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Abstract  
The objective of the CyberScout project is to develop an autonomous 
surveillance and reconnaissance system. In this paper, we focus on 
advances in vision-based surveillance agents for detection, scene 
mosaicing, classification and correspondence. An agent-based software 
framework is used to promote synergy between the various surveillance 
algorithms and provide a distributed computing infrastructure for the 
system.  
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1 Introduction 
Camera-based surveillance has long been used for security and observation 
purposes.  Surveillance cameras are typically fixed at known positions and have 
coverage of a circumscribed area defined by the fields of view of the cameras.  
Although some recent vision work has addressed autonomous surveillance, in 
most cases humans perform the sensory processing, either in real time, or by 
reviewing footage. Likewise, humans have performed reconnaissance, or scouting, 
for centuries in military and other applications in order to determine the "lay of 
the land" and identify and classify activities in the environment. We combine the 
sensory capabilities of surveillance with the mobility of reconnaissance by 
mounting cameras on mobile robotic platforms.  The resulting groups of 
collaborating reconnaissance and surveillance robots pose interesting challenges 
in vision-based surveillance algorithms, multi-agent software architectures, and 
mission management [1]. 
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2 The CyberScout distributed surveillance and reconnaissance system 
We have created a group of two mobile and four stationary sentries capable of 
cooperating for reconnaissance and surveillance.  In addition, we have developed 
a distributed agent-based software framework, called CyberARIES, capable of 
efficiently running various vision, planning and control algorithms. 
 
2.1 The CyberScout robotic sentries 
The mobile sentries are retrofitted Polaris All-Terrain Vehicles (ATVs) (Figure 1) 
with automated throttle, steering, gearing, and braking and computation for 
control, navigation, perception, and communication [2].  The ATV computing 
architecture is two-tiered: a PC/104 controls (low-level) vehicle locomotion, while 
a group of three PCs perform (high-level) perception, planning, and 
communications. Navigational sensing is performed by a 20-cm resolution 
NovAtel differential GPS unit.  Each vehicle is equipped with five cameras, a 
panning stereo pair in front for obstacle avoidance and mapping, and three 
pan/tilt cameras for surveillance, one each located at the front left, front right, and 
rear. Each stationary sentry is a PC with a camera on a tripod.  All sentries are 
able to communicate with one another via WaveLAN wireless Ethernet, and all 
run the same perception algorithms for performing surveillance 

2.2 A distributed agent-based software infrastructure 
CyberARIES (Autonomous Reconnaissance and Intelligence Exploration System) 
abstracts the low-level system resources and promotes a modular architecture for 
the system. The fundamental building block within CyberARIES is an “agent”. 
The agent is an algorithm contained within a shell that provides access to 
necessary resources through a simple abstract interface. The agent can be viewed 
as an entity that requests and/or provides services to other agents in the system. 
Figure 2 shows the connectivity of the agent shell. The agent runloop holds the 

 

Fig 1.  One of two All-Terrain Vehicles (Lewis and Clark) retrofitted for 
perception and navigation 
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algorithm. For example, in the case of the classifier, the classification algorithms 
are contained within the agent runloop. The input to the classification algorithm 
is accepted from other agents via the sink. The output of the algorithms is then 
distributed to other agents via the source. The resource management block 
manages the computational, hardware and software resources for the agent. The 
distribution agent abstracts network communication between agents from the 
algorithms contained within the runloop.  The distribution agent is also a 
CyberARIES agent and one instance of this agent exists on each computation 
platform in the network. 
 

3 Visual Surveillance 
Moving objects in the scene are the subjects of interest in most visual surveillance 
applications. Specifically, the actions of the moving objects need to be monitored 
and appropriate flags need to be raised when events of interest occur in the scene. 
Additionally, the mobile mechatronic platform needs to be controlled so as to aid 
the surveillance task. The objectives of the surveillance task and the associated 
real-time computation constraints involve difficult challenges in building highly 
robust yet computationally cheap algorithms for detection, classification and 
correspondence.  
 
3.1 Motion Detection 
Most surveillance systems described in the literature [3,4,5,6] have used 
background subtraction as an efficient means of motion detection with a stationary 
camera. Unfortunately, background subtraction techniques are not always robust 
under camera jitter, varying lighting conditions, and moving foliage. Problems of 
a periodic nature such as jitter and moving foliage induce multi-modal 
distributions of pixel intensity values. We propose a simple technique that 
generates a multi-modal background model of the scene. The multi-modal 
background can then be used for motion detection and segmentation via 
background subtraction. 
 
One popular method for background model generation is the use of AR (auto-
regressive) or IIR (infinite impulse response) filters [4,7]. A single AR or IIR 
filter is used for each pixel to estimate the dominant mode of the background. Our 

Fig 2. An agent consists of an algorithm contained within the agent 
runloop and wrapped with a source, sink, distribution agent and a 
resource management shell. 
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technique extends this method by allowing for the estimation of all the modes of 
the background. This is accomplished by appropriately adding an AR filter for 
each mode. The system is initialized with a single AR filter for each pixel. The 
AR filter estimates the center and width of the dominant mode of the background. 
Associated with each filter per pixel is a value that approximates the probability 
that the mode represented by the filter is seen by the pixel. When an intensity 
value seen by the pixel falls within the mode of one of the pixel’s filters and the 
associated probability is greater than a preset threshold, then the pixel is declared 
as background. When a particular intensity value is not represented by any of the 
filters for that pixel, a new filter is added with an associated low probability. 
When a filter represents an intensity value, its probability is increased and the 
probabilities of the rest of the filters associated with that pixel are decreased. At 
each detection cycle the filters corresponding to a pixel adapt to better fit the 
modes of the background. In practice, we have found that no more than four filters 
are required for a robust background model. 
 
This motion detection technique is enhanced by the use of feedback from higher-
level agents such as the classifier and correspondence agents. The classifier, 
described in section 3.3, has the capability to reject spurious detections. This 
information can be used either to create a new filter for the pixel or to increase or 
decrease the probability threshold for detection. Information from the 
correspondence agent can be used to predict future locations of detections. This 
considerably improves the quality of segmentation.        

 
3.2 Image Mosaicing 
In order to perform motion detection while the camera is panning, we have 
developed an efficient, pseudo-real-time algorithm for constructing an image 
mosaic from a sequence of background images. The detection algorithm described 
above continuously updates the background represented by the viewable subset of 
the image mosaic.  Several techniques have been proposed to create an image 
mosaic from sequences of images [8,9,10]. They obtain the registration between 
images by minimizing the sum-squared error of image intensities at each pixel. 
Although these techniques produce very accurate registration results, they tend to 
be slow, and typically require user interaction to initialize the registration. We 
create an image mosaic in pseudo-real time by locating and tracking feature points  
[11] in the image sequence. This technique is much faster than previous 
techniques, and does not require any user intervention. We also propose a method 
to accurately index the viewable portion of the image mosaic corresponding to a 
particular camera rotation [7]. An example of the motion detection and 
segmentation with an image mosaic is shown in Figure 3. 
 
In addition, we have developed a technique to register images obtained from 
multiple centers of projection. The algorithm uses color and range information 
(from stereo), obtained from various camera locations, and registers them onto a 
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single mosaic plane. Figure 4 shows an example of a 3D Mosaic created from two 
images obtained at different centers of projections. 
 
 

 
 

Fig 4. Results of 3D Mosaicing. The bottom row shows a 3D Mosaic created 
by registering two images shown in the top row.  Note that there is 
significant translation and rotation between these two input images. The 
center of projection of the resulting mosaic coincides with the center of 
projection of the first image. The algorithm uses color & range data 
obtained from a stereo head to perform registration. 

Fig 3. Results of detection with image mosaics. (b) shows the mosaic 
constructed using a spatial sequence of 70 images. 4 images from this 
sequence are shown in (a). (c) shows a moving person at a particular camera 
rotation, the corresponding subset indexed from the background mosaic, and 
the extracted foreground object. The indexing and detection algorithms 
execute at 10 Hz on a Pentium 266MHz laptop. 
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3.3 Classification 
The classification procedure maps a given image sequence of a moving object to 
the most likely class label by classifying each image independently and then 
classifying the resulting set of class labels. The image classifier is a single-layer 
perceptron trained with differential learning [12]. The novel training method used 
enhances the translation invariance and rejection capability of the classifier [3]. 
The current classifier operating within the CyberScout system classifies 20x20 
pixel binary image sequences into one of three classes in real-time: person, people 
or vehicle. In addition, the classifier can also reject classifying the object. The 
classifier has demonstrated class-conditional sequence error rates of less than 5% 
and a false alarm rejection rate of 80% in disjoint tests. Unknown objects and 
novel views of known objects are detected by considering the class label history 
over the image sequence.  Image sequences that yield a significant fraction of 
rejections or cause atypical classifier confusion are saved for user interpretation. 
We have also implemented finer-grain classification, such as deciding if a person 
is wearing a backpack, as part of a hierarchical classification scheme [1]. Figures 
5 and 6 show the system in action. 
 

Fig 6: Example of a novel image sequence producing significant classifier 
confusion 
 

Fig 5: (left) Binary motion images generated by the motion detector with the 
classified motion regions delineated, (right) Original image with the 
classified motion regions  
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3.4 Correspondence 
Temporal correspondence of a moving object plays a very important role in 
robustly classifying, tracking and interpreting an object’s actions. Large numbers 
of targets of varying sizes preclude the use of simple positional correspondence, 
i.e., correspondence based purely on the positions of moving objects. In such 
situations, other features of the moving objects, such as different appearance 
traits, need to be considered for robust correspondence. How can we select 
appearance features so as to facilitate good correspondence? The measure of 
goodness of the features we choose not only depends on the object in question, but 
also on other objects in the scene. A globally “good” set of features can be 
estimated a priori, but only a subset of these features might be relevant to the 
correspondence of a particular object. We pose the estimation of the relevance of 
globally good features for corresponding a particular object as an on-line learning 
task. We have developed a technique called differential discriminative diagnosis 
[13] to provide a systematic method for estimating the relevance of features and 
checking the temporal consistency of these features for a particular object. 
 
The correspondence task is performed by a two-step procedure. The first step 
relies on positional correspondence using linear prediction. This step nominates a 
set of likely candidate matches for a reference object. The second step uses 
appearance-based correspondence [14] to find the best match (if one exists) 
among those nominated by linear prediction. A simple linear classifier is trained 
to decide whether or not two images are of the same object. Differential 
discriminative diagnosis identifies those features that are most relevant to the 
correspondence task. Efficient correspondence is achieved by enforcing the 
temporal consistency of the relevances for a particular object. This technique 
corresponds moving objects with an accuracy of 96%. 
 
4 Conclusions 
Autonomous reconnaissance and surveillance performed by mobile robots presents 
challenges in the areas of vehicle control, vision algorithms, and mission 
management.  The surveillance algorithms described here represent advances in 
the areas of autonomous vision-based detection, classification, and 
correspondence.  Multi-modal background model-based detection in conjunction 
with mosaicing increases the robustness and speed of target acquisition.  
Classification with reliable rejection allows the recognition of novel classes, 
possibly leading to autonomous extension of the set of identifiable classes.  The 
combination of motion-based prediction with appearance-based classification of 
auto-selected key features leads to highly accurate target correspondence.  Current 
and future work will concentrate on using surveillance information to dynamically 
adjust mission tasking. 
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