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Abstract

This paper addresses the difficult problem of deciding where
to refine the resolution of adaptive discretizations for solv-
ing continuous time-and-space deterministic optimal control
problems. We introduce two measures,influenceandvari-
anceof a Markov chain. Influence measures the extent to
which changes of some state affect the value function at
other states. Variance measures the heterogeneity of the
future cumulated active rewards (whose mean is the value
function). We combine these two measures to derive a non-
local efficient splitting criterion that takes intoaccount the
impact of a state on other states when deciding whether to
split. We illustrate this method on the non-linear, two di-
mensional “Car on the Hill” and the 4d “space-shuttle” and
“airplane-meeting” control problems.

1 Introduction

In this paper, we introduce the theory behind two notions
related to a Markov chain (MC) :influence andvariance.
We combine them to obtain an efficient splitting criterion
for refining the resolution of adaptive discretizations of con-
tinuous time-and-space deterministic control problems.

Influence is a measure of the extent to which a state “con-
tributes” to the value function of other states. It will be used
to find out the states that have an influence on the most im-
portant areas of the state space for designing an accurate
controller : the boundaries of change in the optimal control.

In the process of discretizing the continuous process into
a finite Markov Decision Process (MDP), we introduce a
bias which depends on the structure of the discretization.
The variance of the MC derived from this MDP provides a
good estimation of this bias, thus indicating the parts of the
discretization that need to be refined to improve the accuracy
of the approximations.

The global splittingheuristic we propose in order to improve
the controller is to refine the discretization at states of high
variance (the states that could improve the accuracy of the
value function the most when split) that have an influence
on the boundaries of change in the optimal control.

Section 2introduces the notion of influence and provides an

algorithm to compute it.Section 3considers MCs obtained
through a discretization of continuous processes, illustrated
on the “Car on the Hill” (see [6]).Section 4introduces the
variance of a MC and shows that it satisfies a Markov chain.
Finally in section 5we state our global splitting heuristic.

2 Influence of a Markov chain

Let us consider a Markov chain (MC) with state space
Ξ = fξ1; :::;ξng whose probabilities of transition from state
ξ to stateξi are p(ξi jξ). Here we assume that the discount
factor is a function of the state, and is writtenγτ(ξ) with
γ < 1 for some holding timeτ(ξ) > 0. We also assume that
the rewards are deterministic and only depend on the state :
when the system is in stateξ it receives a reward (or rein-
forcement)R(ξ). Extensions to general MCs are possible.
Let fξ(t)gt�0 be a sequence of states whose discounted cu-
mulative reward is :J(fξ(t)gt�0) = ∑t�0 γ∑s<t

s=0τ(ξ(s))R(ξ(t)).
Then the value function (VF) of a stateξ is defined by the
expectation :

V(ξ) = E [J(fξ(t)gt�0)jξ(0) = ξ] (1)

2.1 Definition of the influence
The intuitionbehind the notion of influence is to measure the
extent to which a stateξi “contributes” to the VF of another
stateξ. This is done by estimating the change in the VF atξ
resulting from a modification of the reinforcementR(ξi).

Let us define the discounted cumulativek�chained proba-
bilities pk(ξi jξ) which represent the sum of the discounted
probabilities of all sequences ofk states fromξ to ξi :

p0(ξi jξ) = 1 (if ξ = ξi) or 0 (if ξ 6= ξi)

p1(ξi jξ) = γτ(ξ)p(ξi jξ)
p2(ξi jξ) = ∑

ξ j2Ξ
p1(ξi jξ j):p1(ξ j jξ)

:::

pk(ξi jξ) = ∑
ξ j2Ξ

p1(ξi jξ j):pk�1(ξ j jξ) (2)

Definition 1 (Influence) Let ξ 2 Ξ. We define the influence
I(ξi jξ) of a stateξi on the stateξ as the quantity :

I(ξi jξ) =
∞

∑
k=0

pk(ξi jξ)

Let Ω be a subset ofΞ. We define theinfluence of a stateξi

on the subsetΩ as I(ξi jΩ) = ∑ξ2Ω I(ξi jξ).
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We notice that if the holding timesτ(ξ) are> 0 then the
influence is well defined (and is bounded by1

1�γτmin with

τmin = minξ τ(ξ)). This definition is related to the intuitive
idea stated above thatthe influence I(ξi jξ) is the partial
derivative of V(ξ) by R(ξi ) :

I(ξi jξ) =
∂V(ξ)
∂R(ξi)

(3)

Indeed, by applying Bellman’s equation :
V(ξ) = R(ξ)+∑ξi

p1(ξi jξ):V(ξi) to ξ andξi we obtain :

V(ξ) = R(ξ)+∑
ξi

p1(ξi jξ)

2
4R(ξi )+∑

ξ j

p1(ξ j jξi):V(ξ j )

3
5

From the definition ofp2 we can rewrite this as :

V(ξ) = R(ξ)+∑
ξi

p1(ξi jξ):R(ξi)+∑
ξi

p2(ξi jξ):V(ξi )

Again we can apply several times Bellman equation toV(ξi)
and deduce that for anyn,

V(ξ) =
n�1

∑
k=0

∑
ξi

pk(ξi jξ):R(ξi)+∑
ξi

pn(ξi jξ):V(ξi)

and at the limit whenn tends to infinity, we obtain :

V(ξ) =
∞

∑
k=0

∑
ξi

pk(ξi jξ):R(ξi)

Then, we deduce the contribution ofR(ξi) toV(ξ) :
∂V(ξ)
∂R(ξi)

=
∞

∑
k=0

pk(ξi jξ) = I(ξi jξ)

2.2 Computation of the influence
For any statesξ andξi , we have the property :

I(ξi jξ) = ∑
ξ j

p1(ξi jξ j):I(ξ j jξ)+
�

1 if ξi = ξ
0 if ξi 6= ξ (4)

This is deduced from the very definition of the influence and
the chained probability property (2) since for allξ,

I(ξi jξ) =
∞

∑
k=0

pk(ξi jξ) =
∞

∑
k=0

pk+1(ξi jξ)+ p0(ξi jξ)

=
∞

∑
k=0

∑
ξ j

p1(ξi jξ j):pk(ξ j jξ)+ p0(ξi jξ)

= ∑
ξ j

p1(ξi jξ j):I(ξ j jξ)+
�

1 if ξi = ξ
0 if ξi 6= ξ

Equation (4) is not a Bellman equation since the sum of the
probabilities∑ξ j

p1(ξi jξ j) may be greater than 1, so we can-
not deduce that the successive iterations :

In+1(ξi jξ) = ∑
ξ j

p1(ξi jξ j):In(ξ j jξ)+
�

1 if ξi = ξ
0 if ξi 6= ξ (5)

converge to the influence by using the classical contraction
property in max-norm (see [9]). However, we have the fol-
lowing property :

∑ξi
I(ξi jξ) = ∑ξi ∑ξ j

p1(ξi jξ j):I(ξ j jξ)+1

= ∑ξ j
γτ(ξ j ):I(ξ j jξ)+1

Thus, by denotingI(Ξjξ) the vector whose components
are theI(ξi jξ) and by introducing the 1-normjjI(Ξjξ)jj1 =
∑i jI(ξi jξ)j, we deduce that :

jjIn+1(Ξjξ)� I(Ξjξ)jj1 � γτmin :jjIn(Ξjξ)� I(Ξjξ)jj1

and we have the contraction property in the 1-norm which
insures convergence of the iteratedIn(ξi jξ) to the unique so-
lution (the fixed point)I(ξi jξ) of (4).

Remark 1 As pointed out by Geoffrey Gordon, the influence
is closely related to thedual variables(or shadow pricesin
economics) of the Linear Program equivalent to the Bellman
equation (see [2]). This property has already been used in
[11] to derive an efficient adaptive grid generation.

Remark 2 A possible extension is to define theinfluence
of a MDP as theinfinitesimalchange in the value function
of a state resulting from aninfinitesimalmodification of the
reward at another state. Since the value function is amax
of linear expressions, the influence on states with multiple
optimal actions (thus for which the value function is not dif-
ferentiable) is defined (as a set-valued map) by taking the
partial sub-gradient instead of the regular gradient (3).

3 Influence on discretized continuous problems

Here, we illustrate this notion of influence on a particular
class of Markov chains derived from a discretization process
of a continuous deterministic control problem. We use the
method described in [8] based on Finite-Element methods
(see [4, 7]) for adaptive triangulations.

We consider a deterministic control system whose state
x(t) 2 X � IRd is described by the controlled differential
equation :

dx
dt

= f (x(t);u(t)) (6)

whereu is the control (chosen among a finite number of pos-
sible valuesU). The objective of the control problem is to
find, for any initial statex, the controlu(t) that optimizes the
(discounted) gain :

J(x;u(t)) =
Z τ

0
γt r(x(t);u(t))dt+ γτR(x(τ)) (7)

wherer(x;u) is thecurrent reinforcement, R(x) thebound-
ary reinforcement, γ is thediscount factor(0� γ < 1), and
τ is the exit time fromX. The value function is the maximal
value of the gain :

V(x) = sup
u(t)

J(x;u(t))

We know (see [1] for example) thatV satisfies a first-order
non-linear differential equation, called theHamilton-Jacobi-
Bellman(HJB) equation :

V(x) lnγ+max
u2U

[DV(x): f (x;u)+ r(x;u)] = 0 (8)

with DV being the gradient ofV.
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3.1 A discretization process
In order to approximate the value function of the continu-
ous process, we discretize the state-space using a variable
resolution grid structured as a tree. The root of the tree cov-
ers the whole state space, assumed to be a (hyper) rectangle.
Each node (except for the leaf nodes) splits in some direc-
tion (parallel to the axes) the rectangle it covers at its middle
into two nodes of half area. Foreach leaf, we use a Kuhn
triangulation tolinearly interpolateinside the rectangle (see
the triangulation of figure 1).

For a given triangulation, we build the following Markov
Decision Process (MDP) : the state-space of the MDP is the
set of corners of the tree. For every cornerξ and control
u2U we approximate a part of the corresponding trajectory
x(t) by integrating the state dynamics (6) from initial state
ξ for a constant controlu, during some timeτ(ξ;u) until it
enters inside a new rectangle at someiterated pointη(ξ;u)
(see Figure 1). At the same time we compute the cumulated

reinforcement :R(ξ;u) =
R τ(ξ;u)
t=0 γt :r(x(t);u):dt.

Then we find out the corners(ξ0; :::;ξd) of the simplex
containingη(ξ;u) and the corresponding barycentric coor-
dinatesλξ0

(η(ξ;u)); :::;λξd
(η(ξ;u)) (which, by definition,

satisfy :∑ξi
λξi

(η) = 1 and∑ξi
λξi

(η)(η�ξi) = 0). The in-
terpolated value atη(ξ;u) is thus just a linear combination
of the values at the verticesξ0; :::;ξd of the simplex it be-
longs to, with positive coefficients that sum to one.Doing
this interpolation is mathematically equivalent to prob-
abilistically jumping to a vertex : we create a stochas-
tic discrete MDP from a deterministic continuous pro-
cess. The probabilities of transition of the MDP from state
ξ and controlu to statesξi as these barycentric coordi-
nates :p(ξi jξ;u) = λξi

(η(ξ;u)), and the dynamic program-
ming (DP) equation corresponding to this MDP is :

V(ξ) = max
u

"
γτ(ξ;u)

d

∑
i=0

λξi
(η(ξ;u)):V(ξi)+R(ξ;u)

#
(9)

ξ
ξ

ξ η(ξ,  )u

0

12 ξ

Figure 1: Triangulation of the state-

space. The continuousdeterministic

control problem is discretized into a

stochasticMDP.

3.2 Illustration of the influence on the “Car on the Hill”
This is a non-linear control problem of dimension 2 (the po-
sition and the velocity of the car). For a description of the
dynamics of this problem see [6] and for the reinforcement
functions used here see [8] (and figure 2). The controlu has
2 possible values : maximal positive or negative thrust.

Figure 3 shows the interpolated value function of the MDP

Goal

Thrust

Gravitation

Resistance

r=0

R=-1

R=+1 for null velocity
R=-1 for max. velocity

Terminal
Reinforcement :

Current
Reinforcement :

Figure 2: The “Car on the

Hill” control problem.

obtained by a uniform discretization of 257 by 257 states.

Figure 3: The value function

of the “Car on the Hill”

Once the MDP is solved, we consider the Markov chain re-
sulting from the choice of the optimal actionu�. Let us
denoteR(ξ) = R(ξ;u�), p(ξi jξ) = p(ξi jξ;u�), and τ(ξ) =
τ(ξ;u�). Then we can compute the influence of the MC
on any subsetΩ. As an example, figure 4(b) shows the in-
fluenceI(ξi jΩ) on the subsetΩ composed of 3 points (the
crosses), as a function ofξi . We notice that the influence on
a state “follows” the direction of the optimal trajectory start-
ing from that state (see figure 4(a)) through some “diffusion
process” (introduced by the discretization process).

(a) The optimal policy and several trajectories (b) Influence on 3 points

GOAL 

Position

V
el

oc
ity

V
el

oc
ity

Position

Figure 4: (a) The optimal policy is indicated by 2 gray levels,
and several trajectories are drawn for different start-
ing points. (b) InfluenceI(ξi jΩ) on Ω composed of
3 points (the crosses).

In order to improve the resolution at the areas of the state
space where there is a change in the optimal control, we
compute the influenceI(ξi jΣ) on the subsetΣ of the states
of policy disagreementfor which the policy given by the
argmaxu of equation (9) differs from the policy derived by
the gradient of the value function (the argmaxu of equation
(8)). See figure 5.

The darkest zones in Figure 5(b) are the areas that contribute
the most to the switching boundary of the optimal control.
Now, we would like to define the areas whose refinement
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(a) States of policy disagreement (b) Influence on these states

Figure 5: (a) The setΣ of states of policy disagreement and (b)
the influenceI(ξi jΣ) onΣ.

could increase the quality of approximation of the value
function. In the followingsection, we introduce thevariance
of the Markov chain in order to estimate the bias introduced
by the discretization process and thus derive an approxima-
tion error of the discretized VF.

4 Variance of a Markov chain

Whereas in [8] we define the variance as an averaging pro-
cess, here we follow the advice of Csaba Szepesv´ari (per-
sonal communication) and define it as the expectation :

σ2(ξ) = E
�
(J(fξ(t)gt�0)�V(ξ))2jξ(0) = ξ

�
Now we prove that the variance satisfies a Bellman equation.
Indeed, we have :

σ2(ξ) = E
�
[J(fξ(t)gt�1)� (V(ξ)�R(ξ))]2jξ(0) = ξ

�
From Bellman’s equation :
V(ξ)�R(ξ) = E[J(fξ(t)gt�1)jξ(0) = ξ] we deduce that :

σ2(ξ) = E
�
J(fξ(t)gt�1)

2� (V(ξ)�R(ξ))2jξ(0) = ξ
�

Let us introduce a conditional expectation with respect to
the next stateξ0 = ξ(1) :

σ2(ξ) = ∑ξ0 p(ξ0jξ):E
h
J(fξ(t)gt�1)2� [γτ(ξ)V(ξ0)]2+

[γτ(ξ)V(ξ0)]2� (V(ξ)�R(ξ))2jξ(0) = ξ;ξ(1) = ξ0
i

From Bellman’s equation :
V(ξ) = R(ξ)+∑ξ0 p(ξ0jξ):γτ(ξ)V(ξ0) we deduce that :

E
h
[γτ(ξ)V(ξ0)]2� (V(ξ)�R(ξ))2jξ(0) = ξ;ξ(1) = ξ0

i
=e(ξ)

with :

e(ξ) = ∑
ξ0

p(ξ0jξ):
h
γτ(ξ)V(ξ0)�V(ξ)+R(ξ)

i2
(10)

and also that :
γτ(ξ)V(ξ0) = E [J(fξ(t)gt�1)jξ(0) = ξ;ξ(1) = ξ0], thus that :

E
h
J(fξ(t)gt�1)

2� [γτ(ξ)V(ξ0)]2jξ(0) = ξ;ξ(1) = ξ0
i

=

E
h
[J(fξ(t)gt�1)� γτ(ξ)V(ξ0)]2jξ(1) = ξ0

i
= γ2τ(ξ):σ2(ξ0)

We then deduce that the variance satisfies the Bellman equa-
tion :

σ2(ξ) = γ2τ(ξ)∑
ξ0

p(ξ0jξ):σ2(ξ0)+e(ξ) (11)

and it can be solved by value iteration. The varianceσ2(ξ)
is equal to the immediate contributione(ξ) that takes into
account the variation in the values of the immediate succes-
sorsξi plus the discounted average of the varianceσ2(ξi) of
these successors.

V(  ) V(  )

ξ ξ ξ ξ0 01 1

ηη

η η
e(  )

e(  )
ξ

ξ

Figure 6: The terme(ξ) as a function of the interpolated pointη
for low-(left) and high-(right) gradient value functions.

Remark 3 We can give a geometric interpretation of the
term e(ξ) related to the gradient of the value function at
the iterated pointη = η(ξ;u�) (see figure 1) and to the
barycentric coordinatesλξi (η). Indeed, from the defini-
tion of the discretized MDP (section 3.1), we have V(ξ) =
R(ξ) + γτ(ξ)V(η) and from the linearity of the interpola-
tion we have V(ξi) =V(η)+DV(η):(ξi �η), thus : e(ξ) =
∑ξi

λξi
(η):γ2τ(ξ)[DV(η):(ξi � η)]2, which can be expressed

as :
e(ξ) = γ2τ(ξ)

:DV(η)T
:Q(η):DV(η)

with the matrix Q(η) defined by its elements qjk(η) =
∑ξi

λξi
(η):(ξi �η) j :(ξi �η)k. Thus, e(ξ) is close to0 in two

specific cases : when the gradient at the iterated pointη is
low (i.e. the values are almost constant) and whenη is close
to a cornerξi (then the barycentric coordinateλξi

is close to
1 and theλξ j (for j 6= i) are close to0, thus Q(η) is low). In
both cases, e(ξ) is low and implies that the interpolation at
ξ does not introduce a high bias in the approximated value
function. Figure 6 shows e(ξ) on a one-dimensional space.

4.1 Variance of the “Car on the Hill”

Figure 7: The standard devi-

ation of the “Car on the Hill”

problem for a uniform grid of

257 by 257

Figure 7 shows the standard deviation, square root of the
variance, of the “Car on the Hill”. We notice that it is very
high around the discontinuity of the value function (indeed,
a discontinuity is impossible to approximate perfectly by
discretization methods, whatever the resolution is) and no-
ticeably high around the discontinuities of the gradient ofV
(which correspond to boundaries of change in the optimal
control, as shown by figure 4(a)). Indeed, in these areas the
VF averages heterogeneous reinforcements.

Remark 4 The continuous process itself has a zero vari-
ance since it is deterministic. The variance computed here
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reflects the bias introduced by the grid approximation as
well as the discretization method used here, therefore it
shows the parts of the discretization that would decrease the
approximation error when refined.

Thus it appears that the areas where a splitting might af-
fect the most the approximation of the value function are the
cells whose corners have the highest standard deviation.

5 A global splitting heuristic

We combine the notions ofinfluenceandvariancedescribed
in the previous sections in order to define a non-local split-
ting heuristic. We have seen that :

� The statesξ of highest standard deviationσ(ξ) are
the states affected the most by the bias introduced by
the grid-approximation, thus the states that could de-
crease the most their approximation error when split
(see figure 8(a) for an illustration).

� The statesξ of highest influenceI(ξjΩ) (see figure
5(b)) on Ω, the set of states of policy disagreement
(figure 5(a)) are the states whose value function af-
fects the area of change in the optimal control.

Thus, in order to improve the quality of approximation at the
most relevant areas of the state-space for the controller (i.e.
at the boundary of switch in the optimal control) our heuris-
tic is to split the statesξ with highest values ofσ(ξ):I(ξjΩ).

(a) Standard deviation (b) Influence x Standard deviation

Figure 8: (a) The standard deviationσ(ξ) (equivalent to figure
7). (b) The global criterion :σ(ξ):I(ξjΩ), product of
the two functions shown in figures 8(a) and figure 5(b)

5.1 A variable resolution discretization
In [8], we describe in detail a top-down approach to learn-
ing variable resolution discretizations, which will simply
be summarized here. We start with a initial coarse dis-
cretization of the state-space, build the corresponding dis-
crete MDP (see section 3.1), solve it, and compute the influ-
ence and the variance of the Markov chain associated to the
optimal policy. Then we locally refine the discretization by
splitting (a given rate of) cells whose corners are of highest
σ(ξ):I(ξjΩ) criterion (see figure 9).

Note that this variable resolution discretization is self-
bootstrapping : it does not need to be formed by beginning
with a high-resolutiondiscretization for which influence and
variance are calculated. Instead, we build the discretization
top-down (reminiscent of the ID3 decision tree supervised
learning method [10]).

Figure 9: The discretization

resulting of the splitting of the

cells of highestσ(ξ):I(ξjΩ)

values. It is obtained by split-

ting 18 times a uniform grid of

9 by 9 states. Each iteration

splits those 30% of cells with

highestσ(ξ):I(ξjΩ) values.

5.2 Comparison of the performance
To compare this adaptive resolution discretization to uni-
form grids, we ran a set (here 256) of trajectories starting
from initial states regularly situated in the state-space, using
the policy resulting from the discretizations. Theperfor-
manceis defined as the sum of the gain (defined by equation
(7)) of these trajectories. Figure 10 shows the respective
performance.

Pe
rf

or
m

an
ce

s

Number of states

Variable resolution

Uniform grid

Figure 10: The performance

for the uniform versus vari-

able resolution grids as a func-

tion of the number of states of

the discrete MDP.

In [8], we give a detailed empirical study of several split-
ting criteria and compare the relative performance for the
“Car on the Hill” as well as other control problems in higher
dimension (the “Acrobot”, the “Cart-Pole”). The discretiza-
tions obtained by the method described in this paper give the
best results.

6 More complex control problems

The “space-shuttle” control problem. We consider the 4-
dimensional “space-shuttle” control problem defined by the
position(x;y) and velocity(vx;vy) of a point (the shuttle)
in a 2d-plane. There are 5 possible controls : do nothing
or thrust to one of the 4 cardinal directions. The dynam-
ics follow the laws of Newtonian physics where the shuttle
is attracted by the gravitation of a planet (dark gray circle
in figure 11) and some intergalactic dust (light gray circle).
The goal is to reach some position in space (the square) by
minimizing a cost (function of the time to reach the target
and the fuel consumption). Figure 11 shows some trajecto-
ries.
The “airplane meeting” control problem. This is also a
4-dimensional control problem in which we consider one
(or several) airplane(s) flying at constant altitude and ve-
locity. They try to reach a target defined by a position
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Goal

Planet

Dust

x

x1

2

x3

Figure 11: The “space-

shuttle” trajectories for 3

different starting positions.

From x1 the goal is directly

reachable (the gravitation is

low). From x2 the collision

is unavoidable whatever the

thrust (represented by small

gray segments) to avoid

the planet is. Fromx3 the

controller uses the gravitation

forces to reach the goal.

xG;yG and an angleθG (the arrow in figure 12) at aprecise
time tG. Each plane is defined at any timet by its posi-
tion x(t);y(t) and angleθ(t). There are 3 possible controls
for each plane : turn left or right or go straight. The state
space is of dimension 4 : the positionx;y, the angleθ and
the timet. The dynamics are :dx

dt = cos(θ), dy
dt = sin(θ),

dθ
dt = f�1;0;+1g:vθ and dt

dt = 1. Here, the terminal cost is :
(x�xG)2+(y�yG)2+kθ(θ�θG)2+kt(t� tG)2 and there is
a small constant current cost if a plane is in a gray area (some
clouds that the planes should avoid). Figure 12 shows some
trajectories for one and 3 planes when there is more time
than necessary to reach the target directly (the planes have
to loop).

(a) One airplaine (b) Meeting of 3 airplanes

Figure 12: The “airplane meeting” control problem

The variable approach described in this paper is critical for
these 4d complex problems : other splitting methods that
do not take into account the global influence of the splitting
process (some of which are described in [8]) as well as uni-
form grids fail to provide an accurate controller.

7 Conclusion and Future work

In this paper we introduced two useful measures of a
Markov chain, influence and variance, and combined them
to propose an efficient splitting heuristic that locally refines
a discretization for continuous control problems. These
measure could be used to solve large (discrete) MDPs by
selecting which initial (coarse) features (or categories) one
has to refine to provide a relevant partition of the state space.

Another extension could be to learn these measures through
interactions with the environment in order to design efficient
exploration policies in reinforcement learning. Our notion

of variance could be used with “Interval Estimation” heuris-
tic [3], to permit “optimism-in-the-face-of-uncertainty” ex-
ploration, or with the “back-propagation of exploration
bonuses” of [5] for exploration in continuous state-spaces.
Indeed, if we observe that the learned variance of a stateξ
is high, then a good exploration strategy could be to inspect
the states that have a high expected influence onξ.

Also, the notion of variance might be useful to provide a safe
controller for which choosing a sub-optimal action would be
preferable if it leads to states of lower variance than when
taking the optimal action.

Finally, our next focus will be to consider stochastic con-
trol problems (Markov Diffusion Processes) for which our
splitting method will have to be reconsidered since in that
case the variance would reflect two components : the bias
introduced by the grid-approximation but also the intrinsic
stochasticity of the continuous process. The latter is not rel-
evant to our splittingmethod since a refinement around areas
of high variance of the process will not result in an improve-
ment of the approximations.
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[8] Rémi Munos and Andrew Moore. Variable resolution dis-
cretization for high-accuracy solutions of optimal control prob-
lems. International Joint Conference on Artificial Intelligence,
1999.
[9] Martin L. Puterman.Markov Decision Processes, Discrete
Stochastic Dynamic Programming. A Wiley-Interscience Publica-
tion, 1994.
[10] J. R. Quinlan. Learning Efficient Classification Procedures
and their Application to Chess End Games. In R. S. Michalski,
J. G. Carbonell, and T. M. Mitchell, editors,Machine Learning—
An Artificial Intelligence Approach (I). Tioga Publishing Company,
Palo Alto, 1983.
[11] Michael A. Trick and Stanley E. Zin. A linear programming
approach to solving stochastic dynamic programs.Unpublished
manuscript, 1993.

p. 6


