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Abstract— Planning autonomous long range traverses for
planetary exploration and similar robotic missions requires
several important capabilities. These include the ability to
generate smooth, optimal paths, the ability to reason about
constrained path-dependent state variables such as energy, and
the ability to replan rapidly in response to new information.
Existing path planning approaches provide one or two of these
capabilities but fall far short of supporting all three. We
present aframed cellsapproach to path planning which enables
the computation of smooth paths in state spaces that include
constrained path-dependent variables. The effectiveness of this
approach is demonstrated in simulation and on two different
robots.

I. INTRODUCTION

Future planetary exploration missions, such as the Mars
Science Laboratory [1], call for a highly capable class
of rover to explore and collect scientific data at distinct
sites separated by distances of several kilometers. These
ambitious exploration campaigns will be enabled by technol-
ogy advances in many areas, including the development of
algorithms for efficient and reliable autonomous long-range
navigation. Autonomous kilometer-scale navigation requires
path planning algorithms that can generate optimal or very
high quality paths with respect to a metric of interest. While
several existing algorithms produce paths that are optimal
in a discretized planning space, such as a regular grid,
there is a need to extend these to the continuous realm in
order to produce results that are closer to the true optimal
path, a feature described ascontinuous-field path planning
[2]. In addition, planning for longer distances and at a
higher level of abstraction requires reasoning about global,
mission-relevant constraints involving parameters such as
time, energy and risk. Furthermore, to be useful in unknown
or partially known environments, these algorithms must be
capable of responding quickly to unforeseen changes in
the environment or the mission. In short, three important
capabilities required of these path planning algorithms are (1)
support forcontinuous-field path planning, (2) the ability to
reason about constrainedpath-dependent state variablessuch
as time, energy and risk, and (3) support forrapid replanning
in response to changes in the problem. We elucidate these
capabilities below.
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A. Continuous-field path planning

A common practice when planning paths in large unstruc-
tured environments is to represent the environment by a cost
map specifying terrain traversal costs in different areas. Path
planning for a mobile robot can be achieved by searching
for a path through the space of feasible configurations or
states of the robot, where state transition costs are computed
using information from the cost map. The set of possible
positions of the robot is often restricted to a finite size by
dividing the world into a regular grid and considering only
positions at the centers or corners of the grid cells, with
each valid position having eight neighboring positions. This
so-called eight-connected planning restricts path headings to
multiples of…=4 and results in paths that are optimal in terms
of the grid, but suboptimal with respect to the underlying
environment. To obtain a result that is closer to the true
optimal path, the algorithm must allow a larger range of
path headings, thus relaxing the restriction that paths must
pass through the corners or centers of grid cells. This is
illustrated in Fig. 1 where the optimal eight-connected path
between the start and the goal, shown by a solid line, deviates
significantly from the true optimal path, shown by a dashed
line.
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Fig. 1. Comparison between the optimal eight connected path (solid) and
the true optimal path (dashed) in a uniform cost field.

B. Path-dependent state variables

At the basic level, path planning involves reasoning about
the position of the robot. In some domains, however, an
essential part of the state description, in addition to the
robot’s position, is one or more parameters whose value is a
function of the path taken to reach that state. For example,
in the case of a rover that uses solar power to charge its
batteries, the currently available battery energy may be a
necessary part of the robot’s configuration or state description
because the available energy determines what actions are
feasible for the rover. Similarly, for an exploration robot
that uses sensors to collect data from its environment, the



amount of space available in its data buffer may be included
in the specification of its configuration, since this determines
whether data collection actions are feasible at a given time
and position. Parameters such as the robot’s available energy
or available storage space differ from parameters such as
position in that the values of the former are a function of
the path taken to reach the given state and are computed
along with the objective function during planning, whereas
the values of the latter are independent of the specific path
taken. For example, given a start stateA and a goal stateB,
the position ofB is independent of the path taken fromA to
B whereas the energy available atB will differ depending
on whetherB is reached via a straight line fromA or via
a circuitous route. We call parameters such as battery level
or disk capacity “dependent parameters” or “path-dependent
state variables”.

In a given application, there might be constraints on the
path-dependent state variables. For example, when planning a
path for a rover that uses solar energy to charge its batteries,
the energy available to the rover is constrained by battery
capacity and available solar flux. Similarly, for a planetary
exploration rover that collects data from its environment and
transmits it to a satellite or to earth as communication op-
portunities allow, available data storage space is constrained
by disk capacity and opportunities for communication. In
both of these examples, time is also a path-dependent state
variable because the time at which the robot reaches a given
position depends on the path taken to reach that position. In
addition, energy costs for navigation or science activities as
well as energy gains due to solar charging are position and
time dependent, as are opportunities for communication to
offload data.

Thus, planning involves searching for a path in a multi-
dimensional state space; some dimensions of space corre-
spond to independent parameters of the robot’s configuration
(such asx and y), while other dimensions correspond to
dependent parameters (such as time and energy).

C. Rapid re-planning

A mobile robot traversing an unstructured environment
may discover, via its sensors, discrepancies between its
environment and the cost map used for planning. This
is particularly true if little is known a priori about the
environment, as may be the case in planetary exploration.
Further, a robot following a spatio-temporal plan may fall
behind schedule or find that it is ahead of schedule. In any
of these situations, a new plan will have to be computed
for the remaining unachieved goals in the mission. Given
that this needs to be done in real time, it is advantageous to
be able to re-compute the new optimal plan rapidly, using
information from the previous planning session, rather than
to compute the new optimal plan from scratch.

Several existing path planning algorithms, such as D*
[3], Field D* [2] and TEMPEST/ISE [4], which all make
use of cost maps and are suitable for path planning in
unstructured environments, each provide one or more of
these capabilities, but not all three. In this paper, we present a

novel approach to path planning that encompasses these three
important capabilities. The next section presents related work
and highlights the strengths and shortcomings of existing
algorithms. We then present details of the problem of interest,
our approach, and experimental results from simulations and
robotic field tests. Finally, we present our conclusions and
future work.

II. BACKGROUND AND RELATED WORK

The planning paradigm used in this work is that of a
backwards search from the goal to the start. The goal is
assigned an objective function value of zero, and the objec-
tive function value of any other nodes represents the cost of
the optimal path froms to the goal. In general, the objective
function value of a node is computed by minimizing over its
neighboring nodes, the sum of the objective function value of
the neighboring node and the transition cost to neighboring
node. Representing the neighboring nodes ofs by nbrs(s),
and the transition cost from a nodes to another nodes0

as c(s; s0), the objective functiong(s) may be computed as
follows:

g(s) = mins02nbrs(s)(g(s0) + c(s; s0)) (1)

The optimal path froms to the goal will then pass through
the neighbor given bys00 = argmins02nbrs(s)(g(s0) +
c(s; s0)), and s00 is described as the parent ofs0. On a
regular two-dimensional grid, each node has eight neighbors,
resulting in an eight-connected planning graph. For example,
in Fig. 2, the state at location (x=1, y=2), which we will refer
to ass12, has neighborss01, s02, s03, s13, s23, s22, s21, and
s11. The figure shows objective function values that would be
computed during eight-connected planning between the start
states23 and the goal states00, assuming a cell traversal cost
of 100 (or 100

p
2 when crossing the cell diagonally), and

also assuming traversal costs are cast to integers.
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Fig. 2. Planning on an eight-connected graph. The computed objective
function value of each node is shown. Left: A partial search showing the
parent of each processed node. Right: The final computed path.

Three existing algorithms for continuous-field path plan-
ning on a regular grid are Field D* [2], E* [5] and Theta* [6].
These algorithms work primarily by modifying the manner in
which objective function values (Equation 1) are computed
during planning.



In Field D* [2], the path froms to the goal is allowed
to pass through not only any of its eight neighbors, but also
through any point along the edges between these neighbors.
This is supported by estimating the objective function value
of a point on an edge between two nodes as a linear
interpolation of the objective function values of the two
nodes. The algorithm thus solves a minimization problem
based on this linear interpolation assumption to find the
optimal crossing point along the edge. For example, in Fig. 3,
the computed minimum estimated path cost of the nodes12

involves crossing the edge betweens01 ands11 at the point
(x=0.55,y=1). In this manner, Field D* achieves continuous-
field path planning on an eight-connected grid with arbitrary
positive costs. Field D* is efficient and gives good results
in practice [2]. However, it relies on the linear interpolation
approximation which works fine when planning in a two-
dimensional state space, but, as will be explained in the
following section, can result in infeasible paths when applied
to a domain with path-dependent state variables such as time
and energy.
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Fig. 3. Planning using linear interpolation in Field D*. Left: A partial
search showing the parent of each node. Right: The final computed path.

E* [5] also uses interpolation to compute the objective
function of nodes during the search, but it makes the in-
terpolation method user-configurable, rather than restricted
to linear interpolation, through the definition of a kernel
function. Like in Field D*, the interpolation approximation
can result in infeasible paths when applied to a domain with
path-dependent state variables. This same argument applies
to other approaches such as Konolige’s Gradient Method [7]
which apply interpolation to compute the path after costs
have been propagated through the eight-connected grid.

In Theta* [6], continuous-field path planning is achieved
by allowing the parent of a nodes to be a node other than a
local neighbor. In particular, when computing the objective
function for a nodes, the algorithm considers both the best
path through a local neighbor,s0, as given by Equation 1 and
the path through the parent of a local neighbor,parent(s0),
assuming that nodes has line of sight toparent(s0)–that is,
assuming that the straight line betweens andparent(s0) is
not blocked by obstacle cells. Although Theta* is an exact
algorithm and so does not have the same approximation-
related problems as the interpolation-based approaches when

applied to a domain with path-dependent state variables, it
works only in an environment with binary costs, and no
method currently exists for extending this algorithm to work
with arbitrary positive cell traversal costs.

The TEMPEST/ISE global path planner [4] computes
optimal eight-connected paths in a multi-dimensional state
space including path dependent state variables such as time
and energy. TEMPEST is the planner that models energy
usage and the energy charging and storage functions of the
battery, and reasons about terrain traversability. TEMPEST
invokes the Incremental Search Engine (ISE) which employs
heuristic search to find optimal eight connected paths subject
to global constraints. ISE does not support continuous-field
planning.

Existing algorithms for efficient replanning when changes
occur in a graph include the D* family of algorithms
(comprising D* [3], Delayed D* [8], D* Lite [9], Field D*
[2], E* [5], DD* Lite [10] and others) and Adaptive A* [11].
In the former family of algorithms, the number of nodes
processed during replanning is limited by repairing only the
relevant parts of the search tree. In the last algorithm, it is
limited by using the old search to determine more focussed
heuristics for existing nodes. Adaptive A* is applicable only
when costs can increase, not decrease. With the exception
of Field D*, these re-planning algorithms do not directly
support continuous-field planning. Furthermore, only DD*
Lite [10] supports efficient planning with constrained path-
dependent state variables by exploiting dominance relation-
ships to improve the search efficiency.

Although each of the algorithms mentioned above ad-
dresses a subset of the capabilities required, none of them
address all three capabilities. There is, as such, a need for a
new approach to achieve continuous-field path planning and
efficient replanning with constrained path-dependent state
variables.

III. PROBLEM DESCRIPTION

The problem addressed in this work is that of efficiently
searching a multi-dimensional space which includes path-
dependent state variables, for a path that satisfies any con-
straints on the path-dependent state variables and that is not
restricted to pass through only cell corners. More generally,
when there are more than two independent parameters and
hence the cell is greater than two-dimensional, we can say the
the path is not constrained to pass through any resolution-
independent subset of the cell boundary. Instances of this
problem arise in several domains, such as when planning for
a mobile solar-powered rover with limited battery capacity.

For a given domain of interest, we need to determine the
independent and dependent parameters that constitute the
configuration space of the robot. For example, the config-
uration space of the solar powered robot described earlier
may include the spatial variablesx and y as independent
parameters, and the time and available energy at a given
position as dependent parameters. Similarly, the configura-
tion space of the data collection robot may includex and
y as independent parameters, and time and storage space



as dependent parameters. Note that the state spaces under
consideration in this problem are truly multi-dimensional in
that the search process typically encounters several states
with the same independent parameters and different depen-
dent parameters.

Three distinguishing characteristics of dependent parame-
ters are that (i) their values are path-dependent, (ii) their
values are not known ahead of time but are computed during
the planning process as states are being instantiated, and (iii)
they employ dominance relationships. The first characteristic
has already been explained. The second characteristic follows
directly from the first because we cannot compute the path-
dependent parameters of node until we have computed a path
to that node, or equivalently to use the terminology of the
previous section, until we know its parent node. Concerning
the third characteristic, given two states in a search algorithm,
si and sj , a dominance relationD is defined as a binary
relation such thatsiDsj , that is,si dominatessj , implies that
sj cannot lead to a solution better than the best obtainable
from si [12]. Dominated states may be deleted without
expansion in the search, thus eliminating entire branches
of the search tree. An example of a dominance relationship
involving a path-dependent state variable is the notion that,
all other parameters being equal, a state with a lower energy
requirement to reach the goal is always better than, and hence
dominates, a state with a higher energy requirement to reach
the same goal.

These characteristics of dependent parameters are at the
root of the difficulty with applying an interpolation-based
approach, such as Field D*, to this problem. Linear inter-
polation is acceptable for the objective function because the
error in the approximation results in slight sub-optimality in
the worst case. But it is unacceptable for constraint functions,
which are defined in terms of dependent parameters, because
the slight error introduced by the interpolation can lead to
infeasibility.

In the example in Fig. 3, a path is planned from the
start states23 to the goal states00 in a uniform cost field.
The objective function value ofs23 is computed, using
interpolation, to be 368, and the corresponding optimal path
is shown in the figure. Suppose the energy required to
reach the goal is a path-dependent parameter of states in
this space and the energy cost map for this problem is as
shown in Fig. 4. In this map, the shaded cell has a higher
energy cost (20) than other cells, where energy costs are
10. Using linear interpolation, the estimated value of the
energy required at the crossing point (x=1.42, y=2) is 31.
The distance from the crossing point tos23 is 1.15, and the
cell’s energy cost is 10. As such, we compute the energy
requirement ats23 to beb31+10(1:15)c = 42. If we extract
the actual path from the optimal crossing point to the goal,
however, we find that the true energy requirement at that
point is 35, resulting in an energy requirement ats23 of 46.
We have thus under-estimated the dependent parameter of
s23, and if the constraints in this domain capped the energy
requirement at say 45, we would have an infeasible solution.
This illustrates why linear interpolation cannot be used for

this problem. Note that for clarity and due to the difficulty
in graphically illustrating the three-dimensional state space,
we show only the relevant state at each two-dimensional
position. We will maintain this convention of using a two-
dimensional representation of a higher dimensional space
throughout the paper.
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Fig. 4. The energy cost field and computed dependent parameters for the
example in Fig. 3. The shaded cell has a higher energy cost.

IV. APPROACH

The key problem with the interpolation approach is the
approximation of the dependent parameters of a state. To
avoid this problem, we need to be able to compute exact
values of the dependent parameters during planning. Since
the values of the dependent parameters of a states are
computed from the dependent parameters of its parent state
on the path froms to the goal, this implies that whens
is instantiated, all states along the current best path froms
to the goal must already be instantiated. That is, the path
from s to the goal must pass through one of the neighbors
of s. Combining this requirement with the idea that paths
should be allowed to pass through the boundary of a cell
at points other than the corner, means that during planning
we must instantiate states along the boundary of the cell,
resulting in theframed cells approach, illustrated in Fig. 5.
This idea was first introduced as a way to plan better paths
through quad-trees for cost minimization problems without
dependent parameters or constraints [13], [14].

Fig. 5. The framed cells concept, showing subcell resolutions of two (left),
three (middle) and four (right).

In the framed cells approach, we define a number of
discrete points along the boundary of the cell where the
path may cross the cell boundary. The number of these



crossing points is defined as thesubcell resolution. Using
a subcell resolution of one, the path may only transition
through cell corners. With a subcell resolution of two, the
path may additionally transition through the half-way point
on the cell boundary, with a subcell resolution of 3, the
path may transition through two additional points on the cell
boundary, and so on. During the search, we instantiate states
at these additional points along the cell boundary, effectively
increasing the number of neighbors of a state and hence the
number of allowed heading angles. After planning, we extract
the path by following the gradient of objective function
values from the start to the goal. An incidental advantage
of the framed-cell approach is that it permits planning with
complex objective/constraint functions, since we do not need
to solve an optimization problem to compute the optimal
crossing point on a cell boundary.

Fig. 6 illustrates the result of planning in a uniform cost
field with a subcell resolution of three. Although states
throughout the space would be expanded during planning,
only states along the optimal path to the goal are shown.
The image on the left shows the traversability cost field with
the computed objective function value for each state. On
the right, we have the energy cost field with the computed
dependent parameter (energy required to reach the goal) for
each state.
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Fig. 6. Framed cells planning with a subcell resolution of 3. Left: the
traversability cost field, showing computed objective function values of
states. Right: the energy cost field, computed dependent parameter values
of states.

The implementation of the framed cells approach to path
planning uses an optimized version of the the DD* Lite
algorithm [10]. DD* Lite is an incremental search algorithm
that supports reasoning about state dominance and that
enables rapid replanning by repairing only the relevant parts
of the search tree when problem changes occur. To use DD*
Lite for planning, we define state transition functions to
compute the independent and dependent parameters of the
predecessors and successors of a state, based on the framed
cells configuration. These state transition functions require a
reasonable model of the cost and constraints in the system.
DD* Lite also requires a definition of dominance neighbors
and the dominance relationship, both of which are defined
in terms of the path-dependent parameters. We define the
dominance neighbors of a states as the set of states that

share the same independent parameters but have different
dependent parameters. Two types of dominance relationships
are defined: true dominance, and resolution equivalency.
The definition of true dominance depends on the particular
problem domain of interest. For example, a state with a lower
energy requirement to reach the goal may dominate a state
with a higher energy requirement to reach the goal. Because
the planning occurs in a multi-dimensional space, resolution
equivalency is used to ensure the tractability of the search
by defining dependent parameter bins within which states
are considered equivalent. For example, a state with time
10:35am may be considered resolution equivalent to one with
time 10:37am, and as such, only one of these states needs
to be retained during the search.

Consider again the example of an energy-constrained
exploration rover. If the energy costs are space dependent and
not time dependent, we can plan in a three dimensional space
consisting of two spatial dimensions,x andy, as independent
state variables, and energy as a dependent state variable. The
robot has a finite battery capacity, representing the energy
available for it to reach the goal. The objective is to minimize
traversal costs while satisfying energy constraints. We define
state transition functions that use the framed cells framework
to determine thex and y coordinates of the neighbors of a
state and compute the energy coordinate based on the energy
consumption model of the system. Fig. 7 shows an example
environment with random traversal costs (left map) and high
energy costs in the middle of the environment (right map).
The planner is configured to use a subcell resolution of 4. The
robot has a large battery capacity and starts out fully charged
and this enables it to take the near-optimal path shown in the
figure. Fig. 8 shows the same cost fields, but this time the
robot starts off with less energy and cannot make it across
the high energy cost region. The planner thus determines the
least cost path that satisfies the energy constraints.

Fig. 7. A path planned with a subcell resolution of 4, for a robot with a
large battery capacity, across an environment with randomized traversability
costs and a high energy cost region at its center. The traversability cost map
is shown on the left and the energy cost map on the right.

If in the above example the energy costs were time depen-
dent as well as space dependent, time would need to be an
added dimension, resulting in a four-dimensional state space.
This is true for a solar powered rover because energy costs,
which are considered negative for solar charging operations,
depend on the time of day. In this case, the state transition
functions may use information about the rover speed, energy



Fig. 8. A path planned with a subcell resolution of 4, for a robot with a
small battery capacity, across an environment with randomized traversability
costs and a high energy cost region at its center. The traversability cost map
is shown on the left and the energy cost map on the right.

consumption model, solar charging model, time of day,
and available solar flux to compute the time and energy
coordinates of the neighbors of a state.

Note that the framed cells approach is not the same as
simply using a finer grid for eight connected planning. Fig.
9 illustrates this by comparing, for a uniform cost field,
the optimal eight-connected path on a coarse grid (left), the
optimal eight-connected path on a grid of three times higher
resolution (middle), and the optimal framed cells path with
a subcell resolution of three (right). For the eight-connected
paths, several equivalent optimal paths exist and may be
computed by the planner, but we show only the path that
looks most similar to the true optimal path. The figures
illustrate that the eight connected paths in the coarse and
fine grid are the same length, while the framed cells path
is shorter and smoother because it allows a greater range of
path headings.

Fig. 9. Eight connected planning at a coarse resolution (left), eight
connected planning at a fine resolution (middle), framed cells planning
(right).

With the framed cells approach, we have increased both
the number of states and the interconnectivity (number
of neighbors for each state). Considering only a two-
dimensional projection of the state space (ignoring dependent
variables), an eight-connected graph derived from a regular
grid with the length of thex dimensionLx and the length of
they dimensionLy has approximatelyLxLy nodes and eight
directed edges per node. With a subcell resolution ofr, this
graph will now have approximatelyLxLy +(r¡1)(Lx +Ly)
nodes and12r¡4 directed edges per node. This is illustrated
in Fig. 10 for a subcell resolution of three. Because of this
increase in complexity. planning time can be significantly
longer for higher subcell resolutions than for eight-connected

planning. To combat this, we need good heuristics to focus
the search. In particular, we have been successful with using
a two-dimensional search on the traversability cost map as a
heuristic for the higher dimensional search, which is typically
three or four dimensional in our problem domains of interest.
The following section describes our computational results.

Fig. 10. Graph edges from a node at the corner of four cells: in eight
connected planning (left), in the framed cells framework, with a subcell
resolution of 3 (right).

V. RESULTS

We have tested our approach in simulation and on two
mobile robots employing different state transition models.

Table I and Fig. 12 summarize the average performance of
the planner in simulation on 20 different 50x50 maps with
random traversability and energy costs. The traversability
costs were strictly positive, while energy costs could be
positive or negative, with negative costs representing solar
charging. For these tests, the objective was to minimize
traversal costs while satisfying energy constraints. Planning
took place in a three dimensional state space consisting ofx,
y, and energy. To test replanning, modifications were made
to both traversal and energy costs in a 3x3 region at the start
location of the robot. Since this algorithm is suited for long-
range navigation, it is often used with grid cells on the scale
of meters or tens of meters, and is used in conjunction with
a local navigator for small-scale obstacle avoidance. Because
of the size of the grid cells, the robot is likely to discover
changes in a small number of cells near its current location,
hence the choice of the 3x3 modification region. The results
are shown for three different scenarios, termed “loose energy
constraints”, “moderate energy constraints” and “tight energy
constraints” respectively. In the first scenario, the simulated
robot’s battery capacity was large enough that, when fully
charged, it could take the optimal path (with respect to
traversal costs) from the start to the goal without being
constrained by energy. In the second scenario, the robot’s
battery capacity was such that its path was on average 1%
longer than optimal due to detours as a result of energy
constraints. In the third scenario, the robot’s battery capacity
was such that its path was on average 6% longer than optimal
due to energy constraints. Table I shows the average path cost
for initial planning as well as after replanning for subcell
resolutions of 1 (equivalent to eight-connected planning),
2, and 3. The path costs are shown relative to the eight-
connected path cost. Although the relative savings in path
cost are fairly small for these randomized cost fields, the real
benefit of continuous field path planning is in the smoothness



Sub-cell resolution
1 2 3

Loose energy constraints
Relative path cost 1.000 0.979 0.975
Relative path cost after replanning 1.000 0.979 0.975
Moderate energy constraints
Relative path cost 1.000 0.980 0.975
Relative path cost after replanning 1.000 0.980 0.975
Tight energy constraints
Relative path cost 1.000 0.976 0.970
Relative path cost after replanning 1.000 0.975 0.970

TABLE I

PATH COST RATIOS WITH THE FRAMED CELLS IMPLEMENTATION

of the path, as demonstrated by the example in Fig. 11, and
by the robot tests described later in this section.

Fig. 11. Comparison between an eight-connected path (left) and framed
cells path with subcell resolution of 3 (right), in a random cost field.

Fig. 12 shows the average planning and replanning time
for subcell resolutions of 1, 2, and 3 and for the three
different energy scenarios described above. In these test cases
there was a single goal state, although the algorithm can
handle multiple goals. The replanning times shown are the
sum of the map update time and the actual replanning time,
on a Pentium M 770 2.13 GHz processor. Results are shown
for planning and replanning using the Euclidean distance
heuristic as well as the two dimensional search heuristic
described in the previous section. The first trend to notice is
the price that is paid in planning time for the smoother, more
optimal paths that are the result of higher subcell resolutions.
However, the two dimensional search heuristic focusses the
search so much better than the Euclidean distance heuristic
does that this significantly reduces the planning time to
reasonable values, even for a subcell resolution of 3. With the
Euclidean distance heuristic, replanning is significantly more
efficient than planning from scratch after a map modification
occurs. With the two dimensional search heuristic, replanning
can be slightly less efficient than planning from scratch. This
is because when traversability costs change, the heuristic
value of a state may change since the heuristic value is
computed as a two-dimensional search of the traversability
cost map. As such, the heuristics need to be recomputed
for each state on the open list when map modifications
occur, and the list re-ordered accordingly. This negatively
impacts the replanning time. Another pattern to notice in the
results is that the planning time when using the Euclidean
distance heuristic reduces with a smaller battery capacity of
the robot (tighter energy constraints). This is simply due to

a reduction in the size of the three-dimensional space to
be searched. This reduction in planning time is not obvious
when using the two dimensional search heuristic because the
three-dimensional search is very focused in this case.
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Fig. 12. Planning and replanning times with the framed cells implemen-
tation (in simulation)

We compared the planning and replanning times for the
framed cells approach with those for a higher resolution
eight-connected grid, for twenty 50x50 maps with random
cost fields and moderate energy constraints as described
previously. The results are shown in Fig. 13 for five plan-
ning instances: basic eight-connected planning, framed cells
planning with a subcell resolution of two, eight connected
planning with a twice higher resolution, framed cells plan-
ning with a subcell resolution of three, and eight-connected
planning with a three times higher resolution. When using
the Euclidean distance heuristic, the planning and replanning
time is higher for the framed cells approach than for a higher
resolution grid. This can be explained by the higher branch-
ing factor in the framed cells implementation. This is also
true, although to a lesser extent, when replanning with the
two-dimensional search heuristic. However, when planning
from scratch with the two-dimensional search heuristic, the
planning is quicker with the framed cells approach than with
the higher resolution grid. This is because the highly focused
nature of the search compensates for the increased branching
factor. It should be noted that as previously described, using
a higher resolution grid does not solve the fundamental
problem associated with eight-connected planning, which is
the limited number of robot headings.
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Fig. 13. Comparison of planning and replanning times for the framed cells
approach and grids of various resolutions

The framed cells path planning algorithm was tested
with an ActivMedia Pioneer 2-DX robot [15] in an indoor
environment with simulated energy constraints. Planning was
done off-board and the plan waypoints were communicated
wirelessly to the robot. The robot, shown on the left of
Fig. 14, used encoders and a gyroscope for dead-reckoning
and localization, and a SICK scanning laser range-finder
for obstacle detection. The first set of tests required the
robot to traverse an open environment with uniform traversal
costs and a simulated high energy cost region at its center,
illustrated in Fig. 15. The objective was to optimize traversal
costs while satisfying energy constraints. The tests were run
with a subcell resolution of 1 (eight-connected planning)
and a subcell resolution of 4. With a high simulated battery
capacity, the robot’s path took it directly to the goal, across
the high energy cost region at the center of the environment.
The path computed with a subcell resolution of 4, shown
on the right side of Fig. 15, was significantly smoother and
more efficient than the eight-connected path, shown on the
left. In these figures, the planned path is shown with a dark
solid line and the robot’s path with a lighter dotted line. The
robot’s path was captured via position updates published by
its localization system.

Fig. 14. The robots used for testing. Left: The ActiveMedia Pioneer 2-DX
robot. Right: The solar powered rover

With a low simulated battery capacity, the robot’s path
avoided much of the high energy cost region at the center of
the map, as shown in Fig. 16. Again, the path computed with
a subcell resolution of 4, shown on the right, is smoother than
the eight-connected path, shown on the left.

The second set of tests with the Pioneer robot again
involved an environment with uniform traversal costs. The
energy costs were mostly uniform, but with a handful of

Fig. 15. A path executed on the Pioneer robot assuming a large battery
capacity, across an environment with uniform traversability costs and a high
energy cost region at its center, Left: Using a subcell resolution of 1 (eight-
connected). Right: Using a subcell resolution of 4.

Fig. 16. A path executed on the Pioneer robot assuming a small battery
capacity, across an environment with uniform traversability costs and a high
energy cost region at its center, Left: Using a subcell resolution of 1 (eight-
connected). Right: Using a subcell resolution of 4.

negative energy cost “charging” cells scattered in the envi-
ronment, as shown in Fig. 17. With a high battery capacity,
the robot was again able to make it directly from the start to
the goal (this path is not shown). With a low battery capacity,
however, the path made a detour through a couple of the
charging cells in order to satisfy energy constraints. Again,
the path computed with a subcell resolution of 4, shown on
the right, is smoother than the eight-connected path, shown
on the left.

Fig. 17. A path executed on the Pioneer robot assuming a small
battery capacity, across an environment with uniform traversability costs
and isolated negative energy cost (“charging”) cells. Left: Using a subcell
resolution of 1 (eight-connected). Right: Using a subcell resolution of 4.

Finally, we tested the algorithm on a solar powered rover
shown on the right in Fig. 14. The rover uses two cameras
for terrain evaluation during navigation and utilizes wheel
encoders and a gyro for motion estimation. Its sophisti-
cated software environment includes a rover executive, a
mission/global path planner, and a local navigator. For these
experiments, we integrated the framed cells planner with
the TEMPEST mission planning software [4], replacing the
Incremental Search Engine (ISE) [4] which was previously
used to compute paths. This enabled the state transition
functions implemented for the framed cells planner to take
advantage of the world, rover, and lighting models defined
by TEMPEST. Planning, which was done onboard the rover,
used a four dimensional space with the spatial variables
x and y as independent parameters, and time and energy



as dependent parameters. Time was included in the state
space because energy costs are time-varying due to the time-
varying nature of available solar flux for charging the robot’s
batteries. The objective of the plan was to minimize path
traversal time while satisfying energy constraints as well as
maximum slope constraints. Fig. 18 shows plans generated
by the TEMPEST/framed cells planner combination on a
10m resolution map, during field tests at Amboy Crater, CA.
The plan at the top left was generated using a subcell resolu-
tion of 1 (eight-connected planning), while the significantly
smoother path at the top right was generated with a subcell
resolution of 3. The rover navigated around large-scale
terrain features by following waypoints from these plans
generated by the high-level TEMPEST/framed cells planner,
while avoidance of local sub-meter scale obstacles such as
rocks and shrubs was ensured by the lower-level navigator
software. In the the bottom left and right of the figure, we
show the actual paths taken by the rover while following the
eight-connected and smoother plans respectively. The rover
path was captured by subscribing to messages published
by the robot’s state estimation (localization) system. For
the eight-connected run, the rover traveled 324m in 1605
seconds while the length of the smoother run with a subcell
resolution of 3 was only 290m. Furthermore, traversing the
smoother path took only 895 seconds. This represents a
10% improvement in distance and 44% improvement in
time for continuous field path planning over eight-connected
planning. The significant time reduction for the smoother
plan was caused in part by a reduced average rover speed for
the eight connected plan, as the local navigator encountered
small-scale obstacles in the environment. In all, our initial
field tests at Amboy Crater involved 2.15 km of autonomous
driving using the TEMPEST/framed cells planner combina-
tion as the high level path planner.

Goal Goal

Fig. 18. Example run of the TEMPEST and framed cells planner
combination. Top left: Planned path using a subcell resolution of 1 (eight-
connected). Top right: Planned path using a subcell resolution of 3. Bottom
left: Actual rover path with a subcell resolution of 1. Bottom right: Actual
rover path with a subcell resolution of 3.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we present our work on continuous-field path
planning with path-dependent state variables. We formulate
a framed cells approach for continuous-field path planning
and combine this with incremental heuristic search and
reasoning about dominance to create an effective algorithm
for a previously unsolved problem. We have tested this
algorithm in simulation and on two different robots and
demonstrated that it is capable of computing smoother, more
efficient plans for a mobile robot with path-dependent state
variables. The major drawback of the presented approach is
the increase in planning time as we strive for smoother paths
by using higher subcell resolutions. However, by using a two-
dimensional search heuristic to guide the higher dimensional
search, we obtain tractable planning times for reasonably-
sized problems.

Future work includes achieving further improvements in
planning time and memory utilization with this planning
approach. It will also be interesting to explore ways to
automate the decision of the best subcell resolution to use
for a given problem. Finally, we will continue to field-test
the planner on the robots.
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