
1

Model-Based Vision System
by Object-Oriented Programming

Huey Chang, Katsushi Ikeuchi, and Takeo Kanade

CMU-RI-TR-88-3

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

February 1988

© 1988 Carnegie Mellon University

This research was sponsored by the Defense Advanced Research Projects Agency, DOD, through ARPA
Order No. 4976, Amendment 20, and monitored by the Air Force Avionics Laboratory under contract
F33615-87-C-1499 and under The Analytic Sciences Corporation subcontract 87123 modification No. L

Table of Contents
1 Introduction 1
2 Generating a Recognition Strategy 1
3 Object Library 3

3.1 Data Object 4
3.2 Event Object 6

3.2.1 Unitary feature object 6
3.2.2 Relational feature object 8
3.2.3 Attitude determination object 13
3.2.4 Verification object 13

4 Generating an Executable Code for a Toy Wagon 13
5 Running the Code 17
6 Conclusion 24

Acknowledge 29
I. Relational Features 30

LI Region-region Relational Feature 30
1.2 Region-edge Relational Feature 30

II. Voting Index 34

UNIVERSITY LIBRAFiES
CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA 15213

11

List of Figures
Figure 1: Parallel tracking mechanism 9
Figure 2: The model of a toy wagon 14
Figure 3: Interpretation tree for a toy wagon 15
Figure 4: An executable program represented by objects: A U node 18

represents an unitary feature matching object; A M node
represents a message handling object; A F node represents a
relational feature matching object; A C node represents a
comparing object; An A node represents a attitude determining
object; A V node represents a verification object*

Figure 5: Input scene for the recognition 19
Figure 6: Needle map obtained by Photometric Stereo 20
Figure 7: Regions obtained from the needle map 21
Figure 8: Edges obtained by Miwa Line Finder 22
Figure 9: Retrieving feature value from a region. 23
Figure 10: Execution of the program 25
Figure 11: Superimposed image of the geometric model onto the image 26
Figure 12: Verification by the extracted edges 27
Figure 1-1: Relation Between Two Regions 31
Figure 1-2: X-view of affine transform 32
Figure 1-3: Relation between edge and region 32

Abstract

This paper presents an approach to using object-oriented programming for the generation of a
object recognition program that recognizes a complex 3-D object within a jumbled pile.

We generate a recognition program from an interpretation tree that classifies an object into an
appropriate attitude group, which has a similar appearance. Each node of an interpretation tree
represents a feature matching. We convert each feature extracting or matching operation into an
individual processing entity, called an object. Two kinds of objects have been prepared: data
objects and event objects. A data object is used for representing geometric objects (such as
edges and regions) and extracting features from geometric objects. An event object is used for
feature matching and attitude determination. A library of prototypical objects is prepared and an
executable program is constructed by properly selecting and instantiating modules from it. The
object-oriented programming paradigm provides modularity and extensibility.

This method has been applied to the generation of a recognition program for a toy wagon. The
generated program has been tested with real scenes and has recognized the wagon in a pile.

1 Introduction
Traditionally, a recognition program is generated by a human expert who examines the

features of an object, develops a strategy for a recognition procedure, and writes a specialized

program for the individual object. However, this "hand writing11 of a recognition program

requires a long time for programming and testing. In order to reduce the development time,

several researchers have investigated methods to automatically generate recognition programs

from object models [5, 7, 8].

Automatic generation of a recognition program requires several key components:

• object models to describe the geometric and photometric properties of an object to
be recognized;

• sensor models to predict object appearances from the object model under a given
sensor;

• strategy generation using the predicted appearances to produce a recognition
strategy;

• program generation converting the recognition strategy to executable program.

This paper concentrates on the final stage, i.c. program generation. We will investigate a way to

automatically generate a program to localize an object under the assumption that its recognition

strategy is given.

We propose to prepare a library of modules to be used for converting a strategy into a program

and to construct the program by properly selecting modules from the library. Our method is

based on object-oriented programming. An object in object-oriented programming is a

processing unit, which can store several internal values in slots and execute various operations.

This paper identifies the necessary operations in recognition strategies and prepares the

prototypes of the objects to execute the strategies in the library. Then, this paper defines a

generation method for an executable program by instantiating the objects in the library. Finally,

this paper applies the method to a toy wagon to generate a recognition program and executes the

generated program in a real scene to demonstrate the validity of our method*

2 Generating a Recognition Strategy
This section overviews our recognition strategy which is to be converted into an executable

program in the following sections. Our paradigm is to generate a recognition program to localize

a 3D object within a jumbled pile under the assumption that its geometric Mid photometric

properties, sensor characteristics, and sensing conditions are known. The basic recognition

strategy is to classify one unknown attitude (one object appearance) into one of several possible

attitude groups by using various available features, and then to determine the precise attitude by

solving equations based on the visible features of the group. Each group consists of topologically

equivalent object appearances and is referred to as an aspect [9].

Strategy generation is performed by recursive sub-divisions of possible aspects by available

features. Strategy generation starts with a root node which contains all possible aspects. After

that time, whenever a new classification is done, new nodes are generated. At each node of the

interpretation tree, each available feature is examined to determine whether it can classify the

group of aspects in the node into a smaller number of aspects. If it can, the feature is stored at

the node and subnodes corresponding to classified subgroups of aspects are generated and

connected to the node. Thus, the generated recognition strategy is represented as a tree, which

we call an interpretation tree. Intermediate nodes of the interpretation tree correspond to

classification stages and leaf nodes correspond to classification into individual aspects [7].

Two kinds of features are used for matching: unitary features and relational features. A

unitary feature can be represented as scalar numbers, such as area and moment of a visible face,

while a relational feature is a detailed relational description between visible faces, such as face-

face relations and face-edge relations.

At the completion of the aspect classification, each intermediate node of the interpretation tree

records the feature to be used for classification, and each leaf node contains one single aspect.

Suppose at this moment, we apply the interpretation tree to one object appearance1. Then, we

can classify the appearance into the corresponding aspect at the leaf node by using the same

features and values recorded at each intermediate node of the interpretation tree.

The next task will be to determine the exact attitude of the object within that aspect. Once an

appearance is classified into an aspect, the interpretation tree knows the correspondence between

image regions and object faces, in particular the correspondence between the entry region and

the corresponding object face. Thus, once we define the local coordinates of the object face by

the surface orientation of the face, the minimum moment direction of the face, and the

precisely, one imtgc legion of m object appearance is given to tbe interpretation tree. We will denote the
imtge regtoQ from which tibc process begins is tbe entry region.

relationship between visible faces, we can recover the local coordinates relative to the world

because those three piece of information can be obtained from the entry region. Then, the object

attitude can be recovered from the local coordinates and the transformation from the local

coordinates to the body coordinates of the object.

After the exact attitude of the object is obtained, the system generates an expected image by

using a geometric modeler. Edges in the expected image will be compared with the edges in the

input image to confiim the recognition. The voting index method provides a way to match the

expected edges with the extracted edges by giving the reliability of the recognition. For the

voting index see Appendix II.

3 Object Library
This section will consider how to convert a given strategy into an executable program. A

recognition strategy is given as an interpretation tree in our system; each node of an

interpretation tree contains a group of aspects and one of the feature matching operations to be

used. We will identify necessary matching operations, and design objects to perform the

operations by using the object-oriented programming technique.

An object in object-oriented programming is a processing unit, which can store several internal

values in slots. We can define demon functions for each slot, where a demon function will be

invoked implicitly when we retrieve a value from the slot or insert a value into the slot. An

object can execute an operation explicitly when we send a particular message to the objea. An

object can be defined as an instance of a prototypical object. An instance object can inherit slot

names, slot values, demon functions, and operations of the prototypical object2

Two kinds of objects are prepared in our object library. One is a data object* which is used in

representing geometric objects (such as edge and region) and extracting features from geometric

objects. The other is an event object, which is used to control the matching and determine the

exact attitude after the interpretation.

2Tfaeie are several implementations to the objects, la our system* we use modified Eranieldt-f- oripmHy developed
at Carnegie Melon University [2].

3.1 Data Object

Our system uses photometric stereo to obtain region information [6], and uses a line extractor

to obtain edge information [1,10]. To represent these pieces of information, we create two

prototypical data objects in the object library. They are:

• Region

• Edge

The following example shows the definitions of the two abstract objects; an abstract-region

and an abstract-edge.

(abstract-region-object,
(is-a program-object)
(id-number)
(area)
(maximum-x)
(minimum-x)
(maximum-y)
(minimum-y)
(mass -center)
(moment)
(orientation)
(region-search-distance)
(region-image-model-distance-coef)
(region-image-model-area-coef)
(region-image-model-moment-coef)
(region-area

(if-needed-demon region-area-func))
(region-moment

(if-needed-demon region-moment-ftmc))
(region-moment-ratio

(if-needed-demon region-moment-ration-func))
(region-orientation

(if-needed-demon region-orientation-func))
(region-region-relation

(if-needed-demon region-region-relation-func)))

(abstract-edge-object
(is-a program-object)
(id-number)
(start-point)
(end-point)
(center)
(length)
(direction)
(edge-region-relation

(if-needed-demon edge-region-relation-func)))

In the definition of an abstract-region, the is-a slot represents that this abstract object is a

program object. Slots from id-number through orientation will store image properties of

individual regions by inheritance mechanism. Slots from region-search-distance through

region-image-model-moment-coefkeep global knowledge such as search distance for relational

features or coefficients between data in the geometric modeler and image data. Slots from

region-area through region-region-relation store features which are obtained from image

properties by demon functions attached to the slots.

We can make instance objects of these abstract objects. When the instance objects are

generated, the image prdperties of each region or edge are extracted from an image and stored in

the corresponding slots. Thus, for example, an instance object of an region looks like;

(RIO
(instance abstract:-region)
(id-number 100)

^y 100)
(maximum—y 100)
(minimum~~x 50)
(minimum—y 50)
(mass-center (75 75))
(moment (8000 200 0.2))
(orientation (0.0 0.0 1.0)))

The global knowledge and demon functions can be accessed from an instance object through

the inheritance mechanism if necessary. For example, if the feature, region-area of the instance

object, R10 is accessed by a recognition process, there is no slot in R10. Thus, an inheritance

mechanism is invoked and the region-area slot of the abstract-region is accessed. The demon

function attached to the region-area slot of the abstract-region is invoked. Then, the demon

function calculates the region-area of RIO by using region-image-model-area-coefficient in the

abstract region and the area value in RIO and returns the feature value to the recognition process.

This mechanism makes the access format of the image features (say, xegkxi-area) by the

recognition process independent of the output format of image properties (say, image area) given

by a sensor. In particular, this mechanism is convenient when we handle multiple sensors* Each

sensor has a particular output format and model-image coefficients. Thus, if we use the

conventional method without demon functions* we have to exchange access functions of the

recognition process depending on sensors and features. However, if we use this demon

mechanism, we not need to change the access functions of the recognition process; we only need

to redefine demon functions. Since the global knowledges and all the demon functions are

attached only to the abstract region and the abstract edge, necessary changes are localized at the

level of the abstract region and abstract edge.

The relational features such as region-region or region-edge are also represented by using

demon functions. These relational features are represented relatively with respect to each region.

If we use the conventional method, we have to calculate all relational features with respect to all

regions beforehand, even though most of them are unnecessary. Since the calculation of a

relational feature is expensive, it is desirable to reduce the amount of calculation by using demon

functions which calculate those features only when they are actually required.

3.2 Event Object

Event objects aie used to convert nodes of an interpretation tree into executable modules for

feature matching and attitude determination. There are two kinds of features to be used for

matching; unitaiy features such as area or moment and relational features such as region-region

relation or region-edge relation. We convert a node for a unitaiy feature into an object which

chooses one of the descendant nodes simply based on the value of the unitary feature of a region.

On the other hand, we will convert a node for a relational feature into an object which examines

the similarity of the relational feature to all possible cases and determines the node

corresponding to tbe most likely case.

32.1 Unitary feature object

When a nock of an inteipietation tree is required to examine a unitaiy feature, an unitary

feature object is generated and attached to the node. A node of an interpretation tree contains the

information about descendant nodes, the name of unitary feature used for matching, and its

threshold value. According to these pieces of information, a unitary feature object Is generated.

Thus, the prototype of a unitary ieatuxe object in the object library has the following format

(i s - a prograia-object)
(execution)
(tlumahold)

(brmodh-rigfat))

Wbcn m% instance unitary feature object is generated* It contains a method name in the

execution slot to be used for the comparison, the threshold value in the threshold slot. For

example, if an interpretation tree requires area comparison at a particular node, then the

following object will be generated at the node.
(branch-example-1

(instance unitary-feature-objecrt)
(execution area-comparison-method)
(threshold 100)
(branch-left branch-example-10)
(branch-right branch-example-11))

The threshold value, branch-left, branch-right, and the execution method name are obtained

from the interpretation tree and inserted by this conversion process. The object library contains

the following function.

(defun area-comparison-method (schema slot entry-region)
(cond((unitary-comparison

(get-value entry-region 'region-area)
(get-value schema 'threshold))

(send (get-value schema 'branch-left)
'execution entry-region))

(t (send (get -value schema ' branch-right)
'execution entry-region))))

(defun unitary-comparison(arg-a arg-b)
(cond((>= arg-a arg-b) t) (t nil))))

The area-comparison-method is invoked by sending an execution message to the object such

as

(send ' branch-example-1 ' execution entry-region) .

In the arguments of the method function, schema and slot are the corresponding schema and slot

which invoke this function and inserted by the system; in our example, branck-example-1 and

execution are inserted automatically, while the argument, entry-region is given to this method

function 'directly by the send function3. Depending on the result from unitaiy-comparison,

another execution message will be sent either to branch-example-lO or branch-example~lh

Similarly, we can define various discrimination functions, whexe required functions arc

dependent on the strategy generation. In the present implementation, the foUowing functions are

prepared in the object library;

3Noce thai (gei-vmhe entry+region "region-area) Invokes a itgton-aita demon function attached to the abstract-
regioo.

area-comparison-method,

moment-comparison-method,

moment-ratio-comparison-method,

surface-characteristic-comparison-method,

• surrounding-nth-face-area-comparison-method,

• surrounding-nth-face-moment-comparison-method,

• suTrounding-nth-face-moment-ratio-comparison-method,

• surrounding-nth-face-surface-characteristics-comparison-method.

It is quite easy to include different unitary features. This only requires addition of the

necessary feature matching methods and the feature slot with the feature extraction demon to the

library; it is not necessary to modify any other existing objects.

322 Relational feature object

If a node of an interpretation tree is required to examine a relational feature, a parallel tracking

mechanism is adopted which examines the similarity of the relational features of all immediate

descendant nodes against those of the entry region and sends the next execution message to the

node corresponding to the highest similarity.

Since the parallel tracking mechanism is relatively complicated, we divide it into the following

four kinds of objects; a message handling object, feature matching objects, feature matching

demon objects, and a comparing object. See Figure 1. A message handling object sends

execution messages to feature matching objects, A feature matching object measures a similarity

between the feature of the entry region and one of the model features with the help of a feature

matching demon object, and then sends the similarity measure to the comparing object, and t

finish notice message to the message handling object. Once the message handling object receives

all finish notice messages from all feature matching objects, it invokes the comparing object. The

comparing object examines the similarity measures and sends the next execution message to the

appropriate object.

Message handling object

Hie message handling object controls the parallel matching mechanism. It sends the model

Message Handling

Object

Comparing

Object

V

Feature

Matching

Object

Feature
Matching
Demon
Object

Figure 1: Parallel tracking mechanism

features to each feature matching object one by one. The prototype of the message handling

object has the following format.

(mess age-handling-object
(is-a program-object)
(execution message-handling-method)
(finished-notice finished-notice-method)
(sending-object-list)
(finished-object-list)
(model-feature-list)
(next-node-list)
(comparing-object)

The slot, model-feature-list contains the model relational features given from the node of the

interpretation tree. The slot, sending-objecf-Iist contains the feature matching objects* where

those feature matching object will be generated while the system converts the interpretation tree

into an executable code and registers them in this slot, while the slot, finished-object-list contains

the feature matching object which finishes the matching operation and sends the notice to this

object. Once all model matching is done, a comparing object is invoked. The object to be

invoked is stored in the comparing-object slot.

10

Hie object library contains the following message-handling-method and

finished-notice-method.

(defxin message-handling-metliod (schema slot entry-region)
(do ((model-list (get-value schema ' model -feature -list)

(cdr model-list))
(sending-list

(get-value schema 'sending-object-list)
(cdr sending-list))

(node-list (get-value schema 'next-node-list
(cdr node-list)))

((null model-list))
(send (car s e n d i n g - l i s t) ' execu t ion

en t ry - reg ion (car m o d e l - l i s t)
(car n o d e - l i s t))))

Basically, this method sends model relational features one by one to feature matching objects.

In order to make a correspondence between a feature and the corresponding descendant node,

this method also send the names of the descendant nodes to the feature matching objects.

(defun finished-notice-method
(schema slot sender entry-region)

(add-value schema ' finished-object -list sender)
(oond((=

(length (get-values schema ' finished-object-list))
(length (get-values schema / sending-object-list)))
(send (get-value schema 'comparing-object)

'execution entry-region))

This method adds the senders name in the finished-object-list everytime it receives a finished

notice from a feature-matching object. If all the feature matching objects, invoked by this object,

finish their matching operations* the message handling object sends an execution message to the

comparing object.

Feature matching object

The feature matching object performs the relational feature matching. The prototype of the

feature matching object has the following format.

11

(feature-matching-object
(is-a program-object)
(execution feature-matching-method)
(finished-notice finished-notice-method)
(comparing-object)
(message-handling-object)
(feature-mat ching-demon-object)
(node))

Those comparing-object, message-handling-object, and feature-matching-demon-object

contain object names corresponding to those slot names and are filled by the conversion process.

The slot, feature-matching-method contains an execution method to examine the similarity

between the feature sent by the message handler and those of the entry region, while the main

body of the calculation is done by feature-matching-demon-object. These methods can be

represented in the library as

(defun feature-matching-method
(schema slot entry-region model-feature node)
(new-value schema 'node node)
(send (get-value schema ' feature-matching-demon-object)

'execution entry-region model-feature)))

(defun finished-notice-method
(schema slot score)
(send (get-value schema 'comparing-object)

'add-value
(get-value schema 'node)
score)))

Feature matching demon object

The feature matching demon object measures the similarity between the model-feature and

features of the entiy-region. This function further invokes demon functions attached to the entry

region to get either region-region relations or region-edge relations and, then, calculates the

similarity measure between them by using a similarity measuring method. The resulting measure

will be returned to the feature matching object and then sent to the comparing object. The

prototypical object in the library has the following format;

(feature -mat ching -demon- obj ect
(is-a program-object)
(execution)
(feature-matching-object))

The slot, feature-matching-object contains the object name which invokes this object. This will

12

be done by the conversion process. The slot, execution contains a similarity measuring method.

In the present implementation, the following two methods are prepared in the library.

• region-region similarity measuring method

• region-edge similarity measuring method

Similarity of the region-region relational feature and the iegion-edge relational feature are

measured based on the voting index. For relational features, see Appendix I, and for voting

indices see Appendix II. If a different similarity measure is necessary, it is only necessary to add

the method to the library and to insert the method name into the execution slot of this object.

Comparing object

Each time a comparing object receives a message add-score with the similarity measure and

the node from a feature matching object, it will add the measure to the score list and the node to

the next node list. After the message handling objea finishes its sending to the feature matching

objects, it sends an execution message to a comparing object and invokes it. The comparing

object examines the similarity measures in slot "score-list", chooses the highest measure, and

sends the next execution message to the node corresponding to the highest measure. Thus, the

prototype of the comparing object has the following format.

(compare-object
(is-a program-object)
(execution compare-object-method)
(add-score add-score-method)
(score-list)
(next-node-list))

The following two methods axe also prepared in the library.

(defun compare-object-method (schena slot entry-region)
(send (the-most-highest-node

(get-value schema fscore-list)
(get-value schema fnext-node-list))
'execution entry-region))

(defun add-score'-method (schema slot score node)
(add-value schema #score-list score)
(add-value schema fnext-node-list node))

where the function the-most~highe$t~node returns the node in the next-node-Iist which has the

highest value in the score list*

13

3.2.3 Attitude determination object

An attitude determination object is generated at a leaf node of an interpretation tree. At each

leaf node, the interpretation tree knows the correspondence between the image regions and

model faces, in particular one between the entry region and the corresponding model face. If we

recover the local coordinate of the model face from the information of the entry region, then we

can obtain the body coordinate by using the local coordinate and the transformation from the

local coordinate to the body coordinate obtained from the geometric model. In our system, we

define the local z axis by the surface orientation, x axis by the minimum moment direction and

visible face relationships. Once this object determines the body coordinate, it sends the

coordinate to the verification object.

The prototypical attitude determination object has the following format.

(attitude-determination-object
(is-a program-object)
(execution attitude-determination-method)
(transformation)
(verification-object))

32A Verification object

The verification object is used to generate an expected image and verify the recognition result.

After the exact attitude is determined, the verification object will create an expected image by

using a geometric modeler. From the expected image, it will extract 2D edge informations and

match this with the input scene to confirm the recognition.

(verification-object
(is-a program-object)
(execution verification-method))

4 Generating an Executable Code for a Toy Wagpe
We choose a toy wagon to demonstrate our ideas. We use a geometric modeler to generate a

model of the toy wagon. Figure 2 shows the model of the toy wagon. It is a relatively complex

geometric object. In order to derive possible aspects, we sample possible views and group them

into 17 aspects based on the visible faces. Figure 3 shows the given interpretation tree, which

defines the necessary feature matchings at each node.

Once the interpretation tree is obtained, its nodes are converted to objects using the object

library.

14

Figure 2: The model of a toy wagon

At the nodes, bl, bllf bill of the interpretation tree, one unitary feature matching node is

converted into one unitary feature matching object.

For example* at node bl of the inteipretation tree, the following object is generated,

(bl
(execut ion rnoser . t -cos^ar ison-nethod)
(t h r e s h o l d 5000)
(b r a n c h - l # f t b l l)
(b r a n c h - r i g h t b l 2))

where threshold value 5000 is given from the interpretation tree. A similar object is generated at

bll, bill by using the same moment feature and different threshold value.

A relational feature feature is matched using a paralel tracking mechanism. A parallel

tracking mechanism is divided into four objects; message handling object, feature matching

object, feature matching demon object, and compare objects. These objects are generated when

a, paralel tracking mechanism is required by the conversion program.

Tliosc nixies bl2Jbll2Jbl22J>121JbUllJblll2J)1121Jblll21 require relational feature

, and thus, are converted into objects to execute the parallel tracking mechanism. Let

15

bl

Inertia
4

bll

inertia

•

.bl22

bl2

x%gi on-r«gion

bl21

bl!2

r»glon-region

b!121

bi l l
inertl*

M1221

114

•11

Figure 3: Interpretation tree for a toy wagon

16

us consider the case of bill, at which node a region-region relational feature is used in

matching. The conversion program instantiate one message handling object b!12, four feature

matching objects, bll2-f-l>»jbll2-f-4 four feature matching demon objects,

bll2-f~l-d,..,bll2-f-4-d and one comparing object, bl!2-c from those prototypical objects in the

library.

First, a message handling object such as

(b l l 2
(instance 'message-handling-object)
(sending-object-list

'(bll2-f-l bll2-f-2
bll2-f-3 bll2-f-4)

(finished-object-list nil)
(mode l - f ea tu re - l i s t |

' (((10 20 30 0.5)) • . .)) I
(nex t -node - l i s t |

' (a l3 a l2 a l l b l l21)) I
(compare-object b l l 2 - c)) I

i
is generated. The contents in the modeUfeature-list slot is obtained from the relationship
between the entry region and surrounding visible regions consulting a model data base, and

represent region-region relational features such as the distance between regions and the |

difference between two surface normals. More precise definitions can be found in Appendix I

region-region feature.

Then, four feature matching objects are instantiated from the prototype in the object library.

One of them looks like this:
(b l l 2 - £ - l

(in s t ance featiire-matcfaing-object)
(conparing-object b l l 2 - c)
(raessage-handler-object h!12)
(feature-iiatcliing-ciemon-object

b l l 2 - f - 1 - d))

Then four fcaftne-rEatcMng-deiBoii-objects, instantiated from the prototypical object in the

iibraiyf have the same foixnat as &e featuie-matdixng-objects.

Tliea, finally* a comparing object is instantiated.

l 2 - £ - c
(instance comparing-object)
(score-list nil)
(next-noda-list nil))

17

At each leaf node, attitude determination objects and verification objects are generated. For

example, at node a9, the following two objects are generated.

<a9
(instance attitude-determination-object)
(transformation
((0.0 0.0 1.0) ...)))

(verification-object a9-v))

(a9-v
(instance verification-object))

Note that some of the instance objects do not have execution slots, which are inherited from

their prototypes in the object library.

Similar operations are applied to all nodes in the interpretation tree and give the executable

program as shown in Figure 4. This conversion program is implemented using a rule

representation language OPS5 [4],

5 Running the Code
This section shows an example of the obtained program running on a real scene. Figure 5 is

the input scene for recognition. Figure 7 shows those regions whose surface orientation can be

determined as shown in Figure 6 by using photometric stereo. By using a dual photometric

stereo system, we can determine the depth of each region. We also use an edge extractor. Three

images obtained under different lighting conditions are processed. The resulting edges are

shown in Figure 8. The system instantiates region objects and edge objects for all the regions

and edges in the scene by using the abstract-region object and the abstract-edge object in the

object library.

The largest region at the top of the pile is selected as the entry region (in this case, region r90

in Figure 5(c)) and sent to bl .

(send 'bl 'execution entry-xegion)

where entry-region = R90. Then, since b l ' s execution slot contains the moment-comparison-

method, the moment comparison method is invoked. This function sends a message to region

R90 to get legion-moment, which can be calculated by the region-moment demon function and

the moment value of R90. Notice here that the moment in an image is converted into a moment

value in the geometric model by the demon function. See Figure 9.

18

I%nre4: An executable program nepresented by objects: A U node represents
tn miiisy feature matching object; A M node xcpreseois a message handlkg
ck§m A F « x k rqaeseats a idaticmal feature matohing object; A C node

ts a ron^OTiEg object; An A node Represents a attitude d
i& bj

p ^OTg object; An A node Re
object; A Y node represents a veii&aittc» object

19

Figure 5: Input scene for the recognition

20

•••

^^^ts^^^^^^^^^^^^^^^,..,..^

^p!fii:=lHiH;:!iHi§ii^i=;=^lHiHiiyi!in

Figure 6: Needle map obtained by Photometric Stereo

21

Figure 7: Regions obtained from the needle map

22

Figure 8: Edges obtained by Miwa Line Finder

23

ABSTRACT-REGION
REGION-IMAGE-
MODEL-MOMEm\
COEF

REGION-MOMENT

REGION-R90

MOMENT

(GET-VALUE 'R90
•REGION-MOMENT)

(SEND'BI 'EXECUTION'R90)

(SEND'BH •EXECUTION'R90)

1

DATA WORLD EVe^T WORLD

Figure 9: Retrieving feature value from a region.

24

From the comparison between the threshold value in the unitary feature matching object, bl

and the feature value obtained from R90, the object sends an execution message and the entry

region to bll. The object bll repeats the similar operation and sends an execution message and

the entry region to bill. Since bill is a message handling object, it send messages bll2-f-l,

bl 12~f-2,bll2-f-3 ,bl 12-/-4, one by one with model relational features. At each feature matching

object, a similarity measure for the region-region relational feature obtained from the region-

region relationship (R90 and R85) against one model relational feature, is obtained and sent to

the comparing object, b!12-c. From the accumulated score, the comparing object, bl!2-c send

an execution message to node all with the entry region.

At this point, the system finds the correspondence between the entry region and the roof face

of the toy wagon. The attitude determination object then determines the local coordinates of the

face by using the surface normal, the minimum moment direction, and the region-region relation

between R90 and R85. The bold lines in Figure 10 indicate the tracks of the message passings.

Finally, the body coordinates are recoverted using the local coordinates and the transformation

between the roof face of the toy wagon and the body coordinates. The attitude determination

object, all sends an execution message to all-v with the entry region and the body coordinates.

The verification object, all-v generates an expected image (Figure 11) by using a geometric

modeler based on the body coordinates, extracts edges from the expected image which are longer

than a certain threshold, and compares them with the edges from the line finder. The result is

shown in Figure 10(c), where the bold lines indicate the expected edges and thin lines indicate

the image edges. The voting index obtained from this matching represents the reliability of the

recognition. For this example, the reliability of the recognition is 0.8.

6 Conclusion
This paper has discussed how various modules are prepared and used for generating a

recognition program from a given interpretation tree so that we can generate a recognition

program from a geometric model automatically. We designed the module set as the object

lifavaiy using object-oriented programming. The object-oriented programming paradigm provides

modularity and extensibility to the object library. The objects in the object library are divided

into two categories: data objects and event objects. A data object is used for representing

geometric objects and extracting features from geometric objects. An event object is used for

25

b l

b l l

M i l

M12

<

Mill

i
bll 121

\

• ' •

i

>

Figure 10: Execution of the program

26

Figure 11: Superimposed image of the geometric model onto the image

27

Figure 12: Verification by the extracted edges

28

feature matching and attitude determination. We generate an executable program by properly

selecting and instantiating modules from the object library. This method has been applied to the

generation of a recognition program for a toy wagon. The generated program has been tested

with real scenes and has recognized the wagon in a pile. The generation method developed here

provides a useful tool for the automatic generation of recognition programs.

29

Acknowledge
The authors thank Keith Gremban, Yoshinori Kuno, and the member of VASC (Vision and

Autonomous System Center) of Carnegie Mellon University for their valuable comments and

discussion.

30

I. Relational Features

LI Region-region Relational Feature
The relationship between two regions can be described as (Figure 1-1):

• d : The distance between the mass centers of two regions.

• a : The angle between the minimum moment directions of two regions.

• P : The angle between the surface orientations of two regions.

• A : The area of the region other than the entry region.

We form a four-dimensional feature vector (d a (3 A) to represent the relational feature

between the entry region and the other region. A demon function will be invoked when feature

extraction is requested. Then a set of feature vectors relative to the entry region are found. These

feature vectors will be used in feature matching.

In the four-dimensional feature space (d a p A), we test a hypothesis by comparing all the

feature vectors with the predicted feature vector that is generated by the model. If they are close

in the four-dimensional feature space, we accept this hypothesis, and conclude the feature

matching process. If the matching fails, we then reject the hypothesis, and generate another

hypothesis. TMs hypothesis generation and test can be done by using a parallel tracking schema.

1.2 Region-edge Relational Feature
We use a line finder to obtain 2-D information about an edge from its projection onto the

image plane. In order to recover the 3-D information about an edge, we will transform the 2-D

edge into 3-D space via an affine transformation- Let the surface orientation of the entry region

be (p q), where p= njnz$ and q= uJ i i r The affine transformation P will transform an edge

surrounding the entry region to the 3-D plane that the edge lies on.

Vl+p2 pqHl+p1

0 0

Figure 1-2 shows the X-view of an affine transformation. The new view direction is on the Z1

axis* We can determine the original leegih of an edge from this view direction.

31

Figure 1-1: Relation Between Two Regions

32

Light Source

px+qy+z=0

Figure 1-2: X-view of affine transform

After the affine transformation, we can use four parameters to describe the relationship

between an edge and the entry region (Figure 1-3).

t

Figure 1-3: Relation between edge and region

• r: The perpendicular distance between an edge and a icgion.

33

• 0 : The angle from the minimum moment direction of a region to the perpendicular
line of an edge.

• co : The angle from the minimum moment direction of a region to the middle line of
an edge.

• 1: The length of the edge after an affine transformation.

For all the edges within the search distance, we generate feature vectors relative to the entry

region. For each model edge, we search the feature vectors in the scene to find the voting index

[3]. The summation of the voting index is compared with the total length of the model edges

that surround the entry region. If the values are close, then we conclude this matching is

successful, otherwise we refect this hypothesis and generate another hypothesis.

34

II. Voting Index
We generate region-edge relational features for the edges within a certain distance from the

entry region. These features will be compared with the model's region-edge features generated

in advance. The length of an edge in the scene is considered as a vote for the presence of a

model edge if the following conditions are satisfied:
• The value r of the edge is within a certain range of the model edge rm, or say,

0 . 9 r m < r < l . l r m .

• The value f: of the edge is within a certain range of the model edge 0m, say,

-o.2+em<e<o.2+em.
• The value of co of the edge is within the maximum and minimum values of the

model edge com:
/ /2+r tan(w - 6 J J / 2 - r fc"*(o> - 8 J

co - Vfryyo
m r m r

The length 1 of the edge is less than the length 1^ of the model edge,

35

References

[1] Canny, J. F.
Finding edges and lines in images.

Technical Report AI-TR-720, Artificial Intelligence Laboratory, M. I. T., 1983.

[2] Caibonell, J. and Joseph, R.
Framekit+:A knowledge representation system.
Technical Report CS-TR, Computer Science Department, Carnegie Mellon University,

March, 1986.

[3] Chang, H.
A Vision Algorithm Generator by Object-Oriented Programming.
Technical Report, Department of Electrical and Computer Engineering, Carnegie-Mellon

University, Pittsburgh, PA, July, 1987.

[4] Forgy, C.L.
OPS5 Users manual
Technical Report CMU-CS-81-135, Computer Science Department, Carnegie Mellon

University, July, 1981,

[5] Goad, C
Special purpose automatic programming for 3D model-based vision.
In Proc. Image Understanding Workshop. DARPA, 1983.

[6] Dceuchi, K.
Determining a depth map using a dual photometric stereo.
The International Journal of Robotics Research 6(1), 1987.

[7] Dceuchi, K.

Generating an Interpretation Tree from a CAD Model for 3-D Object Recognition in Bin-
Picking Tasks.

International Journal of Computer Vision 1(2), 1987.

[8] Dceuchi, K. and Kanade, T.
Towards automatic generation of object recognition program.
Proc. of IEEE (11), November, 1988.

[9] Koenderink, J. J. and Van Doom, A. J.
Geometry of binocular vision and a model for stereopsis.
Biological Cybernetics 21(1), 1976.

[10] Miwa, H. and Kanade, T.
Line extraction.
Internal Memo., in preparation, Carnegie-Mellon University, Pittsburgh, PA, 19S7.

