities(F );11

A← A ∪Atemp;12

b← b ∪ btemp;13

end14

P ← GetVerticesFromInequalities(A, b);15

if P = ∅ then16

ts.T0
w ← h0;17

ts.Bw ← BoundingBox(P );18

ts.Twe ← t.Twe ;19

ts.LI← {A, b};20

Tnew ← Tnew ∪ ts;21

end22

end23

end24

return Tnew;25

V. THE IKBIRRT ALGORITHM

Once we have properly taken into account uncertainty by
generating a new set of TSRs and augmenting our simulation
environment with duplicates of obstacles, we run the IKBiRRT
planner (first presented in [1]) to find a C-space path for the
robot that brings its end-effector (or the object it is holding)
to a pose within one of our new TSRs.

The IKBiRRT (see Algorithm 2) is an extension of the
Bidirectional RRT (BiRRT) algorithm [18] that grows trees
from both the start and goal configurations. At each iteration,
IKBiRRT chooses between one of two modes: exploration of
the C-space using a standard BiRRT and sampling from the set
of TSRs T . The probability of choosing the sampling mode
is controlled by the parameter Psample.

The Extend function moves incrementally from a given
starting configuration toward a target configuration in fixed
step sizes, stopping only when it encounters a collision or
when the target configuration has been reached. The nodes
generated through this process are added to the tree passed
in to the Extend function. If both trees meet at some con-
figuration, a path from the start to a goal configuration has
been found and the algorithm extracts the path and smooths
it. Smoothing is performed using the shortcut heuristic as in
[19]; however, any smoothing method is acceptable.

The AddIKSolutions function injects goal configurations
into the backward tree Tgoal. To do this, we first sample a



Fig. 4. Depiction of the IKBiRRT planning in the robot’s C-space with multiple TSRs.
The blue regions are C-space obstacles, the forward-searching tree is shown with green
nodes, and the backward-searching tree is shown with orange nodes. The large orange
nodes (roots of the backward-searching tree) are derived from TSR samples that are
generated as the planner is running.

point in T using the method described in Section III-B along
with the rejection sampling described in Section IV-A, which
gives us the transform T0

sample′ . This transform is passed to
the IK solver of the given manipulator. The manipulator then
generates some number of IK solutions for this transform and
checks each one for collision. The collision-free solutions are
added as goal configurations into Tgoal. Note that no extra
processing is needed to manage the multiple goal configura-
tions, they are simply added as root nodes in the backward
tree and treated the same as all other nodes in the tree when
computing nearest-neighbors.

Probabilistic completeness of the IKBiRRT algorithm fol-
lows from the property that, as time goes to infinity, every
measurable ball in the manifolds of configurations correspond-
ing to the TSRs will be sampled and a corresponding node
will be added to the backward search tree. This is because,
as time goes to infinity, every measurable ball in the TSRs
will be sampled, and the sample’s IK solutions will be added
to the backward tree. As long as the IK solver used is also
probabilistically complete (i.e. it does not exclude any mea-
surable ball of IK solution as the number of times it is invoked
approaches infinity), this guarantees that no measurable ball
of goal configurations will be excluded from the backward
search tree. Since the BiRRT algorithm is also probabilistically
complete, as time goes to infinity the forward and backward
trees will connect and return a solution involving one of the
goal configurations if a solution exists.

A. Generating IK Solutions

The IKBiRRT relies on the ability of the IK solver to
quickly generate solutions when given a target transform for
the manipulator’s end-effector. In theory, a general IK solver
based on the Jacobian pseudo-inverse or Jacobian-transpose
methods [20] can accomplish this task, however we have

Algorithm 2: IKBiRRT(qs, T )

Ta.Init(qs); Tb.Init(NULL);1

while TimeRemaining() do2

Tgoal = GetBackwardTree(Ta, Tb);3

if Tgoal.size = 0 or rand(0, 1) < Psample then4

AddIKSolutions(Tgoal, T );5

else6

qrand ← RandConfig();7

qanear ← NearestNeighbor(Ta, qrand);8

qareached ← Extend(Ta, qanear, qrand);9

qbnear ← NearestNeighbor(Tb, qareached);10

qbreached ← Extend(Tb, qbnear, q
a
reached);11

if qareached = qbreached then12

P ← ExtractPath(Ta, qareached, Tb, qbreached);13

return SmoothPath(P );14

else15

Swap(Ta, Tb);16

end17

end18

end19

return NULL;20

found that such solvers frequently encounter problems with
joint limits and that they often require many iterations, and
thus significant computation time, to converge. For 6DOF
manipulators such as the Puma arm, an analytical solution
to the inverse kinematics problem is available and ideal
for the IKBiRRT. However, for redundant robots such the
7DOF WAM arm, there are a potentially infinite number of
IK solutions for a given end-effector transformation and no
analytical algorithm can be used. To deal with this issue we
use a pseudo-analytical IK solver, which discretizes the first
joint of the WAM arm into a series of joint positions and
computes the analytical IK solutions for the remaining 6DOF
for each of these joint positions.

Note that such a strategy preserves the probabilistic com-
pleteness of the IKBiRRT because, as time goes to infinity,
every IK solution (up to the discretization used in the pseudo-
analytical solver) will be generated for every point in T .

VI. RESULTS

To evaluate our approach, we conducted experiments to
measure the time taken to apply uncertainty to TSRs (Al-
gorithm 1) and to plan paths for a 7 DOF WAM arm in a
cluttered kitchen environment. The TSRs in these experiments
were defined for a juice bottle (orange bottle) and rice box (red
box) shown in Figure 5.

The juice bottle has a TSR that allows the hand to spin
about the z-axis of the bottle and also several centimeters of
freedom in translation. The Twe is set such that the fingers
envelope the bottle. The bounds of this TSR are:



Fig. 5. Depiction of the w and e frames which are used to get the T0
w and Tw

e
transforms for the juice bottle and rice box when reaching to grasp. We also include
copies of these TSRs with the hand rotation by πrad around the x axis (red).

Bw =


−0.02 0.02
−0.02 0.02
−0.02 0.02

0 0
0 0
−π π

 (5)

We also add another TSR with identical bounds, but with
Twe defined to flip the hand.

For the rice box, we start with six TSRs, one for each face.
The Bw is set according to the dimension of each face and Twe
for each TSR points the hand toward the corresponding face.
We also allow ±0.4rad rotation freedom about the z-axis of
the rice box in each Bw. As with the juice bottle, we add 6
more TSRs for that are identical to the previous 6 except that
Twe flips the hand.

A. Applying Uncertainty to TSRs

We conducted several experiments to gauge the performance
of our algorithm for applying uncertainty to TSRs with vari-
ous numbers of pose hypotheses. The pose hypotheses were
sampled uniformly from ±1.5cm in x and y and ±0.2rad in
Yaw. There was no error in the other dimensions because all
the objects we detected to lie on a flat surface. In practice, we
would project pose hypotheses generated by a sensor onto the
flat surface to eliminate error in the other dimensions.

The goal was to see how the necessary runtime scaled with
respect to the number of pose hypotheses. The results are
shown in Table I. We found that the runtime scaled approxi-
mately linearly with the number of hypotheses. The runtime
for the rice box was greater because it has 12 associated
TSRs whereas the juice bottle only has 2. We are currently
re-implementing this process to make it more efficient.

No. Hypotheses 1 15 30 45 60

Juice Bottle 0 0.17 0.29 0.44 0.58
Rice Box 0 0.85 1.60 2.40 3.10

TABLE I: RUNTIMES(IN SECONDS) FOR APPLYING UNCERTAINTY

Fig. 6. Scenes 1 (top) and 2 (bottom) before duplication (left) and after duplication
(right). The orange bottle is the juice bottle and the red box is the rice box.

B. Reaching in Cluttered Environments

Our approach can be used to plan motion for a reach-to-
grasp of a certain object or for placing an object already held
by the robot onto some surface or into some volume. How-
ever, in practice, reaching tasks are usually more constrained
because the TSRs defined for grasping an object are usually
far smaller than those for placing it. Thus we demonstrate our
approach on reaching tasks to show its ability to work with
more stringent constraints.

Three experiments were conducted: reaching for the juice
bottle in scene 1, reaching for the rice box in scene 1, and
reaching for the juice in scene 2 (see Figure 6). The first task
is fairly easy because the juice bottle is in a relatively open
area. the second task is harder because the robot’s arm must
squeeze between two objects to grasp the box. If there were no
uncertainty, the robot would simply reach for the box from the
top, however the uncertainty in the pose of the box invalidates
the TSR that allows approaching from the top. The remaining
TSRs only allow the robot to approach toward the thin edge
of the box. The third task is the most difficult because the
duplication of the refrigerator leaves very little room for the
robot to approach the juice bottle. See Figure 7 for typical
results of the three experiments. The results of 10 runs of
each experiment for varying numbers of pose hypotheses for
each object are shown in Table II.The run time was limited to
1 minute of a Dual-Core 3GHz machine with 4GB or RAM.
If any run exceeded the limit, it was marked as a failure and 1
minute was used in computing the average runtime. Psample =
0.25 for all experiments.

The object pose hypotheses were sampled uniformly from
±2cm in x and y and ±0.1rad in Yaw for Scene 1. However,
this proved to be too much uncertainty for the task in scene 2
(the duplicates of the refrigerator made the task infeasible).
Thus, in scene 2, we used an error of ±1cm in x and y
and ±0.05rad in Yaw. This is an instance of different tasks
requiring different degrees of certainty to guarantee that the
task is accomplished.



Fig. 7. Typical results of tasks 1, 2, and 3, from left to right. The intersecting boxes above show several of the intersecting TSRs for these tasks. In task 2 the TSR for grasping
the box from the top is eliminated by the uncertainty (there is no point where all the boxes intersect) while the one for grasping it from the side is not.

NUMBER OF HYPOTHESES
SCENE 1 15 30 45 60

1 (juice) 1.53 (100%) 3.48 (100%) 8.55 (100%) 12.29 (100%) 24.25 (100%)
1 (rice) 1.33 (100%) 6.37 (100%) 11.95 (100%) 14.64 (100%) 22.54 (100%)
2 (juice) 4.72 (100%) 23.73 (90%) 40.95 (80%) 39.56 (70%) 52.22 (50%)

TABLE II: RUNTIMES(IN SECONDS) AND PERCENT SUCCESS FOR PLANNING

VII. CONCLUSION

We have presented an approach to addressing pose uncer-
tainty in manipulation planning problems. After describing a
reaching or object placement task with a set of TSRs, we
can modify this set to take into account pose uncertainty by
intersecting copies of each TSR in 6D pose space. If there
is no point were all copies of a TSR intersect, that TSR
is discarded. If all TSRs for a task are discarded, then we
know that the task cannot be accomplished given the current
pose uncertainty. If any TSRs remain after intersection, we
invoke the IKBiRRT planner which trades-off exploring the
robot’s C-space and sampling from the TSRs to generate a
path. Finally, we presented several experiments on the WAM
arm in a cluttered kitchen environment. We found that our
approach was an efficient way to generate collision-free plans
that are guaranteed to meet task specifications in the presence
of pose uncertainty.

VIII. ACKNOWLEDGEMENTS

Dmitry Berenson was partially supported by Intel Research
Pittsburgh and by the National Science Foundation under
Grant No. EEC-0540865. Thanks to Nico Blodow for many
helpful discussions.

REFERENCES

[1] D. Berenson, S. Srinivasa, D. Ferguson, A. Collet, and J. Kuffner,
“Manipulation planning with workspace goal regions,” in ICRA, 2009.

[2] T. Lozano-Perez, M. Mason, and R. H. Taylor, “Automatic synthesis of
fine-motion strategies for robots,” IJRR, vol. 3, no. 1, 1984.

[3] M. Erdmann, “Using backprojections for fine motion planning with
uncertainty,” IJRR, vol. 5, no. 1, p. 19, 1986.

[4] J. Canny, “On computability of fine motion plans,” in ICRA, 1989, pp.
177–182.

[5] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in WAFR, 2000.

[6] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[7] M. Stilman, J.-U. Schamburek, J. Kuffner, and T. Asfour, “Manipulation
planning among movable obstacles,” in IROS, 2007.

[8] Y. Hirano, K. Kitahama, and S. Yoshizawa, “Image-based object recog-
nition and dexterous hand/arm motion planning using rrts for grasping
in cluttered scene,” in IROS, 2005.

[9] D. Montana, “Contact stability for two-fingered grasps,” in ICRA, 1992.
[10] H. Hanafusa and H. Asada, Robot Motion. The MIT Press, 1982, ch.

Stable prehension by a robot hand with elastic fingers.
[11] M. R. Cutkosky, Analysis for an Active Robot Hand. Kluwer Academic

Publishers, 1985.
[12] V.-D. Nguyen, “Constructing stable grasps,” IJRR, 1989.
[13] J. Ponce, S. Sullivan, A. Sudsang, J.-D. Boissonnat, and J.-P. Merlet, “On

computing four-nger equilibrium and force-closure grasps of polyhedral
objects,” IJRR, vol. 16, no. 1, pp. 11–35, 1997.

[14] N. Pollard, “Closure and quality equivalence for efficient synthesis of
grasps from examples,” IJRR, vol. 23, no. 6, pp. 595–613, 2004.

[15] R. Smith and P. Cheeseman, “On the representation and estimation of
spatial uncertainty,” IJRR, vol. 5, no. 4, pp. 56–68, May 1986.

[16] M. Sallinen, “Modelling and estimation of spatial relationships in sensor-
based robot workcells,” Ph.D. dissertation, VTT Electronics/University
of Oulu, Oulu, Finland, 2003.

[17] L. Devroye, Non-Uniform Random Variate Generation. Springer-
Verlag, New York, 1986.

[18] J. Kuffner and S. LaValle, “RRT-Connect: An efficient approach to
single-query path planning,” in ICRA, 2000, pp. 995–1001.

[19] P. Chen and Y. Hwang, “SANDROS: a dynamic graph search algorithm
for motion planning,” Robotics and Automation, IEEE Transactions on,
vol. 14, no. 3, pp. 390–403, Jun 1998.

[20] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manipu-
lators, 2nd ed. Springer, 2000, pp. 96–100.


