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Abstract

In this paper, we describe a new approach for building a three-di-
mensional model from a set of range images. Our goal is to build
models of free-form surfaces obtained from arbitrary viewing di-
rections, with no initial estimate of the relative viewing directions.
The approach is based on building discrete meshes representing
the surfaces observed in each of the range images, to map each of
the meshes to a spherical image, and to compute the transforma-
tions between the views by matching the spherical images. The
meshes are built using an iterative fitting algorithm previously de-
veloped; the spherical images are built by mapping the nodes of the
surface meshes to the nodes of a reference mesh on the unit sphere
and by storing a measure of curvature at every node. We describe
the algorithms used for building such models from range images
and for matching them. We show results obtained using range im-
ages of complex objects.

1 Introduction

Most computer vision systems require accurate three-di-
mensional models. Building such models from observations
consists in taking multiple range image of the object from
different viewing positions and orientations, referred to as
“viewing poses”, to match the data in the different images in
order to recover the relative poses, and to merge the data
into a single model using the estimated poses. The ap-
proaches proposed so far suffer from two major limitations.
First, they require accurate knowledge of the relative view-
ing poses. Second, they either require a complicated feature
extraction algorithm to be applied to the range image or they
restrict the class of shapes that can be modelled. Our goal in
this paper is to eliminate these two restrictions in order to al-
low modelling of natural, free-form objects from arbitrary
unknown viewpoints.

Examples of feature-based model building include the work
of Parvin and Medioni [8] in which they segment range data
into regions and represent one view as a graph of visible re-
gions. By matching two graphs from two arbitrary viewing
directions, they determine the transformation between the
graphs. This method limits the class of shapes to which it
can be applied since it requires stable segmentation results.
Other techniques, such as Kamgar-Parsi’s {6] avoid the need
for real geometrical features by defining virtual features
from, for example, the iso-range contours of the object. An-
other example is Stein’s approach [9] in which the virtual
features are groups of surface normals.

Other techniques eliminate feature matching by formulating
the registration problem as a non-linear minimization prob-
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lem in which the objective function is the sum of the dis-
tances between the data points in one view and the
transformed data points from the other view. For example,
Champleboux [2] uses the Levenberg-Marquart algorithm
to perform the minimization. This type of approach requires
an initial estimate of the relative viewing poses.

Besl [1] proposed an algorithm for matching between free-
form surfaces. The algorithm is based on iterative projection
of one surface on the other. A similar approach was suggest-
ed by Chen and Medioni [3] and by Zhang [10]. Besl’s ap-
proach has the advantage that it does not require extracting
features or establishing correspondences between features.
However, because it is an iterative algorithm, it is very sen-
sitive to the initial transformation.

In this paper, we propose a different approach to the model
building problem. Our approach is based on the representa-
tion of free-form surfaces developed in [4][5]. Figure 1 il-
lustrates our approach: A mesh of points is fit to an input set
of data points from each view, a curvature measure is com-
puted at every node of the meshes and map to a spherical im-
age, the Spherical Attribute Image (SAI). The
transformation between views is computed by comparing
their SAIs. Finally, the data points from all the range images
are merged into a single set using the estimated poses and a
complete surface model is computed.

We had originally introduced this approach in the context of
object recognition and pose estimation. We how in this pa-
per that it can be applied to model building as well.
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Figure 1: Surface matching using discrete meshes and spheri-
cal images.

We describe the algorithms used for SAIs from range imag-
es in Section 2. We first describe the concept of semi-regular
meshes (Section 2.1) and the measure curvature (Section
2.2) which are the basis for the surface representation. Then
we introduce the mapping between surface mesh and spher-
ical mesh in Section 2.3. Finally we describe the algorithm
used for extracting representation from range data in Sec-
tion 2.4, This discussion will show that there is no underly-
ing assumption about surface except that it is without
topological holes, thus supporting our claim that our ap-
proach is suitable for free-form surfaces. In Section 3, we
describe how two partial representations of the same object



from two different poses can be registered. We first show
how to compute a rotation of the spherical image in Sections
3.1 and 3.2. We show in Section 3.2 that the search for the
optimal rotation can be made very efficient, provided that
some tables are pre-computed. The algorithm of Section 3.2
will validate our claim that the matching algorithm requires
no initial estimates of the transformation and that it is guar-
antee to find the best transformation up to the resolution of
the mesh. We show how to convert this rotation into a full 3-
D transformation between surfaces in Section 3.3. Since no
assumption is made on the transformation and since no prior
estimate is needed, we will show that the algorithm is able
to match surfaces from arbitrary poses. We discuss the issue
of matching partial views in Section 3.4. Finally, we show
how to build complete models in Section 4.

2 Spherical Attribute Images

In this section, we briefly introduce the concept of SAL
First, we explain how to tessellate an arbitrary surface into
a semi-regular mesh, and how to calculate the simplex an-
gle, a variation of curvature, at the nodes of the mesh, and
how to map the mesh to a spherical image. Finally, we dis-
cuss how to handle partial views of 3-D objects.

For the most part, the material in this Section is a summary
of the material introduced in [4] and [5]. We refer the reader
to these references for more details on the algorithms.

2.1 Semi-Regular Tessellation

A natural discrete representation of a surface is a graph of
point in which each node is connected to each of its closest
neighbor by an arc of the graph. We use a type of mesh such
that each node has exactly three neighbors. Let us first con-
sider tessellations of the unit sphere. We use a standard
semi-regular triangulation of the unit sphere constructed by
subdividing each triangular face of a 20-face icosahedron
into N? smaller triangles. The final tessellation is built by
taking the dual of the (20 N?) faces triangulation, yielding a
tessellation with the same number of nodes.

In order to obtain a mesh of an arbitrary surface, we deform
a tessellated surface until it is as close as possible to the ob-
ject surface (Section 2.4). We need to add another constraint
in order to build meshes suitable for matching. Specifically,
we need to make sure that the distribution of mesh nodes on
the surface is invariant by rotation, translation and scale.

We introduced in [5] the following regularity constraint: Let
P be a node of the tessellation, Py, P,, P; be its three neigh-
bors, G be the centroid of the three points, and @ be the pro-
jection of P on the plane defined by Py, P,, and P3 (Figure
2). The local regularity condition simply states that Q coin-
cides with G.

2.2 Discrete Curvature Measure

The next step in building a discrete surface representation is
to define a measure of curvature that can be computed from
a tessellation. Instead of estimating surface curvature by lo-
cally fitting a surface or by estimating first and second de-
rivatives, we proposed in [5] a measure of curvature
computed at every node from the relative positions of its
three neighbors. We called this measure of curvature the
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simplex angle and we denote its value at node P by g(P). Al-
though g(P) is not the curvature at P, it behaves as a qualita-
tive measure of curvature which is sufficient for matching
purposes as illustrated in Figure 3. Finally, g(P) is invariant
by rotation, translation, and scaling.
P
Py
P,
P
Figure 2: Local Regularity
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Figure 3: Definition of the Simplex Angle

2.3 Spherical Mapping

A regular mesh drawn on a closed surface can be mapped to
a spherical mesh in a natural way. For a given number of
nodes K, we can associate to each node a unique index
which depends only on the topology of the mesh and which
is independent of the shape of the underlying surface. This
numbering of the nodes defines a natural mapping A be-
tween any mesh 4 and a reference mesh Son the unit sphere
with the same number of nodes: A(P) is the node of § with
the same index as P.

Given h, we can store at each node P of § the simplex angle
of the corresponding node on the surface g(h(P)). The re-
sulting structure is a spherical image, that is, a tessellation
on the unit sphere, each node being associated with the sim-
plex angle of a point on the original surface. We call this rep-
resentation the Spherical Attribute Image (SAI). In the
remainder of the paper, we will denote by g(Q) instead of
g(h'l(Q)) the simplex angle associated with the sphere node

If the original mesh M satisfies the local regularity con-
straint, then the corresponding SAI has several invariance
properties. First, for a given number of nodes, the SAL s in-
variant by translation and scaling of the original object. Sec-
ond, the SAI represents an object unambiguously up to a
rotation. More precisely, if Mand M’ are two tessellations of
the same object with the same number of nodes, then the
corresponding SAls Sand $’are identical up to a rotation of
the unit sphere. One consequence of this property is that two
SAISs represent the same object if one is the rotated version
of the other. It is this property which will allow us to match
surfaces that differ by arbitrary rigid transformations.
Another important consequence of the definition of 4 is that
it preserved connectivity. More precisely, a connected patch
of the surface maps to a connected patch of the spherical im-
age. It is this property that allows us to work with non-con-
vex objects and to manipulate models of partial surface,
neither of which are possible with conventional spherical
representations.

In order to build complete models from partial views, we
need to represent partial surface models using the SAIL In



practice, we always build a complete closed mesh even
when only a part of the surface is visible and we mark the
nodes of the mesh that are in visible regions of the range im-
age. A node is marked as visible if its distance to the closest
data point is below a threshold.

2.4 Extracting the SAl from a Range Image

In the previous sections, we have described the basic ap-
proach to representing a mesh of points as a spherical image.
The remaining problem is to compute the 3-D mesh from a
set of 3-D points from a range image. We use directly the al-
gorithm based on deformable surfaces introduced in [4].
The general approach is to first define an initial mesh near
the object and to slowly deform it by moving its nodes until
the mesh satisfies two conditions: It is close to the input ob-
ject and it satisfies the local regularity condition. These two
conditions can be expressed as a set of forces acting on the
mesh nodes.

Figure 4(a) and (b) show an intensity image and the corre-
sponding set of points from the range image. In this exam-
ple, we use the dual of the 9th subdivision of a 20-face
icosahedron, (1620 faces) as shown in Figure 5(a). This ini-
tial mesh is deformed and reaches the stable state shown in
Figure 5(b). The corresponding SAI data is shown in Figure
5(c). In the SAI display, the distance from each vertex to the
origin is proportional to the simplex angle.

(b) -
Figure 4: Input data; (a) Intensity image, (b) ‘Ra ge data

sented on the unit sphere.

In general, parts of the surface may be occluded by other
parts of the object in the range image. The surface fitting al-
gorithm interpolates smoothly across regions of occluded
data. In addition, nodes of the mesh are flagged as interpo-
lated or non-interpolated depending on their distances to the
closest data point. Specifically, a node is marked as “inter-
polated” if the closest data point is at a distance greater than
a threshold. The matching procedure then uses the interpo-
lation flags to determine which nodes should be included in
the matching function. The same mechanism is used in or-
der to deal with backfacing regions of the surface. Addition-
al issues on matching partial surfaces are discussed in
Section 3.4.

3 Matching Multiple Views
We now address the matching problem: Given two SAls, de-
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termine the rotation between them, and then find the rigid
transformation between the two original sets of points. The
representations of a single object with respect to two differ-
ent viewing directions are related by a rotation of the under-
lying sphere. Therefore, the most straightforward approach
is to compute a distance measure between two SAIs. Once
the rotation yielding minimum distance is determined, the
full 3-D transformation can be determined.

The basic approach to matching SAIs is described in greater
detail in [5]. The new aspects of the approach are an efficient
algorithm for the matching which replaces the exhaustive
search algorithm; and a better approach to matching partial
views. These two improvements over the basic algorithm
permits the use of SAI matching with many partial data sets

3.1 Finding the Best Rotation Between SAls

In the following discussion, we will consider only the verti-
ces of the SAIs that correspond to visible parts of the sur-
face. Let S and $’ be the SAIs of two views. §and §’ are
representations of the same area of the object if there exists
arotation R such that g(P) = g (RP) for every point P of 5.

The problem now is to find this rotation using the discrete
representation of S and ' This is done by defining a dis-
tance D(, S, R) between SAIs as the sum of squared differ-
ences between the simplex angles at the nodes of one of the
sphere and at the nodes of the rotated sphere. Formally, the
distance is defined as:

D(S, 8 R) = Z(g(i’)—zs'(RP))2

The minimum of D corresponds to the best rotation that
brings Sand $’in correspondence.

Figure 6 shows the result of matching two views of a head.
Figure 6(a) shows the intensity images of the two views of
the object. Figure 6(b) shows the corresponding SAIs. Fig-
ure 6(c) shows the distribution of D as a function of two of
the rotation angles, @ and 8. The graph exhibits a sharp min-
imum corresponding to the best rotation between the two
spherical maps.

The rotation of the SAIs is not the same as the rotation of the
original objects; it is the rotation of the spherical represen-
tations. An additional step is needed to compute the actual
transformation between objects as described in Section 3.3
below.

3.2 Efficient Matching

The graph of Figure 6 was obtained by sampling the space
of all possible rotations, represented by three angles (8, o,
), and by evaluating D for every sample value (8;, ¢;, v;).
Although it is the approach that we used initially, it would
be too expensive in practice to compute the distance for all
possible rotations.

We developed an efficient SAI matching algorithm based on
the observation that the only rotations for which D(5, 5, R)
should be evaluated are the ones that correspond to a valid
list of correspondences {(P;, P’;)} between the noes P,of s
and the nodes P’j of 5’ Figure 7(a) illustrates the idea of cor-
respondences between nodes: Node P; of the first SAT is put
in correspondence with node P’;; of $’and its two neigh-
bors, P, and P3, are put in correspondence with two neigh-



bors of P%;, P’j, and P’j3, respectively. This set of three
correspondences defines a unique rotation of the spherical
image. It also defines a unique assignment for the other
nodes, that is, there is a unique node P’j; corresponding to a
node P; of S, given the initial correspondences. Moreover,
there is only a small number of such initial correspondences,
or, equivalently, there is a small number of distinct valid ro-
tations of the unit sphere. In fact, the number of rotations is
3K if K is the number of nodes.

Based on this observation, we developed an SAI matching
algorithm decomposed into two stages: a pre-processing
phase and a run-time phase. During pre-processing, we gen-
erate the data structure shown in Figure 7(b). The data struc-
ture is a two dimensional array in which each row
corresponds to a possible rotation of the SAI and in which
column j of row i is the index of the node P;; corresponding
to node P; and correspondence number i. At run-time, the
distance is evaluated for each row of the array:

D(S.5' . R) = ¥ (a(P)—g(P,)’

Figure 6: Matching two SAls

The row that produces the minimum D; gives the best corre-
spondence between nodes of the mesh, {(P;, P’ij)}s which is
used for computing the full transformation between the ob-
ject meshes as described in the next section. It is important
to note that this algorithm tries all possible rotations of the
SAIs up to the resolution of the mesh. Consequently, it is
guaranteed to find the global optimum of D and it does not
require an initial estimate of the transformation. This vali-
dates our initial claims of global optimality and pose-inde-
pendence of the algorithm. This is an efficient algorithm
because all that is required at run time is to look up the cor-
respondence table, to compute sum of square differences of
corresponding nodes and to add them up. In our current im-
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plementation, the computation time is 7 sec. for K = 980..

(a)
o
. Pj node number »
'g 5 1 J K
= a2

(b) g § i|Pil Py P;
)=

Figure 7: Efficient matching algorithm; (a) Valid correspon-
dence between nodes; (b) Table of correspondences

3.3 Computing the Full Transformation

The last step in matching objects is to derive the transforma-
tion between the actual objects, given the rotation between
their SAIs. The rotational part of the transformation is de-
noted by R,,, the translational part by T,,. Given a SAI rota-
tion R, we know the corresponding node P’ of each node P
of 5. Let M, resp. M”, be the point on the view correspond-
ing to the node P of S, resp. P’. A first estimate of the trans-
formation is computed by minimizing the sum of the
squared distances between the points M of the first view and
the corresponding points R,M’+T, of the second view.

The optimum transformation for E can be computed in a
non-iterative manner by using standard quaternion-based
techniques. The resulting transformation is only an approx-
imation because it assumes that the nodes from the two
meshes correspond exactly. We use an additional step to re-
fine the transformation by looking for the node M closest to
M for every node of the mesh and by computing again the
minimum of E(R,T) [5]. Although we use our own algo-
rithm for pose refinement, another technique, such as the
ICP algorithm proposed by Besl [1] could be substituted. In
that case the estimate of R,T computed from the SAI match-
ing is used as the initial estimate in the pose refinement al-
gorithm.

Figure 8 shows the final result of computing the transforma-
tion between the two views of Figure 6. Figure 8(a) shows
the superimposition of the data points from the two range
images before computing the transformation. Figure 8(b)
shows the same combined data set using the transformation
computed using the algorithm above. This display shows
that the two views are registered correctly.

3.4 Matching Partial Views

In order to compare SAIs computed from different views,
we need to adjust the number of nodes because the relative
sizes of the visible and hidden areas vary depending on the
viewing direction. As mentioned before, the node which are
in regions of the object where no data points were presented
are explicitly marked as “interpolated”. As a result, the size
of the visible and interpolated parts of the mesh can be eas-
ily identified.

Let us consider the problem of merging two views, 7] and
4. Let S| and S, be the number of nodes that would be vis-
ible from 7} and % if we had a complete model of the ob-
ject. Let the visible areas of the object surface be A} and A,



for 9] and 7, respectively. The ratio of the number of visi-
ble SAT nodes to the total number of SAI nodes, S, is equal
to the ratio of the visible area to the entire object area, A,
5, A, S, A,
SO Af) S(l A()
However, we do not know A, since we have only partial
views of the object, but we can estimate A and A, from each
of the views. Eliminating S, from these equations, we obtain
Sy =81.A,/A,.
This equation enables us to modify the SAIs from different
views so that the distribution of nodes in the visible area is
consistent between views. More precisely, we compute the
scale factor A,/A; from the estimated visible areas from
each of the images, and move the nodes of the SAI from 7
so that the equation is satisfied.
The key in this procedure is the connectivity conservation
property of the SAIL Specifically, if a connected patch of the
surface is visible, then its corresponding image on the SAI
is also a connected patch on the sphere. This property allows
us to bring the two connected patches into correspondence
using a simple spherical scaling.
o D

(a)

B

3. 4
fore regis-
tration; (b) Overlaid views after registration.

Figure 8: Merging two views; (a) Overlaid views be

4 Building a Complete Model

We have described so far an algorithm for matching two
pieces of the surface of an object computed from two unreg-
istered range images. We now consider the case of merging
multiple images into a single model. The basic approach is
to match the surfaces from the images in a pairwise manner,
to combine the transformations obtained from the matching
into transformations between each image and a single model
reference frame, to convert all the data points from all the
range image into this common coordinate system, and to fit
a deformable mesh to this data set in order to obtain a
smooth surface model.

Figure 9 shows an example of model building from three
views. In this experiment, 3-D range data is obtained using
acommercial light-stripe range-finder [9] which can acquire
registered range and intensity images. Figure 9(a) shows the
intensity images of a human hand from three different arbi-
trary views. Figure 9(b) shows the tessellation of the visible
part of the hand for each view. We use the dual of the 7th
subdivided icosahedron containing 980 faces as initial
mesh. In each image, only about 30% of the object is visible;
the remaining 70% of the representation is interpolated and
is ignored in matching the SAIs.

Figure 9(c) shows the result of pairwise image registration.
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Each of the two displays shows a 3-D view of the set of data
points obtained by combining the points from two views us-
ing the transformation computed from the matching. The er-
rors of the registration of these models are 0.86 and 0.97 mm
RMS distance, respectively. Figure 9(d) shows several
views of the set of points obtained by combining the points
from all three images using the transformations computed
by the SAI matching algorithm. Finally, Figure 9(e) shows
the complete surface model obtained by applying the de-
formable surface algorithm [4] to the entire data set.

This experiment highlights some of the characteristics of the
SAI matching approach. First, the viewpoints are arbitrary
in that the transformations between them are not restricted
to a single-axis rotation as is often the case in modeling sys-
tems. Furthermore, the transformations between the view-
points are not known a priori but are recovered accurately
by the algorithms. Second, the matching algorithm does not
require any feature extraction or feature matching. This is an
important characteristic that enables us to handle arbitrary
curved objects for which reliable feature extraction is diffi-
cult, such as the hand in Figure 9.

In the example of Figure 9, there is good surface overlap be-
tween all the views and there is no ambiguity as to which
transformations should be used to generate the final model.
Figure 10 shows a different situation that is typical of a
model building application in which we have a larger num-
ber of image. From considerations of surface coverage,
views 1,5 and 9 are sufficient to reconstruct the model (Fig-
ure 11). In fact, it would be preferable to use only those
views instead of the 12 views to speed up reconstruction and
to minimize errors. However, the transformations between
these three views, indicated by the thick vertical white ar-
rows, cannot be computed directly because there is very lit-
tle overlap between the corresponding surfaces. Therefore,
the only way to compute the transformations is to compute
the intermediate transformations, indicated by the curved
arrows, using SAI matching between consecutive views.
These “elementary” transformations are compounded to
form the two desired transformations. Data points from im-
ages 1,5, and 9 are converted to a common coordinate sys-
tem as shown in Figure 12(a). A 980-node surface model is
then computed by fitting a deformable surface as shown in
Figure 12(b).

It is clear that this particular view selection may not be op-
timal. What this example shows, however, is that the match-
ing algorithm provides us with the basic tool for performing
registration between surfaces in a general manner. It also
shows that the individual transformations computed by the
matching algorithm are accurate enough that they can be
compounded over long sequences.

§ Conclusion

We introduced a new approach for building models of
curved objects from multiple arbitrary views. The basic rep-
resentation is a mesh of nodes on the surface that satisfies
certain regularity constraints. We showed how a mesh can
be mapped into a spherical representation in canonical man-
ner, and how object models can be generated by merging
multiple views by computing the transformations among the



views.

This approach eliminates two major limitations of conven-
tional model building systems. First, it enables us to convert
the matching problem to a straightforward correlation of
spherical images. As a result, the approach is able to deal
with arbitrary transformations between views and to operate
without requiring an initial estimate of the transformation.
Second, it does not require any feature extraction or feature
matching. As a result, the SAI matching approach can han-
dle general curved surfaces.

The concept of SAI is general because different pieces of in-
formation, such as albedo or texture, may be stored at each
node of the spherical image. This appearance information
can be used to augment the definition of the distance be-
tween SAIs by adding additional terms

Another research direction is in the determination of the best
sequence of views to be used for a particular model. In the
examples presented in this paper, the number of images was
small enough and the overlap between them was large
enough that it did not matter in which order the images are
processed. In general, however, it is important to compare
the pairs of images that are likely to yield the most accurate
matching results.

“(b)

Figure 9: Building a complete model of a human hand; (a)
Intensity images; (b) Deformed mesh; (c) SAls; (d) Data
points after pairwise registration; (e) Data points after full
registration; (f) Complete model.
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Figure 10: Twelve views of an object and computed poses.

Figure 11: Three views with sufficient overlap.

G J (b)

Figure 12: Complete 3-D model; (a) Combined set of data
points from registered range data; (b) Surface model.
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