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Abstract— Precise knowledge of a robots’s ego-motion is a
crucial requirement for higher level tasks like autonomous
navigation. Bundle adjustment based monocular visual odometry
has proven to successfully estimate the motion of a robot for
short sequences, but it suffers from an ambiguity in scale. Hence,
approaches that only optimize locally are prone to drift in scale
for sequences that span hundreds of frames.

In this paper we present an approach to monocular visual odo-
metry that compensates for drift in scale by applying constraints
imposed by the known camera mounting and assumptions about
the environment. To this end, we employ a continuously updated
point cloud to estimate the camera poses based on 2d-3d-
correspondences. Within this set of camera poses, we identify
keyframes which are combined into a sliding window and refined
by bundle adjustment. Subsequently, we update the scale based
on robustly tracked features on the road surface. Results on real
datasets demonstrate a significant increase in accuracy compared
to the non-scaled scheme.

Index Terms— Localization, Navigation, Robot Vision

I. I NTRODUCTION

Ego-motion estimation is an important prerequisite in robo-
tic’s applications. Many higher level tasks like obstacle detec-
tion, collision avoidance or autonomous navigation rely onan
accurate localization of the robot. All of these applications
make use of the relative pose of the current camera with
respect to the previous camera frame or a static world reference
frame. Usually, this localization task is performed using GPS
or wheel speed sensors. In recent years, camera systems
became cheaper and the performance of computing hardware
increased dramatically. Hence, high resolution images can
be processed in real-time on standard hardware. It has been
proven, that the information given by a camera system is
sufficient to estimate the motion of a moving camera in a
static environment, calledvisual odometry[16].

Compared to the abovementioned sensors, camera systems
have different advantages. It is well known, that the accuracy
of the GPS-localization depends on the number of satellites
used. This number drops down in urban environments with
large buildings on either side of the road. The accuracy of
wheel speed sensors depends mainly on the slip between
wheel and road, which can be high depending on the terrain.
Obviously, the localization results based on these sensorsare
highly affected by the environment. Further drawbacks of GPS
or inertial measurement units (IMUs) are the low accuracy
and the high cost, respectively. The local drift rates for visual
odometry are mostly smaller than the drift rates of IMUs, ex-
cept for expensive high accuracy integrated navigation systems

which fuse inertial measurements with GPS data [10]. As for
all incremental motion estimation techniques, long term drift
can only be mitigated by applying loop-closure on (visual)
place recognition (e.g. [20]) or by fusing absolute localization
data.

In this work, we make use of a fully calibrated monocular
camera to estimate the pose of the current camera with respect
to a global world reference frame. The used datasets were
captured in urban environments using a vehicle moving at a
speed of approximately15m/s on average. The six degrees
of freedom (6 DoF) motion of the vehicle is estimated merely
on the visual information. No additional sensor measurements
such as GPS- or IMU-data are used in contrast to [1] or [5].

The remainder of this paper is organized as follows: The
following section describes work already done in the field of
vision-based motion estimation. In Section III, the monocular
motion estimation approach is described, which is extendedin
section IV to cope with drift in scale. We close the paper with
experimental results in section V, a short conclusion and an
outlook on future work.

II. RELATED WORK

In recent years, many algorithms have been developed that
estimate the ego-motion of a robot. These algorithms can
roughly be classified into two main categories, namely algo-
rithms using monocular camera systems (e.g. [24], [18]) and
binocular approaches (e.g. [15], [12]). A further subdivision is
possible into algorithms using only feature matches between
consecutive frames (e.g. [10], [21]) and algorithms using
feature tracks over a couple of images (e.g. [11], [17]).

Each class of algorithms has different benefits and draw-
backs. Monocular algorithms suffer from the scale ambiguity
in the translational camera movement which is usually resol-
ved using measurements from IMUs (e.g. [5]) or a combinati-
on of wheel speed sensors and GPS as in Agrawal et al. (e.g.
[1], [2]). Compared to algorithms which use feature tracks,
algorithms making use only of feature matches usually suffer
from higher drift rates, since the used information incorporates
only two images. The entire trajectory is then computed
by accumulating the relative camera motions between two
consecutive frames. This drift can be reduced using feature
tracks over a sequence of images combined with abundle
adjustmentscheme [23]. The drawback of bundle adjustment
is the computational burden of the optimization process. To
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relax this, most algorithms are based on a bundle adjustment
which performs the optimization only over a limited number
of images, i.e. a sliding window. Other algorithms make use
of additional sensors, like IMU- or GPS-systems (e.g. [1]) to
increase the accuracy of the estimation. Obviously, the use
of GPS-information reduces drift significantly because of the
global nature of the system. Furthermore, approaches applying
assumptions about the observer’s motion have been developed.
Scaramuzza et al. [18] make use of a planar motion model and
the non-holonomic constraints of wheeled vehicles to reduce
the parameter space and increase the accuracy.

Good localization results have also been achieved using
visual SLAM techniques (e.g. [4]) which simultaneously esti-
mate a map of the environment jointly with the camera pose
inside this map. Besides the computational complexity of these
approaches, most of the monocular visual SLAM techniques
perform only well in well structured environments and at
low speed. Hence, these approaches are mainly applicable to
indoor environments. Recently, Strasdat et al. [20] developed
a monocular SLAM algorithm applicable for large-scale envi-
ronments, which resolves the drift in scale when loop-closure
occurs. Since we focus on open-loop scenarios, where a robot
is travelling from A to B, this approach is not suitable in our
case.

Compared to the abovementioned approaches which com-
bine monocular vision with additional sensors, our algorithm
uses only visual inputs. To solve translational scale drift, we
make use of some assumptions about the mounting pose of the
camera and the planarity of the road surface in the vicinity
of the vehicle. Given these reasonable assumptions, we can
continuously resolve the ambiguity in scale and reduce the
scale drift significantly. We prefer to use a monocular camera
setup because the effort used in the calibration process is much
less than in the binocular case. Furthermore, calibration errors
directly affect the motion estimation process. Hence, the use
of a monocular camera mitigates the effect of an erroneous
calibration onto the motion estimation.

Compared to Scaramuzza et al. [18] our assumptions are
less restrictive since we assume only a locally planar surface
but estimate the robot’s movement in 6 DoF.

III. M ONOCULAR V ISUAL ODOMETRY

The proposed algorithm for performing monocular visual
odometry assumes a fully calibrated camera with known and
fixed intrinsic calibration parametersK. Given a sequence
of images, the goal is to estimate the camera pose at each
time step solely based on these images. To this end, we track
salient image featuresxk

j (e.g. corners [7], [19]) over a series
of frames. Here,j describes the index of the feature track and
k denotes the index of the frame, respectively. Based on these
feature tracks, we reconstruct the poses of the moving camera
with respect to a predefined world reference frame and the
locations of the scene points corresponding with the tracks.

In the following sections we will give a detailed description
of the different steps of the pose estimation algorithm. Since
the feature tracks are short, the (arbitrary) scale of the estima-
ted camera poses drifts over time. In section IV we propose

a technique to reduce the scale drift and recover scale from a
moving monocular camera.

A. Pose Initialization

The pose initialization step is based on a set of three
preselected keyframesK = {K1,K2,K3} and corresponding
feature points visible in all of these images. Based on the
feature points, we compute the epipolar geometry between
K1 → K2 andK1 → K3, which describes the relative pose
of the keyframes with respect to the world reference frame.
Note, that the world reference frame coincides with the camera
coordinate frame ofK1. To this end, we use the normalized
eight-point-algorithm [9] wrapped in a RANSAC framework
[6] to reject outliers caused by independently moving objects
or false feature matches. Outliers are detected, using the
pairwise Euclidean distance between the observed featuresand
their corresponding epipolarlines. All features with a distance
larger than a predefined threshold are classified as outlier.

Based on the essential matrixEK1→K3 , we recover the pose{
R

K3 , tK3

}
of K3 with respect to the world reference frame

[8]. Here,R andt describe the orientation and translation of
the camera respectively. Note, thatt

K3 can only be recovered
up to an arbitrary scale factor. Using the recovered pose of the
third keyframe and the feature correspondences, we compute
the corresponding scene points for all features which are inliers
in both pairwise epipolar geometry estimations.

Based on the triangulated scene points and their correspon-
ding features inK2 we can compute its pose with respect
to the world reference frame using the algorithm proposed in
[13]. Afterwards, we perform a bundle adjustment [23] over
these three keyframes to get the best estimation for the camera
poses and the scene points. The bundle adjustment minimizes
the reprojection error, i.e.

min
P k,Xj

∑

j,k

d
(
P

k
Xj ,x

k
j

)2
, (1)

making it the maximum likelihood estimate, assuming a
Gaussian distribution in the measurement errors [23]. Here,
P

k = K ·
[
R

k|tk
]

denotes the3 × 4 projection matrix of
camerak and d (.) denotes the geometric distance between
two image points.

B. Pose Estimation

Using the previously initialized scene structure, the esti-
mation of the camera pose

{
R

k, tk
}

corresponding to image
Ik, is based on already initialized scene points, visible in the
current image, i.e. a set of 2d-3d-correspondences. Given aset
of N already known scene pointsX = {X1, . . . ,Xj , . . .XN}
and feature tracks in the current imageIk, we use all feature
tracksxk

j in the current image with an already associated scene
point Xj to estimate the current camera pose in the global
coordinate frame, using the algorithm proposed in [13].

Since we would like to reject features lying on independent-
ly moving objects or false feature matches, we use a RANSAC
scheme to get a robust pose estimation. Hence, we use random-
ly chosen subsets of the 2d-3d-correspondences and create a
pose hypothesis for each subset. Given the pose hypothesis and
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the set of visible scene points, we can compute the expected
image points. Subsequently, we evaluate the quality of each
hypothesis using the Euclidean reprojection error betweenthe
expected image points based on the current hypothesis and the
measured image features. All correspondences with an error
larger than a predefined threshold are classified as outlier.The
final estimation uses only the correspondences of the largest
set of inliers.

C. Keyframe Selection and Pose Refinement

Since the pose estimation scheme proposed in the previous
section does not update the scene structure, the number of
visible scene points decreases over time. Hence, if none of the
initialized scene points is visible in the current camera image,
no pose estimation is possible. To this end, new keyframes
are selected when the number of visible scene points in the
current image drops below a threshold.

Whenever a new frameIk is selected as keyframeKM+1,
whereM denotes the number of already initialized keyframes,
a bundle adjustment is performed. To keep the computational
complexity moderate, we perform the bundle adjustment only
over a sliding window ofL keyframes. Furthermore, we opti-
mize only them camera poses of the most recent keyframes
inside this window (m < L), keeping the remaining camera
poses fixed. This is reasonable, since the other keyframes have
been optimized multiple times in previous optimization steps.
Note that the reprojection error in the fixed camera poses is
taken into consideration during the optimization process.We
use the well established implementation of a sparse bundle
adjustment proposed in Louriakis et al. [14].

After the bundle adjustment, we use the most recent
keyframe KM+1 and the two previous keyframes
{KM−1,KM} to triangulate all feature points visible in
these keyframes using a three-view triangulation scheme [3].
Note that only those features are triangulated that do not
correspond to a previously initialized scene point. To reject
outliers, we check the reprojection error of the triangulated
scene points in all keyframes used for the triangulation. If
the Euclidean reprojection error in any of these keyframes
exceeds a certain threshold, the triangulated scene point is
rejected.

The following section describes the approach to recover
scale from a monocular image sequence based on assump-
tions about the camera mounting and the road environment.
Furthermore, the proposed approach allows for a reduction in
the drift of the scale. This part is the main contribution of
the paper and consists of a robust triangulation scheme for
feature points lying on the less textured asphalt as well as the
recovery of the translational scale from monocular imagery.

IV. RECOVERINGSCALE

A. Planar Assumption

In automotive applications, cameras are often rigidly moun-
ted in a fixed position and at constant orientation. Furthermore,
streets in urban environments may be reasonably assumed to
be approximately planar in the vicinity of the vehicle (see

Fig. 1: This figure illustrates the mounting of the camera.h
denotes the height of the camera above ground andR0 denotes
the orientation of the camera with respect to the ground plane.

figure 2). Additionally, we assume that the roll and pitch
movement of the vehicle is negligible, since high dynamic
maneuvers are not in the scope of this contribution. Nevert-
heless, roll and pitch of the camera can be taken into account
based on the estimated pose of the vehicle. In this case, only
the initial pose of the camera w.r.t. the ground plane has to be
known. Employing these assumptions provides a clue that may
be exploited to upgrade the monocular visual odometry to a
metric reconstruction and to compensate for the inevitabledrift
in scale. For this purpose, we estimate the ground plane based
on correspondences of features that may safely be assumed to
lie on this plane. The motion of the camera is then scaled in
a way that recovers its known height above ground.

B. Patch Matching

While we employ corner-like features (e.g. [19]) in visual
odometry, this approach fails to robustly detect features on as-
phalt due to the lack of strong texture. Furthermore, the images
of patches on the street plane close to the camera undergo
severe perspective distortions in successive frames caused by
the camera movement, which makes it particularly challenging
to match them by means of simple block-matching algorithms.
However, the known mounting position and orientation of the
camera as well as the assumption about the planarity of the
area in front of the vehicle may be exploited to overcome these
challenges and robustly match features on the street.

Let R0 denote a rotation matrix that accounts for the pitch
and roll angle of the camera as depicted in figure 1 andt =
−R0 (0, h, 0)

T denotes the translation in its reference frame,
whereh is the height above the road. Further, let the road plane
be defined byY = 0 as shown by the gray coordinate frame
in figure 1, and a point on this plane byX ′ = (X,Z, 1)

T in

Fig. 2: This figure depicts the region of interest (ROI) in the
image that is assumed to be approximately planar.
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projective coordinates, then image pointsx = (x, y, 1)
T are

related to pointsX ′ on the road plane through a projective
transformationx = HX

′. This transformation is calculated
as (see also [8])

x = K · [R0|t] (X, 0, Z, 1)
T (2)

= K · [r1 r3 t] (X,Z, 1)
T (3)

= HX
′, (4)

where r1 and r3 denote the first and third column ofR0.
Our approach uses the inverse mappingH

−1 to generate a
synthetic fronto-parallel view of a region of interest (ROI) on
the street plane, as depicted in figure 3.

As the ROI is in general evenly textured, it is difficult to
identify significant features that are well suited for tracking.
Instead, a predefined set of square patches is used in frame
k, located at the edge of the rectangular ROI closest to
the vehicle. This choice ensures that a region with high
resolution is used for matching as well as the maximum flow
for triangulation. The patches are matched against the ROI
at k − 1, using the sum of absolute differences (SAD) and
choosing the minimum value as match. In most cases, the
matching exhibits a distinct minimum. In the fronto-parallel
projection, patches in successive frames are related by an
Euclidean transformation which improves the robustness of
patch based matching schemes significantly. In our experi-
ments, the rotational component of this transformation was
moderate and thus did not affect the performance of the SAD
based matching negatively.

Using the projective transformationH, the correspondences
are mapped onto image points as

x
k
j = HX

′k
j and (5)

x
k−1

j = HX
′k−1

j . (6)

Note that the purpose of all steps described in this section
is to robustly match features on the road surface. Only the
positionsxk−1

j andxk
j of these features inIk−1 and Ik will

be used in the following.

C. Scale Update

In order to relate the height of the camera above the
estimated ground plane to the distance of translation, we
triangulate the points based on the relative positions of the
cameras at framek−1 and framek as estimated by the visual
odometry. Let

P̂
k−1 = K · [R0|0] (7)

P̂
k = K ·

[
R

k
(
R

k−1
)−1

R0|t
k −R

k
(
R

k−1
)−1

t
k−1

]

(8)

be projection matrices, whereR0 accounts for tilting as
depicted in figure 1.P̂ k compensates for the poses of both
frames in the global world reference frame, i.e.P̂

k expresses
the relative pose of framek w.r.t. frame k − 1. Since we
compensate for the mounting orientation of the camera at
frame k − 1, the X-Z-plane of the camera coordinate frame
is parallel to the ground plane and its height coincides with

Fig. 3: This figure depicts the synthetic fronto-parallel view
of the ROI. The white square marks a single patch that is
matched in the preceeding frame.

the mounting heighth of the camera. Then the pointŝX ′

j ,
triangulated withP̂ k−1 andP̂ k and the patch correspondences
x
k−1

j and x
k
j should roughly have the same Y-coordinate

(expressed in the coordinate frame of imagek − 1), which
corresponds to the height above the road plane in the current
scale, i.e. the estimated height of these points depends on
the actual translation between the frames. Since we know the
height of the camerah and the height of these points, we can
rescale the translation vector such that the camera height and
the height of the points coincide.

To robustly estimate the scale factor, we implemented an
outlier rejection based on the reprojection error|xk

j − P̂
k
X̂j |

to cope with mismatches as well as a simple planarity check
to discard estimates of the plane that exceed a threshold in the
variance of the Y-coordinates of the triangulated points. The
scale factorsk is determined by

sk = (1− α)sk−1 + αh/Ȳ k
j , (9)

with α ∈ [0, 1] and Ȳ k
j being the mean over all Y-coordinates

of X̂j triangulated from the image pairk andk−1. The factor
incorporates the previous scale factor for temporal smoothing
of the scale as well as spatial averaging. This smoothing seems
reasonable as the drift in scale occurs on a large time-scale,
thus making noise rejection a priority over a fast response.

The scale factorsk is used to scale all camera positionsi
within the current window as well as the structure observed
by the frames in the window. The window for which the
scaling is applied consists of all framesi ∈ {S, k}, where
S is the index corresponding to the oldest keyframe inside
the sliding window. As the scale of the motion only affects
the translationsti, the scaled translations may be calculated
as t̃i = sk

(
t
i − t

S
)
+ t

S , wheretS is the translation of the
oldest camera pose in the optimization window which is held
constant to ensure a smooth trajectory. Analogously, the point
cloud is scaled as

X̃j = sk
(
Xj +

(
R

i
)−1

t
i
)
−
(
R

i
)−1

t
i. (10)

The proposed scaling of both, the translational camera move-
ments as well as the scene points guarantees a consistently
estimated trajectory of the camera as well as the structure of
the scene. Obviously, the structure of the scene is too sparse
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Fig. 4: This figure depicts the results of the proposed algo-
rithm. The red trajectory is the ground truth given by the INS
system. The green and blue trajectories are estimated usingthe
visual odometry algorithm. Blue depicts the trajectory with a
single scaling at the beginning of the sequence, green is the
trajectory with continuously updated scale.

for obstacle avoidance or path planning purposes but sufficient
for a robust motion estimation.

V. EXPERIMENTAL RESULTS

For our experiments, we used different datasets captured
in real environments. To this end, we used our experimental
vehicle, which is equipped with a stereo-camera-rig1 and a
high accuracy integrated navigation system (INS), which com-
bines intertial measurements with a GPS-receiver and wheel
speed sensors for measuring motion, pose and orientation of
the vehicle. Therefore, the INS yields accurate measurements
for the motion of the vehicle along its roll axis and the yaw
rate. In the following, these measurements are used as ground
truth for our experiments.

The used camera is mounted on top of the car and yields
images at a resolution of1344 × 391 pixels with 10Hz.
As features, we used Harris corners [7] in combination with
a block matching on the image derivatives to get feature
correspondences between two adjacent frames. These feature
matches are accumulated, to get feature tracks over a series
of images.

The results for two challenging datasets with different length
and speed can be seen in figure 4 and 5. The first sequence
(figure 4) includes 600 frames and was captured with an
average speed of approximately10m/s. The second dataset
(figure 5) with a loopy trajectory consists of 1405 frames, the
speed was approximately15m/s on average.

The demonstrated results were computed offline on a stan-
dard PC, using an implementation in MATLAB. The length
of the sliding windows was set toL = 10, optimizing only
the m = 5 most recent camera poses inside this window.

1For this work, we use only the left camera of the stereo-camera-rig.

These parameters have been chosen to account for the average
track length of approximately four frames. The number of
used scene points for the bundle adjustment over the sliding
window is approximately900. This and the good initialization
of both, the scene points and the camera poses yield a fast
convergence of the bundle adjustment. Per frame, five patches
of size 50 × 50 pixels were matched on the road plane. For
the vast majority of patches, the SAD exhibited a distinct
minimum which gave rise to accurately triangulated points
on the plane. The resulting scale was smoothed with a factor
of α = 0.8.

Figure 4 displays the results of the proposed approach
compared to the ground truth trajectory given by the high
accuracy INS (red). Compared to the trajectory which has
been scaled only once at the beginning of the sequence (blue),
the trajectory using the proposed approach (green) exhibits
no significant drift in scale. Obviously, there is an increasing
deviation from the ground truth position due to the local nature
of the algorithm. Since the drift in scale does not affect the
rotational component of the motion estimate, the angular error
of the scaled and unscaled trajectories is similar. Only the
length of the trajectory is affected by the scaling. Note that
the trajectories are manually translated and rotated to align
them with the ground truth trajectory.

Currently, the proposed algorithm (without feature tracking)
takes approximately1.7s/frame due to the implementation
in MATLAB. An implementation in C++, which is planned
for future work, should increase the framerate significantly.

VI. CONCLUSION AND FUTURE WORK

In this paper we presented an approach for estimating
the 6 DoF ego-motion of a vehicle solely from monocular
image sequences. By exploiting constraints induced by the
known camera mounting and a reasonable assumption about
the planarity of the road surface in the vicinity of the vehicle,
the algorithm is capable of continuously recovering the scale
of the motion. Furthermore we can significantly reduce the
drift in scale.

Our experiments have shown, that the scale ambiguity in
monocular approaches leads to a large drift in scale. As a
result, distant sections of the same estimated trajectory are
scaled differently, causing a distortion of the path.

Based on feature tracks over a series of images, we estimate
the motion of the camera. To this end, we use a continuously
updated scene structure to estimate the pose of the camera
based on 2d-3d-correspondences between scene points and
image features. Whenever the number of visible scene points
in the current image drops below a threshold, we select a
new keyframe and refine the previous scene structure and the
camera poses in a sliding window based on bundle adjustment.
Subsequently, we update the scene structure based on newly
triangulated feature tracks. The proposed keyframe selection
criterion has proven to be sufficient for the proposed algorithm.
Nevertheless, more sophisticated approaches for keyframe
selection as proposed e.g. in [22] may be used.

The algorithm employs knowledge about the mounting of
the camera and a planar assumption to generate a synthetic
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Fig. 5: This figure illustrates the results of the proposed
algorithm (green) in comparison to the unscaled version (blue)
for a sequence consisting of 1405 frames. As can be seen, the
unscaled version suffers from a significant drift in scale. The
trajectory exploiting knowledge about the camera mounting
exhibits a slight drift due to the local nature of the algorithm.
Nevertheless, there is no significant drift in scale.

fronto-parallel view of the road. Despite the lack of strong
features on asphalt, patches in successive frames can be mat-
ched robustly in this view. Using these matches and the motion
hypothesis of the visual odometry, we triangulate points to
acquire an estimate of the distance to the ground plane as
measured by the visual odometry. Based on the deviation
of this measurement from the known mounting height, the
algorithm continuously scales the motion and structure of the
current window.

The experimental results suggest that the proposed
algorithm is capable of accurately reconstructing the
trajectory of the vehicle solely based on visual inputs.
Furthermore, continuously correcting the scale results ina
significant improvement of the accuracy.

Due to the use of only a single camera, the algorithm fails
in the presence of dominant independent motion. This may
be the case, when moving traffic accounts for a significant
share of the image. To improve the robustness of the approach,
we are working on a more reliable outlier rejection scheme.
The planar assumption is sufficiently fulfilled in most urban
scenarios. Nevertheless, large changes in the slope of the
road cause our approach to estimate a wrong scaling factor.
Although it will recover from such perturbations, the resulting
trajectory will be incorrectly scaled around this slope. Another
case where the algorithm fails to correctly compute the scale
factor is the presence of objects inside the ROI. Future work
will include the detection and handling of these conditionsas
well as a real-time implementation.
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