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Abstract— Precise knowledge of a robots’s ego-motion is a which fuse inertial measurements with GPS data [10]. As for
crucial requirement for higher level tasks like autonomous all incremental motion estimation techniques, long terift dr
navigation. Bundle adjustment based monocular visual odometry can only be mitigated by applying loop-closure on (visual)

has proven to successfully estimate the motion of a robot for | iti 20 by fusi bsolute locati
short sequences, but it suffers from an ambiguity in scale. Hence, P/aC€ recognition (e.g. [20]) or by fusing absolute locztiian

approaches that only optimize locally are prone to drift in scale data.

for sequences that span hundreds of frames. _ In this work, we make use of a fully calibrated monocular
In this paper we present an approach to monocular visual odo- camera to estimate the pose of the current camera with riespec

metry that compensates for drift in scale by applying constraints ., 5 gjohal world reference frame. The used datasets were

imposed by the known camera mounting and assumptions about di b . . hicl -

the environment. To this end, we employ a continuously updated captured in ur a_n environments using a vehicle _mOV'ng at a

point cloud to estimate the camera poses based on 2d-3d-Speed of approximately5m/s on average. The six degrees

correspondences. Within this set of camera poses, we identify of freedom (6 DoF) motion of the vehicle is estimated merely

keyframes which are combined into a sliding window and refined gn the visual information. No additional sensor measurégsnen

by bundle adjustment. Subsequently, we update the scale basedsuch as GPS- or IMU-data are used in contrast to [1] or [5].
on robustly tracked features on the road surface. Results on @

datasets demonstrate a significant increase in accuracy compate ) ) ) )
to the non-scaled scheme. The remainder of this paper is organized as follows: The

following section describes work already done in the field of
vision-based motion estimation. In Section Ill, the morlacu
motion estimation approach is described, which is extemded
section |V to cope with drift in scale. We close the paper with
Ego-motion estimation is an important prerequisite in rob@xperimental results in section V, a short conclusion and an
tic's applications. Many higher level tasks like obstacttet- outlook on future work.
tion, collision avoidance or autonomous navigation relyaon
accurate localization of the robot. All of these applicatio
make use of the relative pose of the current camera with
respect to the previous camera frame or a static world nefere  In recent years, many algorithms have been developed that
frame. Usually, this localization task is performed usingSs estimate the ego-motion of a robot. These algorithms can
or wheel speed sensors. In recent years, camera systeonghly be classified into two main categories, namely algo-
became cheaper and the performance of computing hardwaitegns using monocular camera systems (e.g. [24], [18]) and
increased dramatically. Hence, high resolution images chimocular approaches (e.g. [15], [12]). A further subdiuisis
be processed in real-time on standard hardware. It has bgessible into algorithms using only feature matches betwee
proven, that the information given by a camera system ¢ensecutive frames (e.g. [10], [21]) and algorithms using
sufficient to estimate the motion of a moving camera in feature tracks over a couple of images (e.g. [11], [17]).
static environment, calledisual odometry[16]. Each class of algorithms has different benefits and draw-
Compared to the abovementioned sensors, camera systbatks. Monocular algorithms suffer from the scale ambyguit
have different advantages. It is well known, that the aanurain the translational camera movement which is usually resol
of the GPS-localization depends on the number of satellitesd using measurements from IMUs (e.g. [5]) or a combinati-
used. This number drops down in urban environments witm of wheel speed sensors and GPS as in Agrawal et al. (e.g.
large buildings on either side of the road. The accuracy ff], [2]). Compared to algorithms which use feature tracks,
wheel speed sensors depends mainly on the slip betwedgorithms making use only of feature matches usually suffe
wheel and road, which can be high depending on the terrafrom higher drift rates, since the used information incogpes
Obviously, the localization results based on these seraers only two images. The entire trajectory is then computed
highly affected by the environment. Further drawbacks o8GHy accumulating the relative camera motions between two
or inertial measurement units (IMUs) are the low accuragonsecutive frames. This drift can be reduced using feature
and the high cost, respectively. The local drift rates faual tracks over a sequence of images combined withuadle
odometry are mostly smaller than the drift rates of IMUs, exadjustmentscheme [23]. The drawback of bundle adjustment
cept for expensive high accuracy integrated navigatiotesys is the computational burden of the optimization process. To
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relax this, most algorithms are based on a bundle adjustmartechnique to reduce the scale drift and recover scale from a
which performs the optimization only over a limited numbemoving monocular camera.

of images, i.e. a sliding window. Other algorithms make use

of additional sensors, like IMU- or GPS-systems (e.g. [B]) tn  pose Initialization

increase the accuracy of the estimation. Obviously, the use]_he ose initialization step is based on a set of three
of GPS-information reduces drift significantly becauself t b P

; reselected keyframes = { Ky, Ko, K3} and correspondin
global nature of the system. Furthermore, approaches Iallg""plyfeature points )\I/isible in a;{ll (1)1‘ tr?eseg]}mages. Basped ongthe

assumptions about the observer’s motion have been de‘daloee . :
eature points, we compute the epipolar geometry between

Scaramuzza et al. [18] make use of a planar motion model a T K, andK; — Ks, which describes the relative pose

the non-holonomic constraints of wheeled vehicles to reduc .
. of the keyframes with respect to the world reference frame.
the parameter space and increase the accuracy.

L . Note, that the world reference frame coincides with the came
Good localization results have also been achieved usmg . . )
coordinate frame of<,. To this end, we use the normalized
eight-point-algorithm [9] wrapped in a RANSAC framework

inside this map. Besides the computational complexity e§¢h Tg] to reject outliers caused by mdependently moving quc
or false feature matches. Outliers are detected, using the

approaches, most of the monocular visual SLAM teChanueglirwise Euclidean distance between the observed feadurks

perform only well in well structured environments a_nd af%eir corresponding epipolarlines. All features with atalice
low speed. Hence, these approaches are mainly apphcablt-f t0

. . arger than a predefined threshold are classified as outlier.
indoor environments. Recently, Strasdat et al. [20] dexedio gase don thF()a essential mat#¥<1—Xs we recover the pose
a monocular SLAM algorithm applicable for large-scale envi{ X

K3 4K3 > Wi
ronments, which resolves the drift in scale when Ioop-mesuihR 't } of K3 with respect to the world reference frame

: : 8], Here, R andt describe the orientation and translation of
occurs. Since we focus on open-loop scenarios, where a ropot ) ,
) . . : . . € camera respectively. Note, théf: can only be recovered
is travelling from A to B, this approach is not suitable in our

case up to an arbitrary scale factor. Using the recovered posheof t
Co-m ared to the abovementioned approaches which ¢ third keyframe and the feature correspondences, we compute

bine mgnocular vision with additional szﬁsors our aldponit e corresponding scene points for all features which dikerin

ses only visual inputs. To solve translat'onal’scale ol in both pairwise epipolar geometry estimations.

u y visual inputs. 10 Solv : N Based on the triangulated scene points and their correspon-

make use of some assum ptions about the moun'tlng pose .Of[m]eg features inK,; we can compute its pose with respect

camera aqd the plananty of the road surface |n'the VICINY the world reference frame using the algorithm proposed in

of the vehicle. Given these reasonable assumptions, we E_? Afterwards, we perform a bundle adjustment [23] over

continuously resolve the ambiguity in scale and reduce t ese three keyframes to get the best estimation for thereame

zg?le ggféas'gg'{E:gt%r:/vi:(;g;e{hfCﬁ%;t%znorglgsgscgnn?ﬁoses and the scene points. The bundle adjustment minimizes
up . u ! ‘oration p the reprojection error, i.e.

less than in the binocular case. Furthermore, calibraticor®
directly affect the motion estimation process. Hence, the u min d (P’“Xj,:cf)Q, (1)
of a monocular camera mitigates the effect of an erroneous PhX; S

7,k
calibration onto the motion estimation. , making it the maximum likelihood estimate, assuming a
Compa.req o .Scaramuzza et al. [18] our assumptions e ssjan distribution in the measurement errors [23]. Here
less restrictive since we assume on_ly a locally planar serfapr _ p- . [R*[t*] denotes the3 x 4 projection matrix of
but estimate the robot’s movement in 6 DoF- camerak and d(.) denotes the geometric distance between
two image points.
[1l. M ONOCULAR VISUAL ODOMETRY

The proposed algorithm for performing monocular visuds: Pose Estimation
odometry assumes a fully calibrated camera with known andUsing the previously initialized scene structure, the-esti
fixed intrinsic calibration parameter&. Given a sequence mation of the camera poseR*, t*} corresponding to image
of images, the goal is to estimate the camera pose at edéhis based on already initialized scene points, visible & th
time step solely based on these images. To this end, we trackrent image, i.e. a set of 2d-3d-correspondences. Gigen a
salient image feature3§ (e.g. corners [7], [19]) over a seriesof N already known scene poinis = {X1,..., X,,... Xy}
of frames. Here;j describes the index of the feature track anend feature tracks in the current imaffg we use all feature
k denotes the index of the frame, respectively. Based on thelsm:ks;c;? in the current image with an already associated scene
feature tracks, we reconstruct the poses of the moving @mpoint X; to estimate the current camera pose in the global
with respect to a predefined world reference frame and tbeordinate frame, using the algorithm proposed in [13].
locations of the scene points corresponding with the tracks Since we would like to reject features lying on independent-
In the following sections we will give a detailed descriptio ly moving objects or false feature matches, we use a RANSAC
of the different steps of the pose estimation algorithmc&inscheme to get a robust pose estimation. Hence, we use random-
the feature tracks are short, the (arbitrary) scale of thienas ly chosen subsets of the 2d-3d-correspondences and create a
ted camera poses drifts over time. In section IV we propogese hypothesis for each subset. Given the pose hypotmekis a



the set of visible scene points, we can compute the expected
image points. Subsequently, we evaluate the quality of eac
hypothesis using the Euclidean reprojection error betwhen |y
expected image points based on the current hypothesis and t
measured image features. All correspondences with an erfdr
larger than a predefined threshold are classified as oUkler.
final estimation uses only the correspondences of the large Y OOO
set of inliers. ¥V -

Fig. 1: This figure illustrates the mounting of the caméra.
denotes the height of the camera above groundRgndenotes

Since the pose estimation scheme proposed in the previgys orientation of the camera with respect to the groundeplan
section does not update the scene structure, the number of

visible scene points decreases over time. Hence, if noneeof t
initialized scene points is visible in the current cameragey, - _
no pose estimation is possible. To this end, new keyframé@ure 2). Additionally, we assume that the roll and pitch

are selected when the number of visible scene points in ti@vement of the vehicle is negligible, since high dynamic
current image drops below a threshold. maneuvers are not in the scope of this contribution. Nevert-

Whenever a new framé” is selected as keyfram& 1, heless, roll and pitch of the camera can be taken into account
whereM denotes the number of already initialized keyframegased on the estimated pose of the vehicle. In this case, only
a bundle adjustment is performed. To keep the computatiotia€ initial pose of the camera w.r.t. the ground plane ha®to b
complexity moderate, we perform the bundle adjustment orfijiown. Employing these assumptions provides a clue that may
over a sliding window ofL keyframes. Furthermore, we opti-0€ exploited to upgrade the monocular visual odometry to a
mize only them camera poses of the most recent keyframdBetric reconstruction and to compensate for the inevitdbfe
inside this window {» < L), keeping the remaining camerain scale. For this purpose, we estimate the ground planedbase
poses fixed. This is reasonable, since the other keyfranves h@n correspondences of features that may safely be assumed to
been optimized multiple times in previous optimizationpste lie on this plane. The motion of the camera is then scaled in
Note that the reprojection error in the fixed camera posesdgvay that recovers its known height above ground.
taken into consideration during the optimization procéf§s.
use the well established implementation of a sparse bungle o, Matching
adjustment proposed in Louriakis et al. [14]. _ ) o

After the bundle adjustment, we use the most recentWhile we gmploy corner.—llke features (e.g. [19]) in visual
keyframe Ky and the two previous keyframesodometry, this approach fails to robustly detect features&
{Ky_1,Ky} to triangulate all feature points visible inPhalt due to the lack of strong texture. Furthermore, thegesa
these keyframes using a three-view triangulation scherhe [8f Paiches on the street plane close to the camera undergo
Note that only those features are triangulated that do rR§tVere perspective distortions in successive frames dase
correspond to a previously initialized scene point. To aejeth® camera movement, which makes it particularly challeggi
outliers, we check the reprojection error of the triangedat 10 match them by means of simple block-matching algorithms.
scene points in all keyframes used for the triangulation. fowever, the known mounting position and orientation of the
the Euclidean reprojection error in any of these keyfram&gdmera as well as the assumption about the planarity of the

exceeds a certain threshold, the triangulated scene pmin@i€2 in front of the vehicle may be exploited to overcomeshes
rejected. challenges and robustly match features on the street.

Let R, denote a rotation matrix that accounts for the pitch

The following section describes the approach to recovapd roll angITe of the camera as depicted in figure 1 and
scale from a monocular image sequence based on assumfo (0,h,0) denotes the translation in its reference frame,
tions about the camera mounting and the road environmefhere. is the height above the road. Further, let the road plane
Furthermore, the proposed approach allows for a reductione defined byy” =0 as shown by the gray coordinate frame
the drift of the scale. This part is the main contribution of figure 1, and a point on this plane by’ = (X, Z,1)" in
the paper and consists of a robust triangulation scheme for
feature points lying on the less textured asphalt as welhas

C. Keyframe Selection and Pose Refinement

IV. RECOVERING SCALE
A. Planar Assumption
In automotive applications, cameras are often rigidly mou

ted in a fixed position and at constant orientation. Furtlweem Fig. 2: This figure depicts the region of interest (ROI) in the

streets in urban environments may be reasonably assumeghifige that is assumed to be approximately planar.
be approximately planar in the vicinity of the vehicle (see




projective coordinates, then image points= (z,y, 1)T are
related to pointsX’ on the road plane through a projective
transformatione = H X'. This transformation is calculated
as (see also [8])

xz =K [Rylt] (X,0,2,1)" )
=K-[rrst](X,2,1)" (3)
—HX/ (4)

where r; and r3 denote the first and third column dR,.
Our approach uses the inverse mappHg ' to generate a

synthetic fronto-parallel view of a region of interest (}@h Fig. 3: This figure depicts the synthetic fronto-paralletwi
the street plane, as depicted in figure 3. of the ROI. The white square marks a single patch that is

As the ROl is in general evenly textured, it is difficult tomatched in the preceeding frame.
identify significant features that are well suited for trisgk
Instead, a predefined set of square patches is used in frame

k, located at the edge of the rectangular ROI closest o, mounting height, of the camera. Then the pointi’7

the ve_h|clg. This choice ensures that a region .W'th h'gtplangulated withP*—1 and P* and the patch correspondences
resolution is used for matching as well as the maximum flow;,_;

k a .
for triangulation. The patches are matched against the ROI and X should roughly have the same Y-coordinate

at k£ — 1, using the sum of absolute differences (SAD) an xpressed in the coqrdmate frame of image- 1).’ which
, o orresponds to the height above the road plane in the current
choosing the minimum value as match. In most cases, {he

: . . o Scale, i.e. the estimated height of these points depends on
matching exhibits a distinct minimum. In the fronto-pagéll . .
o . . the actual translation between the frames. Since we know the
projection, patches in successive frames are related by an . :
i . S height of the camera and the height of these points, we can
Euclidean transformation which improves the robustness o . )
rescale the translation vector such that the camera height a

patch based matching schemes significantly. In our expefi-, height of the points coincide.

ments, the rotational component of this transformation was robustly estimate the scale factor, we implemented an

moderate anq thus dld. not affect the performance of the SAo[L)JtIier rejection based on the reprojection eﬂmf " 13’“)/(]
based matching negatively.

) . . to cope with mismatches as well as a simple planarity check
Using the projective transformatidf, the correspondences, ~ . ) )
are mapped onto image points as to @scard estimates of the plane that egceed a thresholdam t
variance of the Y-coordinates of the triangulated pointse T
m;f = nyc and (5) scale factors® is determined by
:13?_1 _ HX;k_l. (6) Sk} _ (1 _ a)sk71 +ah/17jk, (9)

_ Note that the purpose of all steps described in this sectigith o € [0, 1] andek being the mean over all Y-coordinates
is to robustly match features on the road surface. Only tlag)’(\j triangulated from the image pairandk — 1. The factor

positionsz; " anda} of these features "~ and I* will  jycorporates the previous scale factor for temporal sniogth

be used in the following. of the scale as well as spatial averaging. This smoothingsee
reasonable as the drift in scale occurs on a large time;scale

C. Scale Update thus making noise rejection a priority over a fast response.

In order to relate the height of the camera above the,The scale factos” is used to scale all camera positions

estimated ground plane to the distance of translation, \Xyéthm the current window as well as the structure observed

triangulate the points based on the relative positions ef gy the frames in the window. The window for which the

cameras at framk —1 and framek as estimated by the visualScaling is applied consists of all framese {5k}, where
odometry. Let S is the index corresponding to the oldest keyframe inside

R the sliding window. As the scale of the motion only affects
P*1 = K . [Ry|0] @) thejranslatiqnsti, the scaled translations may be calculated
Sk g [k (k1) P N Sy ast’ = s* (t' —t%) + t5, wheret® is the translation of the

Pr=K [R (R ) Rolt" - R (R ) t } oldest camera pose in the optimization window which is held
(8) constant to ensure a smooth trajectory. Analogously, tlet po

be projection matrices, wherd?, accounts for tilting as cloud is scaled as

depicte(_:i in figure 1.P* compensates for th(_eAposes of both )7] — s (Xj 4 (Ri)*l ti) _ (Ri)*l + (10)
frames in the global world reference frame, 2" expresses

the relative pose of framé w.rt. frame k£ — 1. Since we The proposed scaling of both, the translational camera move
compensate for the mounting orientation of the camera raents as well as the scene points guarantees a consistently
frame k — 1, the X-Z-plane of the camera coordinate framestimated trajectory of the camera as well as the structure o
is parallel to the ground plane and its height coincides withe scene. Obviously, the structure of the scene is too espars



W These parameters have been chosen to account for the average
20

track length of approximately four frames. The number of
|/ used scene points for the bundle adjustment over the sliding
window is approximately00. This and the good initialization
of both, the scene points and the camera poses yield a fast
1 convergence of the bundle adjustment. Per frame, five patche
of size 50 x 50 pixels were matched on the road plane. For
the vast majority of patches, the SAD exhibited a distinct
J minimum which gave rise to accurately triangulated points
on the plane. The resulting scale was smoothed with a factor
of a = 0.8.
420 b ] Figure 4 displays the results of the proposed approach
compared to the ground truth trajectory given by the high
accuracy INS (red). Compared to the trajectory which has
50 0 50 100 150 been scaled only once at the beginning of the sequence (blue)
X-coordinate [m] the trajectory using the proposed approach (green) eshibit

Fig. 4: This figure depicts the results of the proposed algB0 Significant drift in scale. Obviously, there is an inciegs
rithm. The red trajectory is the ground truth given by the ngeviation from the ground truth position due to the localinat
system. The green and blue trajectories are estimated ﬂm’ng‘)f the algorithm. Since the drift in scale does not affect the
visual odometry algorithm. Blue depicts the trajectoryhnt rotational component of the motion estimate, the angularer
single scaling at the beginning of the sequence, green is ffethe scaled and unscaled trajectories is similar. Only the

trajectory with continuously updated scale. length of the trajectory is affected by the scaling. Notet tha
the trajectories are manually translated and rotated gnali

them with the ground truth trajectory.

. ) ~_ Currently, the proposed algorithm (without feature tragji
for obstacle avoidance or path planning purposes but eitici axes approximatelyt.7s/ frame due to the implementation
for a robust motion estimation. in MATLAB. An implementation in C++, which is planned

for future work, should increase the framerate signifigantl

-20 +
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-60
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V. EXPERIMENTAL RESULTS
For our experiments, we used different datasets captured VI. CONCLUSION AND FUTURE WORK
in real environments. To this end, we used our experimental

vehicle, which is equipped with a stereo-camerd-ragd a , ‘
high accuracy integrated navigation system (INS), whiam-co 1€ 6 DoF ego-motion of a vehicle solely from monocular

bines intertial measurements with a GPS-receiver and whiBRJ€ Sequences. By exploiting constraints induced by the

speed sensors for measuring motion, pose and orientation8pPWn camera mounting and a reasonable assumption about

the vehicle. Therefore, the INS yields accurate measuremelji€ Planarity of the road surface in the vicinity of the veajc

for the motion of the vehicle along its roll axis and the yavUA'e algorithm is capable of continuously recovering theesca

rate. In the following, these measurements are used as grodh 1€ motion. Furthermore we can significantly reduce the

truth for our experiments. drift in scale._ o
The used camera is mounted on top of the car and yieldsour experiments have shown, that the scale ambiguity in

images at a resolution of344 x 391 pixels with 10H . monocular approaches leads to a large drift in scale. As a

As features, we used Harris corners [7] in combination wiffgSult, distant sections of the same estimated trajectcgy a
a block matching on the image derivatives to get featufaled differently, causing a distortion of the path. .
correspondences between two adjacent frames. ThesedeatuPased on feature tracks over a series of images, we estimate

matches are accumulated, to get feature tracks over a seffismotion of the camera. To this end, we use a continuously

of images. updated scene structure to estimate the pose of the camera
The results for two challenging datasets with differengten Paseéd on 2d-3d-correspondences between scene points and
and speed can be seen in figure 4 and 5. The first sequelieade features._ Whenever the number of visible scene points
(figure 4) includes 600 frames and was captured with & the current image drops below a threshold, we select a
average speed of approximatelgm /s. The second dataset"eW keyframe and refine the previous scene structure and the
(figure 5) with a loopy trajectory consists of 1405 frames, tH-@Mera posesina sliding window based on bundle adjustment.
speed was approximatelysm/s on average. Subsequently, we update the scene structure based on newly
The demonstrated results were computed offline on a stdfidngulated feature tracks. The proposed keyframe sefect
dard PC, using an implementation in MATLAB. The lengti¢'iterion has proven to be sufficient for the proposed alfgori
of the sliding windows was set td = 10, optimizing only Nevertheless, more sophisticated approaches for keyframe

the m = 5 most recent camera poses inside this window€l€ction as proposed e.g. in [22] may be used. _
The algorithm employs knowledge about the mounting of

LFor this work, we use only the left camera of the stereo-camigra- the camera and a planar assumption to generate a synthetic

In this paper we presented an approach for estimating



VO (unscaled)

VO (scaled)

Z-coordinate [m]

I I I I | I
180 160 140 -120 100 -80 -60 40 20 [}
X-coordinate [m]

(2]

(3]

(4]

(5]

Fig. 5: This figure illustrates the results of the propose(ﬁel

algorithm (green) in comparison to the unscaled versiome(pl
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automated cartographfommunications of the ACN24(6):381 — 395,

for a sequence consisting of 1405 frames. As can be seen, the 1981. _ _
7] Chris Harris and Mike Stephens. A combined corner and etigector.

unscaled version suffers from a significant drift in scalee T

trajectory exploiting knowledge about the camera mountingg]

exhibits a slight drift due to the local nature of the algamit
Nevertheless, there is no significant drift in scale.

(9]

[10]

fronto-parallel view of the road. Despite the lack of strong

features on asphalt, patches in successive frames can be ﬁt Andrew Edie Johnson, Steven B. Goldberg, Yang Chend,Laary H.

ched robustly in this view. Using these matches and the motio
hypothesis of the visual odometry, we triangulate points to

acquire an estimate of the distance to the ground plane

measured by the visual odometry. Based on the deviation
of this measurement from the known mounting height, the

algorithm continuously scales the motion and structurehef t[13]

current window.
The experimental

algorithm is capable of accurately reconstructing t

results suggest that the proposed L (2): :
] Manolis I. A. Louriakis and Antonis A. Argyros.

trajectory of the vehicle solely based on visual inputs.

Furthermore, continuously correcting the scale results in[15]

significant improvement of the accuracy.

[16]

Due to the use of only a single camera, the algorithm fails

in the presence of dominant independent motion. This may,

be the case, when moving traffic accounts for a significant
share of the image. To improve the robustness of the approach

we are working on a more reliable outlier rejection schemk.
The planar assumption is sufficiently fulfilled in most urban
scenarios. Nevertheless, large changes in the slope of the

road cause our approach to estimate a wrong scaling fac%?l Jianbo Shi and Carlo Tomasi. Good features to trackE EE Computer

Although it will recover from such perturbations, the resg
trajectory will be incorrectly scaled around this slope.oftrer

[20]

case where the algorithm fails to correctly compute theescal

factor is the presence of objects inside the ROI. Future wopk

will include the detection and handling of these conditiass
well as a real-time implementation.
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