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Abstract

In this paper, we propose an approach that enables automatic, fast and accurate tree
trunks segmentation from three-dimensional (3-D) laser data. Results have been demon-
strated in real-time on-board a ground mobile robot. In addition, we propose an ap-
proach to estimate tree diameter at breast height (dbh) that was tested off-line on a
variety of ground laser scanner data. Results are also presented for detection of tree
trunks in aerial laser data. The underlying techniques using in all cases rely on 3-D
geometry analysis of point clouds and geometric primitives fitting.
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1 Introduction

Developing techniques for accurate, exhaustive and cost-effective forest inventory is
a challenging but necessary task that allows a better management of extensive natural
resources. Forest inventory encompasses numerous types of measurements, done at
different spatial scale and repeated over time, as detailed in [16]. This paper deals with
the basic, but fundamental, task of counting trees and estimating their trunk diameter.

Traditionally labor intensive, forest inventory has seen a dramatic shift with the in-
troduction of aerial imagery that can be used for counting trees, determining species
and potentially their height. With such techniques, large areas can be automatically
processed. Large- and small-footprint aerial laser scanners can address some of the
limitations from overhead imagery, specifically the recovery of the tree canopy three-
dimensional (3-D) structure. The development of ground laser scanners has provided
new tools to collect better (in terms of accuracy and point density) 3-D information
from forest, but the huge amount of data to process requires reliable automatic data
processing techniques. In addition, the variety of information sources available, both
from the ground and the air, requires the development of generic techniques for auto-
matic 3-D point cloud processing. This paper presents a framework to address those
issues.

In the context of ground mobile robotics in natural environments, we developed al-
gorithms to automatically process 3-D data in order to estimate the ability of a robot to
traverse the perceived terrain. Those obstacle detection and scene interpretation tasks
led us to implement generic techniques for the classification, segmentation, interpreta-
tion, and modeling of 3-D point clouds [8]. Unlike traditional methods used in robotics,
we work only in the three-dimensional space along the data processing pipeline. The
capabilities of such techniques have been demonstrated in real-time on-board a mobile
robot. They also have been demonstrated over a variety of terrains and sensors. In this
paper, we present how such method can be used in the context of forest inventory for
automatically segmenting tree trunks and recovering their diameter at breast height.
Figure 1 presents the automatic segmentation and interpretation of a scene scanned
from the ground.

This paper is divided into five sections. Section 2 presents relevant references on
sensors used to collect data and techniques to interpret those data for forest inventory.
Section 3 contains an overview of the approach used for generic scene interpretation
with an emphasis on geometric fitting. A set of results from various ground laser
scanner and overhead data is presented in Section 4. We discuss in Section 5 the benefit
of our approach for practical and cost effective forest inventory.

2 State of the art

This section focuses on ground-based methods for forest inventory, specifically on the
sensor technology used, the fitting techniques employed, and the information recov-
ered.

Terrestrial scanners have been used extensively in civil engineering and architecture
to scan buildings, dams, bridges and statues. These applications focus on piece-wise
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Figure 1: Example of automatic tree trunks segmentation. In red, the ground surface;
in green/yellow the foliage/grass and linear structures; in blue, fitted cylinders to the
segmented tree trunks.

continuous surfaces, very much different from vegetated terrain with porous medium
and linear structures. Several authors initiated work on evaluating the performances
of such scanner for forest inventory, see for example [15]. Unfortunately, such high-
resolution, high-density scanners are expensive, slow and not well suited for field de-
ployment. Some laser scanners with similar performances are designed explicitly for
forestry [5]. In both cases, they generate a huge amount of data, up to several millions
points per scan, that prevent in-the-field data processing. In this paper, we present re-
sults from several laser scanners but show how an actuated SICK laser scanner, rugged
and affordable, is suitable for forestry.

Single point laser scanners have also been used in combination with a camera to
extract measurements from tree trunks [2]. By mosaicking the images, a complete
2D-1/2 texture model of a can be produced as proposed in [4]. Both cases require
the aiming of the laser at the area of interest. Another work by [7], does not use any
laser range finder but instead proposes to use a calibrated camera in conjunction with a
know geometric target. This approach is not effective as it requires the positioning of
the target along the tree to measure. Image-based systems face the challenging problem
of segmenting tree trunks or branches from cluttered background scene.

For closer range applications, [6] developed an approach based on a laser line
striper. Such hand-held instruments require extensive human intervention to aim them
at selected targets. With our proposed approach, large point clouds can be processed
and multiple trees can be recovered.

Several authors proposed methods to fit cylinders or active contours to tree trunks
or branches to model them [12] [13]. Such approach assumes implicitly that the tree is
isolated and not cluttered by foliage or ground vegetation. In addition, some requires
the accumulation of data from multiple viewpoints and the use of high density laser
scanner. In this paper, we present an approach to automatically detect tree trunks, seg-



ment them and recover their diameters, without any assumptions on the environment.
Our approach is not as accurate as [13] for example, because we neglect the ovality of
the tree stems that cannot be captured by cylinder fitting.

In addition to extracting geometric information about trees as presented in the pre-
vious paragraph, forest inventory also encompasses the estimation of wood quality.
Schutt [14] investigates the use of reflectance information in high resolution, high den-
sity laser data to detect wood defects. This task is not considered in this paper, as our
approach relies only on geometric information that cannot capture such defects.

3 Technical approach

The proposed approach relies on four steps: point-wise classification, segmentation,
interpretation, and high-level scene modeling. This section is an overview of the ap-
proach tested on-board an autonomous mobile robot. Additional details can be found
in [8] and [17].

3.1 Point cloud classification

The first step of the process consists in the classification of a 3-D point cloud into
three classes: linear structures (corresponding to branches or thin tree trunks), solid
surfaces (corresponding to large tree trunks or ground surface) and scattered points
(corresponding to ground vegetation, foliage and tree canopy). This step relies on the
3-D geometric analysis of local point distribution through the use of the scatter matrix.
The features distributions for the three basic classes are learned off-line from labeled
data. Finally, Bayesian classification is performed on-line.

3.1.1 Features extraction

Let N(X,R) = {Y € R | |X — Y| < R} be the set of points Y that fall in the
local 3-D region, centered at X, that needs to be characterized. The scatter matrix S is
computes as

1 _ _
S=—— Y -Y) (Y -)T
card(N) YGNZ(X,R)

using the points from that area and extract the principal components. Let’s call Ay <
A1 < )Ap the ordered eigenvalues and the corresponding eigenvectors. The point cloud
can be classified as:

e Random. There is no principal direction and Ay >~ \; ~ Ay , we choose scatter-
ness = )\ as feature.

e Linear. There is one large and two small eigenvalues: Ao ~ A < Ag. The
feature is chosen as linear-ness = (A9 — A1 )eg, aligned with the local tangent to
the point cloud structure.
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e Surface. There are two large eigenvalues and one small: Ao < A; >~ Ag. The
feature is chosen as surface-ness = (A1 — A2)es, aligned with the local normal.

3.1.2 Features distribution modeling

We fit a Mixture of Gaussians to the features distribution using the Expectation Maxi-
mization algorithm [1]. We impose the number of Gaussians per class, typically three,
and recover automatically the centroid, principal axes and associated covariances.

3.1.3 On-line classification

Maximum likelihood classification is used to recover the class and normalized con-
fidence in classification. This procedure is sensor-independent and parameter-free as
machine learning techniques are used to capture automatically the point cloud distri-
bution from training data for each class. Figure 7 presents such an example for a forest
scene with large trees. Individual 3-D points are classified into surface (red), linear
(blue) or vegetation (green).

3.2 Point cloud segmentation

The second step consists of the extraction of connected components that groups to-
gether the individual 3-D points based on their class and the local consistency of the
direction of the features, either the local tangent or local normal, within some support
region.

3.3 Interpretation

Context-based knowledge is used to semantically interpret the data based on the di-
rection, size, smoothness and continuity of each component. In addition, the spatial
and classification relationship between components is also taken into account. We can
isolate tree trunks the following way. First, the ground is defined as being the largest
surface with the lowest elevation. The ground is then meshed and stored as a digital
elevation map. To identify tree trunks from all the other linear structures extracted
(ex: branches), the distance between the object and the closest point on the ground is
computed, and the structure is identified as a trunk if the distance lies below a certain
threshold. Moreover, the angle with the vertical direction is also evaluated. Our method
is robust to these parameters: they were chosen based on experimentation and are kept
constant through all the results shown in Section 4.

3.4 High-level scene modeling

The final step consists in high-level scene modeling by fitting geometric primitives to
the different components extracted, allowing a compact and accurate representation
of the environment that preserves the geometric and semantic properties of the scene.
Different level of details can be achieved depending on the application considered (mo-
bility analysis versus forestry).
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Once the 3-D points are grouped, cylinders are fitted onto each of the components
representing tree trunks. For each tree, its diameter should correspond to the extracted
cylinder diameter. In this work, two different cylinder fitting techniques have been im-
plemented: 2-D projection detailed in Section 3.4.1 and 3-D fitting presented in Section
3.4.2. Note that, in this section, new notations are introduced on purpose in order to
distinguish the cylinder fitting presented here from the features extraction process (Sec-
tion 3.1.1). Each component g, has n 3-D points, noted p; = [x; y; 2] fori = 1...n.
Let 1« be the center of mass

1 n
u:E;pi (1)

The k'" cylinder is parameterized by its radius 7, its center cy, its orientation
oy and its length [;,. Since each group is processed independently, the subscript k is
dropped for clarity.

3.4.1 2-D projection

The goal of this technique is to provide a good approximation of the tree diameter
while being very fast to compute. The idea is to project all the data points on a plane
perpendicular to the principal direction, and fit a circle on that plane. Under the as-
sumption that the local diameter and shape of a tree trunk stays constant, we expect
this method to yield good results. First, the principal directions of the group g are
found by computing the covariance matrix C of the points:

c=- Z(pi — )i — )7 )

and by extracting its eigenvalues and eigenvectors. If the eigenvalues are defined
by A\g < A1 < A, then the corresponding eigenvectors eg and e; define a plane II,
perpendicular to the main direction in the data (see Figure 3).

Figure 2: Axis and corresponding projection plane.

All the points p; are then projected onto II to yield the projected points g;:
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qi = [60 61]T(pi - M) 3)

To speed-up processing and improve accuracy, only a subset Sy = {g; | Tmin <
llgill < Tinaz} Of the g; is used for fitting. The interval [T,,in, Tmae] 1S taken such that
it is centered at breast-height and is defined according to the expected number of points
at a given distance. Its choice is data-driven, i.e. it depends on the environment and
the sensor’s characteristics. It is also application-oriented as it aims specifically at tree
diameter estimation.

Finally, a 2-D circle is fitted onto the projected points ¢; € S, using Taubin’s
approximation [3], and its parameters (radius 7. and center c.) are used to reconstruct
the k" cylinder in 3-D using equations (4)-(7):

TR =T 4

o) = €3 (5

Iy = maz;(p; o) — min;(p; o) (6)
ek = pk + ce()eg + ce(2)er )

where c.(i) represents the i*" component of c,, in the plane IT reference frame.
Figure 3 shows an example of a fitted circle from real data. The recovered cylinder is
shown in Figure 4. This process is very fast as the circle estimation is direct and does
not require any iterative process, and is therefore suitable for real-time implementation.
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Figure 3: Circle fitted onto projection of 3-D points. The plane is centered on (.
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Figure 4: Cylinder fitting with 2-D projection results, blue points are 3-D points.

342 3-D fitting

In the hope of increasing diameter estimation accuracy, we compare with 3-D cylinder
fitting. This process is iterative, and requires a larger amount of computations. The
technique introduced by [10] is used and summarized here briefly. In the fitting process,
we wish to minimize the following expression:

> d(s,pi)? 8)
=1

where s is a set of parameters defining the cylinder, and d(s, p;) a distance function
between a point p; and the surface. Some constraints are defined on s. As proposed
by [10], the approach reduces the problem to an unconstrained problem in a lower
dimensional space by eliminating unknowns.

This is done using the following observation. If the distance function can be written

as:
d(s,pi) =g —h )
where g and h may be functions of s and p;, then we can approximate d by
- g — h?
d(s,p;) = 10
(8,25) = =5 (10)

This simplification is much easier to compute, but still has the same zero set and
derivatives at the zero set. Therefore, we can solve using Levenberg-Marquadt opti-
mization. In the case of cylinders, we can parameterize the cylinder by s = [k p a n]
(see Figure 5) and the distance function can be expressed by
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Figure 5: Parameterization used for cylinder fitting

1 1
d(s,pi;) = llpi—(p+ E) x all — T (11)
1 1 1
= \/<Pi—(P+ E)”»Pi—(P‘F k)m_g (12)

which has the form of Equation 9 with <, > the dot product operator. We can
therefore approximate Equation 12 with

k. "
d(s,pi) = 5llpi x all* = (i, ) (13)

where p; = p; — pn.

The optimization process finds the value of s, that minimizes this distance func-
tion, or the cylinder that best models the data. We use the parameters found by the 2-D
projection technique presented earlier as a starting point for the optimization. The k"
cylinder parameters can be recovered from s,,;:

1
re= o (14)
op=a (15)
I, = maz; (p?ok) — min; (pZTOk) (16)
. T lk 1
cx = (ming(p; a) + 5)0 +(p+ g)n (17

The 3-D fitting technique just described yields results approximately 25% worst
than with the 2-D projection. The 3-D fitting is most likely sensitive to noise, that is
better averaged by the 2-D projection, since the density of points on the circle is higher
than the density on the cylinder.



4 Results

In this section, we present representative results of our current capabilities in term of
data acquisition and real-time data processing processing, versatility of the approach,
and precision in diameter estimation.

4.1 Real-time data processing on-board a ground mobile robot for
mobility analysis

Figure 6 contains results generated in real-time on-board a ground mobile robot equip-
ped with a 3-D laser scanner acquiring 100,000 points per second with centimeter range
resolution. The robot traversed, at two meters per second, a scene containing trees of
various sizes, with few vegetated areas. The data is cropped at 3 m in elevation, as it
was intended for ground mobility analysis. The figure shows tree trunks segmented,
identified and modeled automatically and reliably. A mesh representing the ground
surface is drawn in red and cylinders representing tree trunks and large branches are in
yellow.

Lyl IWI I’l !

Figure 6: Results from on-board data processing, from a ground mobile robot for mo-
bility analysis. In red, the ground surface with vegetation filtered, in yellow tree trunks
segmented

3-D data is accumulated using the pose information provided by the robot naviga-
tion system which relies on inertial, odometry, and GPS measurements. Ground truth
was not available for this dataset.

4.2 Static ground laser scanner data processing

A crucial feature of the proposed approach is its applicability to a variety of range
sensors. The results presented are obtained from 3-D data collected with five different
sensors including different measurement technologies (AM-CW [9] vs. time-of-flight
[8]), and scanning patterns (1-D scans [11] vs. 2-D raster scan [8] vs. 360° hemispheric
scan [9]). For example, the left image of Figure 7 shows the segmentation results from
a AM-CW laser range finder with very high resolution panoramic scanning, while the
right image shows a result from a long range, low density time-of-flight scanner. Note
that, in both images the tree trunk cluttered by vegetation is segmented correctly.
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Figure 7: Examples from two others ground laser scanners. (left) From a high-density,
mm resolution scanner, the Zoller-Frohlich LARA-2500. (right) From a long range
scanner, the Riegl ZMS 210.

Figure 8: Laser scanners used. From left to right: actuated SICK lasers, Zoller-Frohlich
laser, Riegl laser, the SIAB scanner.

4.3 Aerial data processing

The proposed technique was also applied to 3-D dense aerial data (several points per
square meters, 15 cm position accuracy, cm range resolution, first echo) collected from
an autonomous helicopter, for terrain classification and tree trunks detection. Such data
points are much sparser and noisier than the ground data results presented so far. Figure
9 contains classification results with aerial data.

In Figure 10, we project the vertical linear structure to the recovered ground sur-
face, spatially smooth the results and look for local maxima in the point density. Tree
locations are represented by a red cylinder. Ground truth was not available for this data
set.

4.4 Tree trunk diameter estimation

This section focuses on tree trunk diameter estimation at breast height (as opposed to
detection). Data is collected with a relatively low cost, low density and centimeter
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Figure 9: Extension to aerial data processing. Scene segmentation from data collected
by an unmanned helicopter (Self-reference). In red, the ground surface, in green, the
tree canopy and ground vegetation, in blue, branches and tree trunks

Figure 10: Tree trunks detection from overhead laser data. In red, a cylinder corre-
sponding to the tree location, the other points are raw laser data color-coded by eleva-
tion.

range resolution static ground laser range finder. Each laser scan is made of 700 x 400
points separated by % X }1 degrees. Figure 11 contains one instance of the collected
data .

The data was processed, as described in Section 3, to detect and automatically
segment tree trunks and extracted the tree trunks diameter from the laser data using the
3-D cylinder fitting technique. We report here the results from three different scenes,
containing 17 trees at distances ranging from 4 to 25 meters. Tree diameters range
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Figure 11: One of the scenes used to evaluate the performance of our approach to
estimate tree trunk diameter. (Top) Segmented scene with isolated tree-trunks and
fitted cylinders. (Bottom) Panoramic image of the scene.

from 30 to 70 cm. The number 3-D points per tree trunk varies between 300 and 2500.
Note that this is several order of magnitude lower than the point density used in [13].
Table 1 presents the overall basic statistics from those tests.

Mean error Scm | 11 percent
Error Standard deviation | 2 cm 6 percent
Minimum Error 1 cm | 3.6 percent
Maximum Error 9cm | 20 percent

Table 1: Recovered tree trunk diameter error from 17 tree trunks

Figure 12-(top) presents the distribution of diameter estimation error as a function
the tree diameters and the distance to the laser. Figure 12-(bottom) shows the number
of points on target for similar parameters. Note that in both cases, no cluster can be
observed, probably due to the small size of our test sample.

Figure 13 presents two additional results from the SIAB laser scanner presented



4.4  Tree trunk diameter estimation 13

003

oav

006

Error {m)
o
=
[}

=
=
E

003

o0z

om

2500

2000

-
o
=
=]

Mumber of points
=
=
=

500

Error as a function of diameter and distance to sensor

B o:=d=5

- [ | $ s:<dz<i0
105d515
152d220
4 20sdsz2s

: + o+

g 1 1 1 I 1 1
0. 04 045 05 055 06 065 0F 073
Dizmeter (m)

Mumber of points &5 & function of diameter and distance to sensor

“ L 4
B o=zd:zs
€ sz2dzm
- [ | 102d215
15€d €20
=+ Z0sds25

-+
1 L 1 I I 1 + 1 ]
035 04 045 05 055 0B 0B: 0F 075
Diameter (m)

Figure 12: Distribution of the measurements. (Top) error = F(diameter, distance). (Bot-
tom) number of points = F(diameter, distance). Different symbols indicate different
range of tree-sensor distances



14 5 CONCLUSION AND DISCUSSION

in Figure 8. Note how the foliage and the vegetation on the ground are segmented
correctly.

Figure 13: Example of tree trunks segmentation in another setting. Note the vegetation
on the ground correctly segmented

5 Conclusion and discussion

In this paper, we present a generic approach to automatically process 3-D point cloud
collected by laser scanners from natural environments. We show how this approach,
though initially developed to enhance ground robot mobility, can be used to classify,
segment tree trunks and recover measurements such as tree diameter at breast height.

Our approach yields many potential benefits for forest inventory in term of cost
efficiency, versatility and extensibility:
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e Generic. We developed a generic approach that can handle point clouds gen-
erated by any laser scanners, both ground and aerial based. In contrast, many
approaches rely on characteristics of a specific sensor and cannot be transferred
to other systems. We believe that our approach will be more cost efficient by
supporting multiple systems adapted to different environments, cost constraints,
and applications. Key to this flexibility is our adaptive design in which the pa-
rameters at the heart of our system are learned from actual sensor data instead of
being manually engineered.

e Low cost system. This approach was demonstrated using a low-cost sensor can
be used with data from low-cost hardware.

e Systematic, large scale environment coverage. Our approach has the potential
to allow large scale and systematic inventory, instead of sampled inventory like
described in [16]. We demonstrated on-board data processing at speed ranging
from 1 to 2 m/s with a laser scanner covering a 40x40 m? ground area. That
would correspond to a coverage of at least 35 acres per hour. It can also lead to
an increase in the number of surveys performed over time to track evolution.

e More reliable/repeatable feature extraction. Because our approach is auto-
matic and 3-D data driven, it will allow more reliable feature extraction, in a
repeatable manner.

o Extended features. It will allow allow the extraction of new features that are
currently out of reach of manual inventory or other approaches [16], for example
3-D foliage distribution within the canopy.

e On the fly evaluation Our approach allows estimation from 3-D data on-the-fly,
providing a real-time analysis capability.

We are currently considering further improvements such as co-registration of over-
lapping scans, which would allow better reconstruction and diameter estimation from
many static scans, without the need of any additional hardware. The extraction of ad-
ditional information is also envisioned at the tree level and region level. For example,
given sufficient visibility, tree height, bole height, 3-D structure of the canopy, foliage
profile and Leaf Area Index can be estimated.
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