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Abstract

This paper studies the use of volumetric features as an al-
ternative to popular local descriptor approaches for event
detection in video sequences. Motivated by the recent suc-
cess of similar ideas in object detection on static images,
we generalize the notion of 2D box features to 3D spatio-
temporal volumetric features. This general framework en-
ables us to do real-time video analysis. We construct a real-
time event detector for each action of interest by learning
a cascade of filters based on volumetric features that effi-
ciently scans video sequences in space and time. This event
detector recognizes actions that are traditionally problem-
atic for interest point methods — such as smooth motions
where insufficient space-time interest points are available.
Our experiments demonstrate that the technique accurately
detects actions on real-world sequences and is robust to
changes in viewpoint, scale and action speed. We also adapt
our technique to the related task of human action classifica-
tion and confirm that it achieves performance comparable
to a current interest point based human activity recognizer
on a standard database of human activities.

1. Introduction
Event detection in video (see Figure 1) is becoming an in-
creasingly important application for computer vision, par-
ticularly in the context of activity recognition [1]. Ap-
proaches to the problem are typically categorized as either
model-based or appearance-based. The former [3, 12] at-
tempt to estimate a set of model parameters, such as pose,
from the video data and use them to recognize the activ-
ity. By contrast, the latter [2, 4, 10] perform inference di-
rectly on the observed pixels. Broadly speaking, model-
based techniques are preferable when a good model for the
actor is availablea priori, whereas appearance-based tech-
niques extend more easily to different activities.

Recently, there has been significant interest in ap-
proaches that exploit local descriptors on interest pointsin
static images [7] and video [6]. These rely on express-
ing the local region around an area of interest using rep-
resentations that are robust to geometric perturbations and

Figure 1: An example of our detector recognizing the grab-
cup action. Note that the detection volume (shown high-
lighted) is localized both in space and time.

noise, yet distinctive enough to reliably identify the local
region. However, these techniques rely on the assumption
that one can reliably detect a sufficient number of stable in-
terest points in the video sequence. For space-time interest
points this means that the video sequence must contain sev-
eral instances of motion critical events — regions where an
object rapidly changes its direction of motion — such as
the reciprocating path traced by a walking person’s shoe.
Unfortunately, these techniques fail to detect useful interest
points in many common situations where the motions con-
tain no sharp extrema, such as those illustrated in Figure 2.
Space-time interest points are also frequently triggered by
the appearance of shadows and highlights in the video se-
quence, as shown in Figure 3. These unstable “events” are
sensitive to lighting conditions and can reduce recognition
accuracy for the action of interest.

We propose a novel appearance-based framework that
employs volumetric features for efficiently analyzing video.
Applying this framework on the video’s optical flow, we
learn activity detectors that perform event detection in real
time. The framework extends the rectangle features used
by Viola and Jones [18] into the spatio-temporal domain
for video analysis. Unlike their follow-up work in pedes-
trian detection in video [19], which uses only two adjacent
frames, ourvolumetric featuresspan longer time frames. To
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Figure 2: Two examples of smooth motions where no
stable space-time interest points are detected. The 3D
plots of motion through time were generated using software
from [6]. The highlighted ellipsoids show the detected in-
terest points. All of these detections are non-informative,
caused by boundary interactions between the arm and the
edge of the frame. By contrast, our volumetric features are
scanned over the video sequence through space and time,
and can accurately recognize such motions.

maintain computational efficiency and build a real-time de-
tector, we generalize the notion of integral images [18] to
an efficient space-time representation that we termintegral
videos. These allow us to perform event detection on video
sequences in real time, as shown in Figure 1.

Although our system is primarily designed to detect mo-
tion events, we have also extended it to the action classi-
fication task, where each video sequence contains several
repetitions of a single action. Schuldtet al. [15] propose
a technique that uses local space-time features to classify
six human actions (walk, jog, run, wave, clap, and box) in
challenging real-world video sequences. They argue that
global image measurements based on optical flow are un-
stable when there are multiple moving objects in the scene,
or when the camera is not stationary. We show on the
same dataset used in their work that our technique achieves
comparable performance in the presence of camera motion,
scale variation, and viewpoint changes. We argue that the
same problems that hinder the use of 2D local descriptors
for object detection in static images also impact spatio-
temporal local descriptors. For example, changes in ob-
ject or background appearance will affect the location of
the peaks found in spatio-temporal gradients. The trade-off
between the stability of the interest points and the number
of points found also exists in this domain. Because our tech-
nique uses dense optical flow measurements, our classifier
is not limited to the sparse information found at peaks in
spatio-temporal gradients nor affected by the instabilityof

Figure 3: Space-time interest points are often found on high-
lights and shadows. These points are sensitive to lighting
conditions and reduce recognition accuracy. This observa-
tion motivates our decision to apply volumetric features to
the motion vectors rather than to the raw pixels.

those peaks.
The remainder of the paper is organized as follows. Sec-

tion 2 summarizes the related work. Section 3 details our
volumetric features. Section 4 describes classifier training.
Section 5 explains how this classifier is applied to video se-
quences. Section 6 presents experimental results on several
real-world video sequences. Section 7 concludes the paper.

2. Related Work
Aggarwal and Cai present an excellent overview of human
motion analysis [1]. Of the appearance based methods,
many approaches are domain specific, or have many con-
straints on the environment as well as the type of motion
that can be detected. For example, Polana and Nelson [11]
only detect periodic motion. Mooreet al. [9] use Hidden
Markov models and Bayesian relations to detect actions and
classify objects, but are limited to an overhead view and
only track hands. Bobick and Davis [2] use motion-energy
images (MEI) and motion-history images (MHI) to recog-
nize many types of aerobics exercises. While their method
is efficient, their work and others [4] assume that the actor
is well segmented from the background and centered for the
detector. Our method does not need to pre-segment the mo-
tion and is robust to slight motions like those of a hand-held
camera. Zelnik-Manor and Irani [22] cluster long sequences
of events to detect classes of activities in those sequences.

More recently, Reaet al. [13] and Wanget al. [20] at-
tempt to detect events in specific domains such as snooker
and tennis. Peursumet al. [10] try to label static objects
in the scene by tracking a person’s height and speed and
training an HMM to detect actions such as walking and sit-
ting. Such a simple method may be suitable for these activ-
ities, but it does not seem likely that it would generalize to
more complicated motions. Many of the approaches to date
rely on the extraction of primitives, such as interest points
and contours. In contrast to such “structural” approaches,
we perform the detection directly on the pixel data. Re-
cent work by Shechtman and Irani [16] demonstrates ac-
tivity recognition using space-time correlation of the video



Figure 4: An example of the stand-up action and its optical
flow. We separate the optical flow into the horizontal (vx)
and vertical (vy) components. Lighter areas represent flow
in the positive direction, while darker areas represent flow in
the other direction.

with an action template. While their system can be trained
on a single video sequence, the correlation is significantly
less efficient than our cascade of detectors.

3. Features
Given a video sequence, our goal is to classify whether an
action event occurs in any of the space-time volumes in the
video sequence. This is similar to running a classifier on
all of the sub-windows in a 2D image for object detection.
Similarly, as detailed in Section 5, we run the classifier on
all sub-volumes for event detection.

The framework is general enough that volumetric fea-
tures can be computed over many types of low level fea-
tures of the video, for example raw pixel intensities, spatio-
temporal gradients, or optical flow. We believe that most of
the information salient to recognizing actions can be cap-
tured from the optical flow, and that the appearance of the
object is less relevant.

Initial experiments using pixel intensities performed
poorly, mainly due to changes in appearance of the actor,
the background, and lighting conditions. This motivates our
decision to compute our volumetric features on the video’s
optical flow. We separate the optical flow into its horizontal
and vertical components and compute volumetric features
on each component. Letvx(x, y, t) andvy(x, y, t) denote
the horizontal and vertical optical flow components, respec-
tively, at pixel location(x, y) and timet. This is illustrated
in Figure 4.

As shown in the first row of Figure 5, our volumetric fea-
tures consist of one-box or two-box volumes. The value of
the one-box feature is simply the sum of the pixels within
the volume (vx or vy). Correspondingly, the value of a two-
box feature is the difference of their individual sums. Just
as in 2D object detection [18], where one computes multiple
rectangle features in a sub-window of the image, we com-

Figure 5: The top row illustrates the 3D volumetric features
used in our classifiers. The first feature calculates the vol-
ume. The other three features calculate volumetric differ-
ences in X, Y, and time. The bottom row shows multiple
features learned by the classifier to recognize the handwave
action in a detection volume.

pute multiple one-box and two-box features in a detection
sub-volume, as illustrated in the second row of Figure 5.
The horizontal and vertical size of the volume must be var-
ied to match the size of the object being detected. The tem-
poral span of the detection volume is both application and
motion dependent. It is not necessary for the time duration
of the volume to exactly match that of the motion to be rec-
ognized. Provided that the detection volume encompasses
the motion, we can achieve satisfactory recognition even if
the action is performed at moderately different speeds (see
Figure 10). If the training sequences are all aligned cor-
rectly at the start of the motion, the training algorithm de-
scribed in Section 4 will learn that the tail ends of the se-
quences are noisy and thus less discriminative.

In our experiments, the features are computed over a vol-
ume of 64×64 pixels by 40 frames in time. An exhaustive
enumeration of all possible one-box and two-box features
over this volume would number in the billions. Therefore
one must sub-sample the feature space to reduce the set to a
reasonable size for learning. We discretize the space to sam-
ple approximately one million features in our experiments,
which is a large, but manageable set. The smallest feature
occupies a 4×4 pixel by 4 frame spatio-temporal volume.

We use an “integral video” data structure to efficiently
calculate the box features described above. This is a di-
rect spatio-temporal generalization of the integral imagede-
scribed by Viola and Jones [18]. An integral video at pixel
location(x, y) and timet is defined as the sum of all pixels
at locations less than or equal to(x, y, t). More formally,
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Figure 6: The volume of this box can be computed from the
integral video with eight array references: e−a−f − g + b+
c + h − d.

the integral videoiv, is defined as

iv(x, y, t) =
∑

x′≤x

∑

y′≤y

∑

t′≤t

i(x′, y′, t′),

where i(x, y, t) is the pixel value at the original image.
In our framework, we compute two integral volumes for
the two optical flow components, and usevx(x, y, t) and
vy(x, y, t) in place ofi(x, y, t). iv can be easily computed
using the following recurrences:

s1(x, y, t) = s1(x, y − 1, t) + i(x, y, t)

s2(x, y, t) = s2(x − 1, y, t) + s1(x, y, t)

iv(x, y, t) = iv(x, y, t − 1) + s2(x, y, t),

wheres1(x,−1, t) = s2(−1, y, t) = iv(x, y,−1) ≡ 0.
Clearly, computing the integral video structure is only
marginally more expensive than computing a series of in-
tegral images in a video sequence. To compute the one-box
feature shown in Figure 6 at any scale, location, or time,
only 8 array references to the integral video structure are
needed. Care must be taken in real implementations of in-
tegral video to maintain numerical precision over long se-
quences.

4. Learning the Classifier
Since our volumetric features are efficient to compute, we
employ a sliding-window approach over the video to de-
tect actions. This is an example of a rare-event detection
problem, and fits well in the framework of cascaded clas-
sifiers. We use the direct forward feature selection method
of Wu et al. [21] to select a small subset and arrange them
in a cascade for efficient detection. The algorithm selects
features and their associated thresholds (termed filters),to
classify whether an event occurs in a particular detection
volume. The filters are binary classifiers that vote on the
classification of the volume. While we could have used Ad-
aboost as did Viola and Jones, Wuet al.’s method enables
us to train the classifier in a reasonable amount of time de-
spite the much larger set of initial candidate features. We
summarize our implementation below.

Given a set of positive examplesP , negative examples
N , and featuresF , we construct a cascaded classifier that

achieves high detection rate on the positive examples and
low detection rate on the negative examples. For each node
in the cascade (to be learned), we randomly choose a set of
negative examplesN ′ ⊆ N , that have been misclassified by
the previous stages, where|N ′| = |P |. Based onP andN ′,
we select the optimal thresholdθi for each featurefi ∈ F

that minimizes the classification error rate independent of
the other features. The optimal threshold for each feature
can be found inO(|P | log(|P |)) time by sorting the feature
value of the positive and negative examples. We then itera-
tively add filters to the ensemble to maximize its detection
rate or minimize its false positive rate. The decision output
of the ensemble is simply the majority vote of the individ-
ual filters. The stopping criteria for a node in the cascade is
when its target detection rate (100%) and false positive rate
(less than 20%) are reached. Once the stopping criteria is
reached, we eliminate the negative examples that were cor-
rectly classified and train the next node in the cascade using
the remaining examples.

While training the cascade, it is critical to have a repre-
sentative sampling of the space of negative samples. First,
it is very difficult to pre-compute all of the negative exam-
ples. Because the cascade must have a very low false posi-
tive rate, we quickly exhaust all of the pre-computed nega-
tive examples after training only a few nodes. Second, this
problem is compounded by our use of three dimensional
features, where the feature space is much larger than the
ones used for object detection on images. Sung and Pog-
gio [17] propose a bootstrapping method which we use to
generate more negative examples after training each node.
As we train the new nodes in the cascade, we first run the
already-trained cascade on video sequences and extract all
of the false detections. We use these detections as negative
examples to train the new node, guaranteeing a sufficient
supply of negative examples.

5. Detection

To detect events in a video sequence, we first compute the
integral video of the sequence. We then scan a detection
volume over all locations in space and time. To make the de-
tector work at different scales, we vary the width and height
of the detection volume and the associated filters. This is
analagous to varying the size of the detection window in 2D
object detection on images. Our smallest window size is
64×64 pixels. We slide the position of the window in in-
crements of 1/16 of the window size, and we increase the
window size in increments of1.25 in scale. A complica-
tion is that different people can perform the same actions
at different speeds. In principle, this would indicate that
we should also vary the time scale of the detection window.
However, we chose instead to train the detector on actions
performed at varying speeds and to detect actions using a



fixed time scale window. Section 6.2 confirms that this ap-
proach works well in practice.

As with all similar scanning-window type detection sys-
tems, there will be multiple detections at adjacent locations,
scales, and time around each “true” event. One might argue
that this is a drawback of such systems, but we use it to our
advantage to increase detection precision. Since we employ
a purely discriminative technique (binary classifier), there
is no explicit notion of detection “strength”. However, the
number of detections found in a small area in space-timeis
indicative of the quality of the detections. In other words,a
dense cluster of detections is likely to indicate a true detec-
tion, while isolated detections are more likely to be false
positives. We model this formally as follows, similar to
Rosenberg’s work in object detection [14].

Suppose that our goal is to detect the eventE at space-
time locationL. Let Di indicate that the detector also de-
tects this event at some nearby space-time locationLi rela-
tive to L. Intuitively, the moreDi’s that are true, the more
likely that the eventE occurred atL. Given the set ofDi’s,
we wish to find the likelihood ratio between the event oc-
curring and the event not occurring atL, and threshold at
some value:

P (EL|{Di . . . Dn})

P (¬EL|{Di . . . Dn})
> T1.

Using the naive Bayes assumption, this is simply

P (D1|EL) . . . P (Dn|EL)

P (D1|¬EL) . . . P (Dn|¬EL)
> T2.

Assuming thatP (Dn|¬EL) has identical uniform distribu-
tion, this becomes

P (D1|EL) . . . P (Dn|EL) > T3

∑

i=1...n

log P (Di|EL) > T4,

which is equivalent to convolving the detections with a ker-
nel that is dependent on the distribution ofDi’s, and thresh-
olding the output. We model this distribution as a 3D Gaus-
sian kernel with diagonal covariance. We find the peaks
of all clusters that are greater than the threshold and report
them as events.

6. Evaluation
The first set of experiments examine our system’s ability to
detect and recognize non-periodic events in a long video se-
quence. Our detector is trained and tested on real videos
with thesit-down, stand-up, close-laptop, andgrab-cupac-
tions.1 We discuss our system’s robustness to different cam-
era views, scale variations, and changing speeds at which

1This dataset is publicly available at our website.
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Figure 7: ROC curves for our activity detectors. Note that
the sit detector achieved 86% detection rate with no false
positives.

actions are performed. We also modify our action detec-
tor to do action classification in to evaluate our system on
existing public data sets. We compute optical flow vectors
using two off-the-shelf algorithms (Gautamaet al. [5] and
standard Lucas-Kanade [8]) and achieve similar results.

6.1 Action Detection

We train our system to detect the following four non-
periodic actions: sit-down, stand-up, close-laptop, and
grab-cup. The training set consists of four people perform-
ing a total of 60 repetitions of these actions. The test set
consists of a different group of five people performing 20
repetitions. The ROC curve (see Figure 7) is generated
by varying the threshold in the likelihood ratio test. For
each action detector, we measure its false positive rate by
running it on 40 minutes of video with moderate amounts
of movement where none of these actions occur. Thesit-
downdetector performs extremely well; it detects 86% of
the events with no false positives. Thestand-updetector
achieves 90% recall with 0.6 false positives per minute. The
close-laptopdetector achieves 78% recall at 0.5 false pos-
itives per minute. Finally, thegrab-cupdetector achieves
92% recall at only 0.3 false positives per minute. Using
Lucas-Kanade for computing the optical flow, our system
runs at frame rate on 160×120 pixel size videos.

6.2 Analysis

Our detector is trained on the optical flow of the video, and
as with all methods that operate on low level features (as op-
posed to recovered 3D pose), its performance is dependent
on factors such as variations in camera view, the objects’
scale, and the speed at which the actions are performed.
First, we investigate how changes in camera view affect our
system. The effects are motion dependent, where horizon-
tal moving actions are more likely to be distorted than ver-
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Figure 8: Our system is trained and tested in different envi-
ronments and camera views.

tical motions as we pan the camera around the room. We
give anecdotal evidence that our system is robust to mod-
est changes in camera view, roughly within 45 degrees. Our
data is gathered in uncontrolled office environments with no
precise placement of cameras. Figure 8 shows two typical
frames in thesit andstandsequences, where the two people
face slightly different directions and sit on different chairs.

As described in Section 5, we make our detector scale
invariant by adjusting the size of the detection volume. Fig-
ure 9 shows the amount of scale variations in the data, where
the variations between training and testing objects are 1-2×
for our data and 1-3× for Schuldtet al.’s data. Part of this
scale variation is caused by the fact that we train the detec-
tor on 64×64 pixel size videos and test on 160×120 pixel
size videos, and part of the variation is caused by the dif-
ferences in distance of the object to the camera as well as
camera zoom. The results show that our system is robust to
the scale changes.

Because people perform actions at different speeds, our
detector must also be robust to such variations. Figure 10
shows how three people perform the handclapping action at
different speeds over 40 frame sequences. The sequences
are shown to be aligned at the start of the motion, which
we define to be when the hands are closed. Note that the
actions diverge at the end of the sequences, where one per-
son’s arms are closed while another’s arms are open. Our
classifier automatically learns to ignore the noisy tail ends
of the sequences. This is shown at the bottom of Figure 10,
where the density of filters is greater near the beginning of
the sequence.

Training (64×64 pixels) Testing (160×120 pixels)

Figure 9: Examples of the amount of scale changes in our
data (2×) and Schuldt et al.’s data (3×). We trained the
system using 64×64 pixel size videos (left) and tested on
160×120 pixel size videos (right).

6.3 Action Classification

The second set of experiments compares our method against
Schuldt et al.’s [15] in classifying periodic actions per-
formed in short video sequences. We use the same training
and test sequences as in their paper, which contains eight
people in the training set and nine in the testing. Each per-
son repeats six actions (walk, jog, run, box, clap, and wave)
in each of four scenarios (outdoor, outdoor + camera zoom,
outdoor + change of clothes, indoor) for a total of about
twenty seconds. Since we designed our detector to recog-
nize aperiodic motion, for training we manually segment
several instances of each action, all starting at the same
phase to be positive examples. For example, we define a
simple hand wave action to be the one shown in Figure 11.
For each action, we choose random parts of the other action
sequences in addition to the pre-recorded videos to gener-
ate the negative examples. Figure 12 shows examples of the
first few filters chosen to classify the handwave and box-
ing motions. It is easy to see that the handwave classifier
is quite symmetric, capturing motion on both sides of the
body. On the other hand, the boxing filters are on one side
and high, representing the punch thrown by the boxer. We
classify the entire sequence by summing likelihood ratios
that pass the threshold and select the action whose detector
reported the highest sum.

Tables 1 and 2 show the confusion matrix for these six
actions for each technique. The trace of the matrix is a mea-
sure the accuracy of the classifier, ranging from 100 (ex-
pected value for random classification) to 600 (for perfect
classification). The trace of our matrix is 377.8 while the
trace of Schuldtet al.’s matrix is 430.3. Our results are only



Figure 10: This figure shows three people performing the handclapping action at different speeds. Since the beginning of the
sequences are aligned, our classifier learns that this region is more discriminative. The classifier selects more filters to classify
the start of the sequences and fewer filters to classify the end of the sequences, where they diverge.

Figure 11: One cycle of the handwave motion, from the
Schuldt et al. database.

handwaving boxing

Figure 12: Examples of first few filters learned for the hand-
waving and boxing actions.

slightly worse, which is encouraging since our system was
trained to detect a single instance of each action within arbi-
trary sequences while Schuldtet al.’s system has the easier
task of classifying each complete sequence (containing sev-
eral repetitions of the same action) into one of six classes.
These experiments also highlight some of the limitations of
relying exclusively on motion information. Figure 13 shows
an example where a “clapping” motion incorrectly triggers
the “boxing” detector because the left-to-right motion in the
shaded area is the same for both motions, even though they
vary considerably in appearance.

Table 1: Confusion matrix using our method. Trace = 377.8.

walk jog run box clap wave
walk 80.6 11.1 8.3 0.0 0.0 0.0
jog 30.6 36.1 33.3 0.0 0.0 0.0
run 2.8 25.0 44.4 0.0 27.8 0.0
box 0.0 2.8 11.1 69.4 11.1 5.6
clap 0.0 0.0 5.6 36.1 55.6 2.8
wave 0.0 5.6 0.0 2.8 0.0 91.7

Table 2: Schuldt’s LF + SVM confusion matrix. Trace =
430.3.

walk jog run box clap wave
walk 83.8 16.2 0.0 0.0 0.0 0.0
jog 22.9 60.4 16.7 0.0 0.0 0.0
run 6.3 38.9 54.9 0.0 0.0 0.0
box 0.7 0.0 0.0 97.9 0.7 0.7
clap 1.4 0.0 0.0 35.4 59.7 3.5
wave 0.7 0.0 0.0 20.8 4.9 73.6

7. Conclusion
We introduced a novel volumetric feature framework for an-
alyzing video by extending Viola and Jones’ work for static-
scene object detection to the spatio-temporal domain. Ap-
plying this framework on the video’s optical flow, we learn
activity detectors that can recognize events in video. We
have shown that computing integral videos and box features



Figure 13: An example of an incorrect detection: the “clapping” motion shown in top row triggers the “boxing” detector. This
is because the left-to-right motion in the shaded area (caused by the clap) is very similar to the motion generated by the
extension of the arm in the boxing action shown in the bottom row. This illustrates the limitation of relying on motion features
alone, as a model of appearance would easily be able to distinguish between the two actions.

is only a small constant factor slower than that of a series of
integral images, and therefore we achieve real time recogni-
tion performance. We have demonstrated good performance
on detecting non-periodic motions with low false positive
rates on long sequences of video. Further, despite camera
movements and scale changes, our results on classifying the
six actions are comparable to the system by Schuldtet al.

We have successfully shown that object detection in
static scenes and activity recognition in video can be in-
tegrated into a common framework. One possible future
direction is to add an appearance model to increase accu-
racy. At the very least, this will enable us to differentiatebe-
tween the clapping and boxing actions shown in Figure 13
by discriminating between pixels that correspond to a per-
son rather than the background.
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