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Abstract:We present a comparison of an extended Kalman �lter and an

adaptation of bundle adjustment from computer vision for mobile robot

localization and mapping using a bearing-only sensor. We show results on
synthetic and real examples and discuss some advantages and disadvantages

of the techniques. The comparison leads to a novel combination of the two

techniques which results in computational complexity near Kalman �lters
and performance near bundle adjustment on the examples shown.

1. Introduction

In this paper we will present a comparison and experimental evaluation of

techniques for localization and mapping for a mobile robot equipped with a

bearing-only sensor. The robot has no a priori knowledge of the environment

(no map) and can only observe its egomotion through odometry and the bear-

ings to landmarks in the environment with an omnidirectional camera. The

robot has no external position or heading reference, and cannot measure the

range to landmarks.

2. Related work

Much of the work published in Simultaneous Localization and Mapping

(SLAM), also referred to as Concurrent Localization and Mapping (CLM),

makes use of active range sensors. Approaches generally rely on recursive �l-

tering using a Kalman �lter or some variant [1]. There have also been attempts

to �nd optimal estimates using batch techniques [2] or to deal with large envi-

ronments using a hierarchical approach [3, 4].

The Computer vision literature contains a large body of work on multi-

frame Structure From Motion (SFM). Bundle adjustment is a batch technique

that is widely used for SFM under perspective projection [5, 6] and is applicable

to SLAM. Some attempts have also been made to recursively compute structure

and motion using Kalman �lters [7, 8].

The SLAM and SFM problems contain features relevant to localization

and mapping with a bearing-only sensor. The goal of this paper is to present

some comparisons on how techniques from SLAM and SFM perform on the

bearing-only SLAM problem including results from experiments on simulated



Figure 1. Bearing-only sensor projects landmark position onto unit circle

and real data. To date, little has been published in terms of direct experimental

comparison of existing techniques for solving this problem.

3. Localization and Mapping

For simplicity we will only consider a 2D planar environment. The robot posi-

tion at time i is mi = (xi; yi; �i)
T and the feature locations are xj = (xj ; yj)

T .

The odometry is modelled as a stochastic measurement of motion between two

consecutive robot poses such that

di = f(mi�1;mi) + �i (1)

where � is N (0; Rd) noise. The bearings are modelled as stochastic measure-

ments of the bearing towards each visible landmark in the rover coordinates,

zij = h(mi;xj) + !ij (2)

where ! is N (0; �!) noise.

3.1. SLAM as 2D Structure from Motion

The Structure from Motion (SFM) work in computer vision provides insight

into what we can expect from bearing-only SLAM. In SFM the 3D structure of

an environment is reconstructed using 2D projections (images) from unknown

camera locations. The perspective camera projection model is very similar to

a bearing-only sensor; depth information is lost in the projection. The only

knowledge of the scene from a single image is that scene points lie somewhere

along a ray originating at the camera center of projection and passing through

the image plane at the point where the feature appears. In bearing-only SLAM,

landmarks are projected onto a unit circle around the robot (Figure 1), and a

similar constraint applies for the ray intersecting this projection surface.

If only the bearing measurements are available, and not the odometry,

then a simple counting argument gives us a necessary condition for when the

2D structure from motion problem can be solved. For each robot position there

are 3 unknowns, and for each landmark 2 unknowns. If there are M robot

positions and N landmarks, then there are 3M + 2N unknowns. Assuming

that all landmark features are observable from all robot positions, there will be

MN measurements, and in general these will be linearly independent. There

are 4 gauge freedoms[9] in the estimation, i.e. we can translate, rotate, and

scale the solution and the measurements will be unchanged. We must set an



absolute coordinate frame and absolute scale with 4 additional constraints. We

can �nd a solution to the problem when MN + 4 > 3M + 2N , or

(M � 2)(N � 3) > 2 (3)

This constraint on the solution to the problem shows that there is no solution

to the two frame SFM problem in 2D, regardless of methodology. Only when

there are three robot positions and at least �ve landmarks or more than three

robot positions and at least four landmarks can we get a solution, and this

solution is only de�ned up to the gauge freedoms. In contrast, aligning just

two scans from an accurate range-bearing sensor can give an estimate of vehicle

motion and make up for errors in odometry.

In most SFM algorithms, little or no a priori information about the camera

motion is used for reconstruction, camera motion is recovered in the estimation

along with scene structure using only the image measurements. Odometry can

be seen as providing a prior for the camera motion which is absent in general

SFM problems. If we add odometry then we can immediately disambiguate the

scale. There is even a unique solution to the two frame problem if odometry is

available since it will provide a direct estimate of the relative pose of the second

view. However until the third view is incorporated, bearing measurements

cannot begin to correct odometry errors within the estimation algorithm. This

can cause initialization problems with Kalman �lters which are observed in

practice, particularly when odometry is poor.

A �nal note is that bias in odometry cannot always be corrected in

bearings-only SLAM. If the measurements of distance travelled are biased by

a scale factor then the estimate of robot motion and landmark positions will

be scaled by the same factor and no estimator can recover the bias using the

bearing measurements. This is an inherent ambiguity. In contrast, SLAM

with range-bearing sensors does not su�er from this problem since the range

measurements provide direct information about the scale of the solution.

4. Estimating parameters

Finding an estimate for the model parametersm = (m0
T ;m1

T � � �mM
T )T and

x = (x0
T ;x1

T � � �xNT )T can be done in many ways. In this paper we wish to

make some comparisons between two of these methods in particular. The �rst

method is the Extended Kalman �lter and the second is bundle adjustment.

Each of these methods has properties which make it attractive for use in SLAM,

and the nature of the SLAM problem is important to the way in which these

techniques are used and the results that can be expected.

4.1. Extended Kalman Filter

The Extended Kalman Filter (EKF) has been used in SLAM and SFM to

recursively estimate a state vector which consists of the current rover pose or

camera parameters and the positions of all landmark or scene features [1, 8].

As a new measurement is made, the �lter goes through prediction and update

steps which incorporate the new measurement and generates a best estimate

(mean) and an uncertainty estimate (covariance) for the current rover pose



and the map. The mean and covariance are kept as a su�cient statistic for the

posterior probability over state space, and old observations are discarded after

being incorporated. Nonlinearities in bearing-only SLAM cause di�culties to

the EKF; in particular, getting started is tricky. The posterior over robot pose

and landmark position is signi�cantly non-Gaussian such that the mean and

covariance in the �lter are not a reasonable su�cient statistic for the data. For

this reason, we use bundle adjustment (to be explained in the next section) to

get an initial state estimate and initial covariance matrix using some portion

of the data, then recursively process the rest of the data with a Kalman �lter.

The quality of the result depends on how much of the data is used to get the

initial estimates.

Space considerations prohibit detailed explanation of the use of Kalman

�lters in SLAM but there exists a large body of literature on the topic, particu-

larly for problems where range and bearing measurements are available [1, 10].

Although they should be included in a complete treatment on this topic, we

will also omit discussion of modi�cations to the Kalman �ltering method such

as implicit Jacobian computations [11] and covariance intersection [12].

4.2. Bundle Adjustment

Bundle adjustment is a full nonlinear optimization which does not rely on a

mean and covariance as a su�cient statistic for previous observations and state

estimates. Instead it linearizes the estimation problem at every step using all

available observations and the current best estimate. Bundle adjustment may

optimize all motion and structure parameters at every step, so the state vector

is the entire history of robot pose (trajectory) and the entire map.

We wish to minimize the cost function

E(�) =
1

2
(d� f (�))TR�1

d (d� f (�)) +
1

2
(z � h(�))TR�1z (z � h(�)) (4)

where � = (mT ;xT )T is the vector of parameters to be estimated, d and z

are all odometry and all bearing measurements stacked into vectors, and f ()

and h() are all predicted odometry and bearing measurements stacked into

vectors. The �rst term in (4) penalizes robot motion that does not agree well

with odometry measurements and the second term penalizes robot motion and

landmarkmap combinations that do not agree well with bearing measurements.

Taking the �rst and second derivatives of (4) we �nd

r�E = �JT
f R

�1

d �d � JT
h R

�1

z �z (5)

r2
�E = �r2

�fR
�1

d �d + JT
f R

�1

d Jf �r2
�hR

�1
z �z + JT

h R
�1
z Jh (6)

where Jf = r�f and Jh = r�h are the Jacobian matrices of the measurement

equations for odometry and bearings, �d = (d1 � f(x0; x1); d2 � f(x1; x2):::)
T

is the di�erence between measured odometry and odometry predicted by the

model parameters, and �z is the di�erence between measured and predicted

bearings. These last two quantities are analogous to innovations in a Kalman

�ltering context.
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Figure 2. Sparse structure of derivatives. (a) Jacobian of bearing measurement

equation. (b) Jacobian of odometry measurement equation. (c) Approximation

to the Hessian of the cost function.

When the innovations are small the Jacobian inner products dominate

expression (6). The Jacobian term will also dominate when the measurement

equations are approximately linear (or linear), since r2
�f or r2

�h will be small

(or zero). In our case, f is in fact linear, but h contains an arctangent. Bundle

adjustment drops the second derivative terms and approximates the Hessian of

the cost function using only the Jacobian inner products, i.e.

H = r2

� � JT
f R

�1

d Jf + JT
h R

�1

z Jh: (7)

Note that the true H is the Fisher Information Matrix when � is the true

parameter vector. We will use it as the inverse covariance matrix for estimating

uncertainties. Newton iterations are used to minimize (4) by solving

H��k = �(JT
f R

�1

d �d + JT
h R

�1
z �z) (8)

and then computing the update

�k+1 =�k +��k (9)

In general solving equation (8) is cubic in the number of model parameters

(3M + 2N here). However, photogrammetrists have known for decades how

to speed up bundle adjustment using the sparse nature of the structure from

motion problem. We can take a similar approach here by exploiting the nature

of the bearing-only SLAM problem.

Each bearing measurement depends only on the landmark being measured

and the robot pose at the time that the measurement is taken. Therefore, each

row of the Jacobian of the bearing measurement equation, Jh, has nonzero

entries only for the columns corresponding to the parameters which represent

that landmark position and robot pose. The sparse structure is shown in Fig-

ure 2(a). The Jacobian of the odometry measurement equation, Jf , depends

only on two consecutive robot poses. Each row of the Jacobian of the odome-

try measurement equation, then, has nonzero entries only for the robot poses

before and after the motion. Odometry contains no information about land-

mark positions and corresponding columns of Jf are zero. The Jacobian has



the structure shown in Figure 2(b). Because odometry and bearing measure-

ment errors are assumed to be uncorrelated, Rd and Rz (and their inverses)

are block diagonal. The Hessian H = JT
f R

�1

d Jf + JT
h R

�1
z Jh has the sparse

structure shown in Figure 2(c). The upper left is a block tridiagonal matrix

U , the lower right is a block diagonal, and the upper right and lower left are

rectangular matrices W and WT . We can write the equation (8) as

�
U W

WT V

� �
�m

�x

�
=

�
�(m)

�(x)

�
(10)

where the Hessian H, the parameter update ��, and the right hand side have

been partitioned. Now we premultiply both sides by

�
I 0

�WTU�1 I

�

�
U W

0 V �WTU�1W

� �
�m

�x

�
=

�
�(m)

�(x)�WTU�1�(m)

�
(11)

and solve equations (11) in two steps. We �rst solve the bottom equation

(V �WTU�1W )�x = �(x)�WTU�1�(m) (12)

to �nd �x and then substitute it into the top equation, rearranging to get

U�m = �(m)�W�x (13)

and solve for �m. Computation of (V �WTU�1W ) is O(MN2), and solving

(12) is O(N3). Substituting �x into (13) and solving only requires O(MN )

due to the block tridiagonal structure of U , so the overall complexity of bundle

adjustment for bearing-only SLAM is O(MN2+N3), which scales linearly with

the size of the trajectory. The complexity of bundle adjustment is larger than

that of a Kalman �lter, which has a complexity of O(N3) for N landmarks, but

it is not complex as a general inverse Hessian approach which might require

O((N +M )3).

5. Results

Results were generated for synthetic and real data. In the synthetic example,

we simulated a robot driving in a large circle of radius 100 meters, with 50

landmarks scattered uniformly in a square area circumscribing the robot path.

Odometry was simulated by computing the true robot motion and adding Gaus-

sian noise to the estimates of along-track and cross-track motion to simulate

slip as well as the rotation. Figure 3 shows estimates of robot motion and land-

mark map from a Kalman �lter and from a bundle adjustment. In each �gure,

the robot trajectory is the circular path of dots and the landmarks are scat-

tered inside and outside the path plotted with their corresponding uncertainty

ellipses.

Both methods were also used to analyze real data from an RWI ATRV.

Unfortunately there is no ground truth for this experiment. The robot drove
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Figure 3. Synthetic data. (a) Kalman �lter result (b) Bundle adjustment result
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Figure 4. Results on real data (a) Kalman �lter (b) Bundle adjustment.

in an approximately elliptical path between six di�erent arti�cial landmarks.

There was a problem with the drive mechanism which caused bias in the odom-

etry measurements. Dead reckoning estimated that the robot drove in a spiral

shaped path. Bundle adjustment results are shown in Figure 4(a). Without

modelling the bias the bundle adjustment recovers the elliptical path of the

robot.

The Kalman �lter diverges in the presence of the odometry bias. The

odometry was calibrated by �tting a linear function of the data to the bundle

adjustment trajectory estimate. With the calibrated odometry and an initial

model from bundle adjustment using the �rst 20 robot poses, the Kalman �lter

was able to produce the result in Figure 4(b). The lower left portion of the

trajecory shows some reconstruction behavior which is most likely due to the

introduction of the lower left feature. Since it processes one measurement at

a time the Kalman �lter does not initialize features well with bearing-only

measurements.

5.1. Synthesis

The properties of the methods discussed above and the performance seen in

experiments suggests a new approach to bearing-only localization and mapping.



We wish to have a recursive formulation so that the computational burden does

not grow with the number of sensor scans made, but we also wish to avoid the

bias introduced in the linearization phase in the Kalman �lter by considering

batches of data rather than individual measurements.

A way to accomplish this is to process data in batches, using observations

made during a time interval and computing an estimate for the map and for

the pose of the robot during the time interval. At the end of the time interval,

the state estimate and all of the data from the time interval is collapsed onto

a su�cient statistic, a mean and covariance for the map of landmark features

and the last robot pose.

The very �rst batch of data can be processed in exactly the same way

as was described for bundle adjustment. At the end of that estimation, the

information matrix will have the same sparse structure as before and can be

partitioned as it was in equation (10). We will further partition the U matrix

into the block dealing with robot pose from time 1 through k � 1, the block

dealing with robot pose at time k, and the corresponding o�-diagonal blocks

as follows

P�1 =

�
U W

WT V

�
=

2
4 U1::k�1;1::k�1 U1::k�1;k W1::k�1

UT
1::k�1;k Ukk Wk

WT
1::k�1 WT

k V

3
5 (14)

In order to marginalize this matrix and remove the states m1::mk, we compute

P�1
k =

�
Ukk Wk

WT
k V

�
�

�
UT
1::k�1;k

WT
1::k�1

�
U�1
1::k�1;1::k�1

�
U1::k�1;k W1::k�1

�
(15)

The state (mk; x) and the marginalized information matrix P�1k are used as a

su�cient statistic in the next step of the �lter. In general, P�1k will be a full

matrix, it will no longer have the sparse structure of the Hessian from bundle

adjustment due to the marginalization step.

As observations are made from new robot positions, the state vector grows

to include fmk;mk+1;mk+2; :::; xg and the information from the bearing and

odometry measurements are added into the information matrix, growing the

inverse covariance matrix up and to the left. The upper left block will once

again have a block tridiagonal form which can be used to provide fast optimiza-

tion of the parameters. Since the blockwise elimination and backsubstitution

done in equations (10) through (13) �ll in the lower right block anyway, the

computational complexity is not a�ected by �lling in the block in the previous

step. The update step of the new recursive/batch �lter is O(N3+ kN2) where

k is the size of the time window used for the batch update. For small �xed k

this is approximately the same computational complexity as the Kalman �lter.

The algorithm is similar to one reported recently for SFM [13].

Results of applying this �lter with a batch size of 10 to the experiment

discussed earlier are shown in Figure 5(a). The uncertainty ellipses on each

robot pose are plotted as computed at the end of a batch update, so smoothing

does not take place over the whole trajectory as it does with full bundle ad-

justment. Due to this the groups of 10 poses per batch are apparent from the
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Figure 5. (a) map and trajectory estimated by recursive/batch �lter using a

batch size of 10. (b) result superimposed with result from bundle adjustment

to show agreement.

uncertainty ellipses. Figure 5(b) shows the results from bundle adjustment and

recursive/batch methods plotted against each other for comparison. Results for

the example considered are very similar for the two methods.

6. Discussion

The examples here illustrate the advantages of bundle adjustment over Kalman

�ltering for the bearing-only SLAM problem. When Kalman �lters are used,

they need to be initialized with a good estimate of the robot state and land-

mark locations and bundle adjustment is an e�cient way to compute optimal

least squares estimates in order to initialize the �lter. Bundle adjustment is

empirically more robust to bias in the system model, which is to be expected

since the linearizations are recomputed each time and are computed near the

optimum. We did not investigate robustness to outliers since there exist both

Kalman �lters and bundle adjustment techniques speci�cally designed to deal

with outliers[14, 6] but these were not implemented.

For computational and memory requirements, bundle adjustment is not

practical for large problems. Because the entire observation history must be

recorded, the memory requirement scales as O(MN ). By contrast the Kalman

�lter requires O(N2) memory. The Kalman �lter requires O(N3) computation

for each update. Computation required in bundle adjustment is O(N3+MN2)

which grows linearly in the number of robot positions in the estimate. This

is signi�cantly less than a general second order least squares optimization but

still not practical for a robot operating for long periods of time.

By combining Kalman �ltering and bundle adjustment concepts, a new

recursive/batch �lter was introduced. The �lter allows a 
exibility in the batch

size, trading o� computational requirements and performance. If the batch size

is set to 1, the extended Kalman �lter results, and if the batch size is unlimited,

full bundle adjustment results.
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