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Abstract

Robotic systems often have tunable parame-
ters which can affect performance; Bayesian
optimization methods provide for efficient pa-
rameter optimization, reducing required tests
on the robot. This paper addresses Bayesian
optimization in the setting where perfor-
mance is only observed through a stochastic
binary outcome — success or failure. We de-
fine the stochastic binary optimization prob-
lem, present a Bayesian framework using
Gaussian processes for classification, adapt
the existing expected improvement metric for
the binary case, and benchmark its perfor-
mance. We also exploit problem structure
and task similarity to generate principled
task priors allowing efficient search for diffi-
cult tasks. This method is used to create an
adaptive policy for climbing over obstacles of
varying heights.

1. Introduction

Many real-world optimization tasks take the form of
optimization problems where the number of objective
function samples is severely limited. This often oc-
curs with physical systems which are expensive to test,
such as choosing optimal parameters for a robot’s con-
trol policy. In cases where the objective is a continuous
real-valued function, the use of Bayesian sequential ex-
periment selection metrics such as expected improve-
ment (EI) has lead to efficient optimization of these
objectives. An advantage of EI is that it requires no
tuning parameters.

We are interested in the problem setting where the ob-
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Figure 1. Efficient optimization is possible even with lim-
ited function evaluations which only return a noisy ‘suc-
cess’ or ‘failure’. Top: Moving over a 3.5 inch beam with
the predicted best motion after 20 evaluations, using no
prior information. Bottom: Sharing results from previ-
ous optimizations on different obstacles allows the robot
to move over an 11 inch beam on the first attempt.

jective is not a deterministic continuous-valued func-
tion, but a stochastic binary valued function. In the
case of a robot, instead of choosing parameters which
maximize locomotive speed, the task may be to choose
the parameters of a policy which maximize the proba-
bility of successfully moving over an obstacle (Fig. 1),
where the success of this task is stochastic due to noise
in the system.

Inspired by the success of Bayesian optimization for
continuous problems, we propose using a similar
framework for the stochastic binary setting. This pa-
per defines the stochastic binary optimization prob-
lem, describes the application of Gaussian processes
for classification to this problem, proposes a selection
metric based on EI, and benchmarks performance on
synthetic test functions against a number of potential
baseline approaches.

Unfortunately, working in parameter spaces where re-
gions with significant probability of success are rela-
tively sparse (e.g., a snake robot attempting to over-
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come a tall obstacle) will amount to a blind search.
Inspired by ideas in multi-task learning, we exploit
task structure to solve simpler problems first (smaller
obstacles), and then use the learned knowledge as a
principled prior for the difficult task. This enables ef-
ficient optimization of the task which would otherwise
require us to resort to an exhaustive search.

2. Related Work

For optimization problems where each function evalu-
ation is expensive (either requiring significant time or
resources) the choice of which point to sample becomes
more important than the speed at which a sample
can be chosen. Thus, Bayesian optimization of such
functions relies on a function regression method, such
as Gaussian processes (GPs) (Rasmussen & Williams,
2006), to predict the entire unknown objective from
limited sampled data. Given this prediction of the
true objective, the central challenge is the explo-
ration/exploitation tradeoff — balancing the need to
explore unknown areas of the space with the need
to refine the knowledge in areas that are known to
have high function values. Metrics such as the up-
per confidence bound (Auer et al., 2002), probability
of improvement (Zilinskas, 1992), and expected im-
provement (Mockus et al., 1978) attempt to trade off
these conflicting goals. Existing literature primarily
focuses on deterministic, continuous, real-valued func-
tions, rather than stochastic ones or ones with binary
outputs.

Active learning (c.f. survey of Settles (2009)) is pri-
marily focused on learning the binary class member-
ship of a set of unlabeled data points but generally
attempts to accurately learn class membership of all
unlabeled points with high confidence, which is ineffi-
cient if the loss function is asymmetric (if it is more
important to identify successes than failures). The ac-
tive binary-classification problem discussed in (Gar-
nett et al., 2012) focuses on finding a Bayesian optimal
policy for identifying a particular class, but assumes
deterministic class membership.

In the bandit literature, the subtopic of continuous-
armed bandits or metric bandits (e.g., (Agrawal, 1995;
Auer et al., 2007)) have a similar problem structure to
that described in our work; these embed the “arms”
of the classic multi-arm bandit problem into a metric
space allowing a potentially uncountably infinite num-
ber of arms. The focus of much bandit work is mini-
mizing asymptotic bounds on the cumulative regret in
an online setting, whereas we are concerned only the
performance of the algorithm recommendation after
an offline training phase.

Prior work in multi-task learning postulates that tab-
ula rasa learning for multiple similar problems is to be
avoided, especially when the task has descriptive fea-
tures (or parameters). Approaches using a number of
techniques have been taken (e.g., (Bakker, B. and Hes-
kes, 2003) suggest neural network predictors for gener-
alizing task knowledge), but perhaps the most relevant
is that of (Bonilla et al., 2007) or (Tesch et al., 2011);
these both incorporate the task as additional parame-
ters of the GP used to model the objective. Bonilla et
al. attempt to efficiently and accurately model rather
than optimize the objective at a new task. Tesch et
al. focus on Bayesian optimization, but allow the al-
gorithm to choose the task parameters of each experi-
ment as well. Additionally, neither of these approaches
considers the case of binary information.

3. Binary Stochastic Problem

Given an input (parameter) space X C R and an un-
known function 7: X — [0,1] which represents the
underlying binomial probability of success of an ex-
periment, the learner sequentially chooses a series of
points x = {z1,22...2,|z; € X} to evaluate. Af-
ter choosing each z;, the learner receives feedback y;
where y; = 1 with probability 7 (x;) and y; = 0 with
probability 1 — 7(x;). The choice of z; is made with
knowledge of {y1,y2...y; —1}. The goal of the learner
is to recommend, after n experiments, a point x,- which
minimizes the (typically unknown) error, or simple re-
gret, max,ex 7(x) — 7(x,); this is equivalent to maxi-
mizing performance ().

4. Background
4.1. Bayesian Optimization

In Bayesian optimization of a continuous real-valued
deterministic function, the goal is to find xpes; which
maximizes the function f: X — R. The process relies
on a data-driven probabilistic model f (often a GP) of
the underlying function f, and a selection metric which
selects the next point to sample at each iteration.

The algorithm is an iterative process — at each step i,
fit a model based on x and y, select a next z;, and
evaluate xz; on the true function f to obtain y;. The
crux of the algorithm is the metric which is optimized
to choose the next point. EI has been popularized as
such a selection metric in the Efficient Global Opti-
mization algorithm (Jones et al., 1998). Given a func-
tion estimate f, improvement is defined as

I(f(z)) = max(f(z) — Ypest, 0), (1)
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where ypese Was the maximiger of the previously sam-
pled y. The GP defines f(x) as a posterior distri-
bution over f(z); the expectation over this, El(z) =

E[I(f(x))], defines the EI:

EI(‘T) = (f;f - ybest) (1 - q)((ybest - fﬁ)/f;c))

+ F20((ypest — F2)/F2)

Above, ¢ and ® are the probability and cumulative
density functions (the pdf and cdf) of the standard
normal distribution; p% is the pdf at f(x), A/f, and fgf
are the mean and standard deviation.

4.2. Gaussian Processes for Classification

A key idea behind Bayesian optimization is the prob-
abalistic modeling of the unknown function. In the
binary stochastic case, standard GPs are not appro-
priate because they are a regression technique, fit-
ting continuous data. We use an adaptation of GPs
for classification; this provides a similar probabilistic
model, but for stochastic binary data (c.f. (Rasmussen
& Williams, 2006)).

As in linear binary classification, the use of a sigmoidal
response function o' converts a model with a range of
(—00,00) to an output that lies within [0,1] (i.e., a
valid probability). In Gaussian processes for classifi-
cation (GPC), a latent GP f defines a Gaussian pdf
p} for each v € X (as well as joint Gaussian pdfs for
any set of points in X'). The corresponding probability
density over class probability functions, pZ, is

So~ 1

oy

(¥)- (2)

PE(y) =i ()

Although the response function ¢ maps from the la-
tent space F' to the class probability space II, pZ(y) #
pf(e~"(y)) due to the change of variables. Also note
that as we do not observe values of f directly, the
inference step requires an analytically intractable in-
tegral. Advantages and disadvantages of different ap-
proximate methods are discussed in (Nickisch & Ras-
mussen, 2008); we use Minka’s expectation propaga-
tion (EP) method (2001) due to its accuracy and rea-
sonable speed.

In this work, we assume o is the standard normal cdf;
however, any monotonically increasing function mapping
from R to the unit interval can be used.

4.2.1. EXPECTATION OF POSTERIOR ON SUCCESS
PROBABILITY

As noted above, p%(y) # pf(c~'(y)); therefore the ex-
pectation of the posterior over the success probability,
E[pz], is not generally equal to o(E[p%]). To calculate
the former, we use the definition of expectation along
with a change-of-variables substitution (7 = o(f) and
y = o(z)) to take this integral in the latent space
(where approximations for the standard normal cdf
can be used):

Bt = [ iy 3)
Tt o, Ot do

= [ IO N )

= [ o @)

As noted in section 3.9 of (Rasmussen & Williams,
2006), if o is the Gaussian cdf this can be rewritten
as follows (for notational simplicity, we define 7(z) =
E[pZ] for use later in the paper):

E[p}]
1+ VpE]

5. Expected Improvement for Binary
Responses

In the case of stochastic binomial feedback, the notion
of improvement that underlies the definition of EI must
change. Because the only potential values for y; are 1
and 0, after the first 1 is sampled ypes¢ would be set to
1. Because there is no possibility for a returned value
higher than 1, improvement (and therefore EI) would
be identically zero for each x € X.

Instead we note that these are noisy observations of
an underlying success probability and query the GP
posterior at each point in x. Let

Tmaz = max 7(x). (6)

As the 0 and 1 responses are samples from a Bernoulli
distribution with mean m(z), we define the improve-
ment as if we could truly sample the underlying mean.
Choosing this rather than conditioning our improve-
ment on 0/1 is consistent with the fact that our 7,4,
represents a probability, not a single sample of 0/1. In
this case,
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I (n(z)) = max(n(z) — Fmaz, 0) (7)

To calculate the EI, we follow a similar procedure to
that in §4.2.1 to calculate the expectation of I (w(z)):

EL (7(z)) / (Y = Ttmaz )P (y)dy (8)

max

_ /( (012) = Fmac)p ()2

The marginalization trick that allowed us to evaluate
this integral and obtain a solution only requiring the
Gaussian cdf in the case of 7 (Eqn. (5)) does not work
because here the integral is not from —oo to co; fortu-
nately it is one dimensional regardless of the dimension
of X and is easy to numerically evaluate in practice
(e.g., using adaptive quadrature techniques).

6. Performance Benchmarks for
Stochastic Binary EI

To validate the performance of our EI metric for
stochastic binary outputs, we created several challeng-
ing synthetic test functions for 7(z) on which we could
run a large number of optimizations; these functions
exhibit properties such as multiple local optima, nar-
row global optimum, and stochasticity (7(z) ¢ {0,1}
over much of X).

As baselines to compare against the metric we pro-
pose in §5, we use uniform random selection, upper
confidence bound (UCB) on the latent function f, EI
on the latent function f (EIy), and the Upper Confi-
dence Bound for Continuous-armed bandits algorithm
(UCBC) proposed in (Auer et al., 2007). For the 8
UCB parameter (standard deviation coefficient), we
chose the value which performed best, 5 = 1, and for
the UCBC algorithm we chose the algorithm param-
eter n = (T/In(T))"/* = 2 via the method given in
the paper.? Because we are not directly observing the
sampled function value, we redefine the ypes: term for
Elf as ypest = maxx{c~'(7(z))}, where x is all sam-
pled z;.

To compare the various algorithms, we allowed each
algorithm to sequentially choose a series of x =
{z1,22... 250}, with feedback of y; generated from a
Bernoulli distribution with mean 7(z) (according to
the test function) after each choice of x;. This was
completed 100 times for each test function.?

2We also set n = 10, but obtained similar results.
30ur MATLAB implementation of these algorithms

To obtain a measure of the algorithm’s performance
at step 7, we use the natural Bayesian recommen-
dation strategy of choosing the point which has the
highest expected probability of success given the pre-
dicted function (zpest = argmaxy E[pZ|{z1,22...2;}
and {y1,v2 ... }]).* The point zps is then evaluated
on the underlying true success probability function ,
and the resulting value m(xpest) is given as the ex-
pected performance of the algorithm at step i. For the
random selection and UCBC algorithms which do not
have a notion of 7, a GP was fit to the data collected
by the algorithm to obtain this 7 using the same pa-
rameters as for the Bayesian optimization algorithms.

In Fig. 2, we plot the average performance over 100
runs of the proposed stochastic binary expected im-
provement El, as well as various baselines. As ex-
pected, the knowledge of the underlying function grew
slowly but steadily as random sampling characterized
the entire function. The focus of EI; on areas of the
function with the highest expectation for improvement
led to a more efficient strategy which still chose to ex-
plore, but focused experimental evaluations on more
promising areas of the search space. Notably, EL.
matched or outperformed tuned versions of all other
algorithms tested, without requiring a tuning param-
eter. The UCBC algorithm worked well for simple
cases (test function 1 had a significant region with high
probability of success) but faltered as the functions be-
came more difficult to optimize; challenges with this
algorithm include lack of shared knowledge between
nearby intervals, dependence on a tuning parameter
(number of intervals), and that it is not defined for
higher dimensions.

We also note that EI; outperforms the naive use of
Bayesian optimization techniques on the latent GP f ,
as shown in Fig. 2. This is largely true because the
interpretation of variances on the latent function when
used in the classification framework are unintuitive —
the variance fg is not based solely on the sampled
points as in the regression case; instead larger values
of fu tend to have larger variances due to the nonlinear
mapping into the space of probabilities 7.

7. Robotic Application: Snakes and
Obstacles

The snake robot described in (Wright et al., 2012) has
impressive locomotive capabilities, and is able to use
cyclic motions called gaits to move quickly across flat

and more extensive results are available at http://www.
mtesch.net/ICML2013/

“In practice one may optimize a utility function that
considers risk (e.g., the uncertainty in that probability).
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Figure 2. After each sample, the algorithm was queried as to its recommendation for a point z that would have a
maximum expectation of success w(z). These results show the underlying probability value of that point averaged over
100 runs of each algorithm. We compare the stochastic binary EI (EIL:) to the Auer’s continuous-armed bandit algorithm
UCBC as well as uniform random selection in (a) and (c), and to EI and UCB on the latent function in (b) and (d). More

complete results are available online.

ground, forward through narrow openings, and up the
inside and outside of irregular horizontal and vertical
pipes. However, moving over cluttered, obstacle laden
surfaces (such as a rubble pile) provide a challenge for
the system. Omne such obstacle encountered in field
deployments is a 4x4 beam., as we have encountered
in the field during disaster response training exercises.

A master-slave system was set up to record an expert’s
input to move the robot over the obstacle. Using a
sparse function approximation of the expert’s input,
we created a 7-parameter model that was able to over-
come obstacles of various sizes, albeit unreliably — the
same parameters would only sometimes result in suc-
cess. Parameters of this model (offset, widths, and
amplitudes of travelling waves) were difficult to opti-
mize by hand to produce reliable results.

Using the EI; metric, a 3-dimensional subspace was
searched to identify parameters which resulted in a
robust motion over the original obstacle. Running 20
robot experiments (function evaluations) resulted in
the recommendation of a parameter setting which pro-
duced robust, successful motions (top of Fig. 1).

Attempting this same optimization on a 9 inch obsta-
cle resulted in no successes within the first 20 trials;
a solution with a non-zero probability of success was
sparse enough that we were essentially conducting a
blind search of the parameter space.

7.1. Exploiting Task Structure to Solve
Difficult Problems

We wish to avoid an exhaustive search, even for prob-
lems where the regions with high success probability
are sparse within the space. When these problems
represent the optimization of a task, such as a robot
moving over an obstacle, one can often parameterize

that task. With a carefully chosen task parameteriza-
tion, one can learn the general behavior and location
of optima of the objective from one of more simpler
optimization problems, and use these as a principled
prior for optimization of the difficult task.

Applying ideas from (Bonilla et al., 2007) and (Tesch
et al., 2011) to the snake robot task, we attempted to
learn parameters of our expert-based model for more
difficult obstacles, such as the 9 inch beam we could
not overcome. We added a fourth parameter, repre-
senting obstacle height, to our GP function approxi-
mation. This generated a prediction for all obstacle
heights, allowing us to have a strong prior for subse-
quent optimizations by incorporating previous data.
Figure 3 shows a selected trial for each intermediate
task parameter (5.5, 7, and 9 inches), each using the
data from all previous optimizations.

As opposed to the initial experimental trial, we found
a successful 9 inch trial on the first experiment sug-
gested by El;, demonstrating that shared knowledge
between tasks can improve real-world optimization
performance. Parameters for overcoming an 11 inch
beam were then successfully predicted with no re-
quired optimization (Fig. 1).

Although generalizing results from an easier task to
a more difficult task works well for many problems,
there are caveats. Common choices for GP covariance
functions are axis-aligned, resulting in poorer general-
ization if a trend across multiple tasks exists with prin-
cipal direction that is not primarily along the task pa-
rameter axes. In addition, if a global optima for a dif-
ficult task is unrelated to an optima for a simple task,
the sharing of knowledge across tasks is less likely to
increase efficiency (unless it helps identify global prop-
erties of this function that could improve the search).
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Figure 3. Successful trials from optimizations for 5.5 (top),
7 (center), and 9 (bottom) inch obstacles. The robot
started at the left side of the obstacle, and moved over
the obstacle to the right.

8. Conclusion and Future work

We have defined the stochastic binary optimization
problem for expensive functions, presented a novel use
of GPC to frame this problem as Bayesian optimiza-
tion, and presented a new optimization algorithm that
computes expected improvement in the stochastic bi-
nary case, outperforming several baseline metrics as
well as a leading continuous-armed bandit algorithm.
We used our algorithm to learn a robust motion for
moving a snake robot over an obstacle, and used multi-
task learning concepts to efficiently create an adaptive
policy for obstacles of various heights.

The problem we define is not limited to the demon-
strated snake robot application, but applies to many
expensive problems with parameterized policies and
stochastic success/failure feedback, including varia-
tions of applications where continuous-armed bandits
are currently used such as auction mechanisms and
oblivious routing which could contain an offline train-
ing phase penalizing simple rather than continuous re-
gret.
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